/** * @author Richard Davey * @copyright 2013-2024 Phaser Studio Inc. * @license {@link https://opensource.org/licenses/MIT|MIT License} */ // Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji // and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl var Class = require('../utils/Class'); var Matrix3 = require('./Matrix3'); var NOOP = require('../utils/NOOP'); var Vector3 = require('./Vector3'); var EPSILON = 0.000001; // Some shared 'private' arrays var siNext = new Int8Array([ 1, 2, 0 ]); var tmp = new Float32Array([ 0, 0, 0 ]); var xUnitVec3 = new Vector3(1, 0, 0); var yUnitVec3 = new Vector3(0, 1, 0); var tmpvec = new Vector3(); var tmpMat3 = new Matrix3(); /** * @classdesc * A quaternion. * * @class Quaternion * @memberof Phaser.Math * @constructor * @since 3.0.0 * * @param {number} [x=0] - The x component. * @param {number} [y=0] - The y component. * @param {number} [z=0] - The z component. * @param {number} [w=1] - The w component. */ var Quaternion = new Class({ initialize: function Quaternion (x, y, z, w) { /** * The x component of this Quaternion. * * @name Phaser.Math.Quaternion#_x * @type {number} * @default 0 * @private * @since 3.50.0 */ /** * The y component of this Quaternion. * * @name Phaser.Math.Quaternion#_y * @type {number} * @default 0 * @private * @since 3.50.0 */ /** * The z component of this Quaternion. * * @name Phaser.Math.Quaternion#_z * @type {number} * @default 0 * @private * @since 3.50.0 */ /** * The w component of this Quaternion. * * @name Phaser.Math.Quaternion#_w * @type {number} * @default 0 * @private * @since 3.50.0 */ /** * This callback is invoked, if set, each time a value in this quaternion is changed. * The callback is passed one argument, a reference to this quaternion. * * @name Phaser.Math.Quaternion#onChangeCallback * @type {function} * @since 3.50.0 */ this.onChangeCallback = NOOP; this.set(x, y, z, w); }, /** * The x component of this Quaternion. * * @name Phaser.Math.Quaternion#x * @type {number} * @default 0 * @since 3.0.0 */ x: { get: function () { return this._x; }, set: function (value) { this._x = value; this.onChangeCallback(this); } }, /** * The y component of this Quaternion. * * @name Phaser.Math.Quaternion#y * @type {number} * @default 0 * @since 3.0.0 */ y: { get: function () { return this._y; }, set: function (value) { this._y = value; this.onChangeCallback(this); } }, /** * The z component of this Quaternion. * * @name Phaser.Math.Quaternion#z * @type {number} * @default 0 * @since 3.0.0 */ z: { get: function () { return this._z; }, set: function (value) { this._z = value; this.onChangeCallback(this); } }, /** * The w component of this Quaternion. * * @name Phaser.Math.Quaternion#w * @type {number} * @default 0 * @since 3.0.0 */ w: { get: function () { return this._w; }, set: function (value) { this._w = value; this.onChangeCallback(this); } }, /** * Copy the components of a given Quaternion or Vector into this Quaternion. * * @method Phaser.Math.Quaternion#copy * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} src - The Quaternion or Vector to copy the components from. * * @return {Phaser.Math.Quaternion} This Quaternion. */ copy: function (src) { return this.set(src); }, /** * Set the components of this Quaternion and optionally call the `onChangeCallback`. * * @method Phaser.Math.Quaternion#set * @since 3.0.0 * * @param {(number|object)} [x=0] - The x component, or an object containing x, y, z, and w components. * @param {number} [y=0] - The y component. * @param {number} [z=0] - The z component. * @param {number} [w=0] - The w component. * @param {boolean} [update=true] - Call the `onChangeCallback`? * * @return {Phaser.Math.Quaternion} This Quaternion. */ set: function (x, y, z, w, update) { if (update === undefined) { update = true; } if (typeof x === 'object') { this._x = x.x || 0; this._y = x.y || 0; this._z = x.z || 0; this._w = x.w || 0; } else { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = w || 0; } if (update) { this.onChangeCallback(this); } return this; }, /** * Add a given Quaternion or Vector to this Quaternion. Addition is component-wise. * * @method Phaser.Math.Quaternion#add * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to add to this Quaternion. * * @return {Phaser.Math.Quaternion} This Quaternion. */ add: function (v) { this._x += v.x; this._y += v.y; this._z += v.z; this._w += v.w; this.onChangeCallback(this); return this; }, /** * Subtract a given Quaternion or Vector from this Quaternion. Subtraction is component-wise. * * @method Phaser.Math.Quaternion#subtract * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to subtract from this Quaternion. * * @return {Phaser.Math.Quaternion} This Quaternion. */ subtract: function (v) { this._x -= v.x; this._y -= v.y; this._z -= v.z; this._w -= v.w; this.onChangeCallback(this); return this; }, /** * Scale this Quaternion by the given value. * * @method Phaser.Math.Quaternion#scale * @since 3.0.0 * * @param {number} scale - The value to scale this Quaternion by. * * @return {Phaser.Math.Quaternion} This Quaternion. */ scale: function (scale) { this._x *= scale; this._y *= scale; this._z *= scale; this._w *= scale; this.onChangeCallback(this); return this; }, /** * Calculate the length of this Quaternion. * * @method Phaser.Math.Quaternion#length * @since 3.0.0 * * @return {number} The length of this Quaternion. */ length: function () { var x = this.x; var y = this.y; var z = this.z; var w = this.w; return Math.sqrt(x * x + y * y + z * z + w * w); }, /** * Calculate the length of this Quaternion squared. * * @method Phaser.Math.Quaternion#lengthSq * @since 3.0.0 * * @return {number} The length of this Quaternion, squared. */ lengthSq: function () { var x = this.x; var y = this.y; var z = this.z; var w = this.w; return x * x + y * y + z * z + w * w; }, /** * Normalize this Quaternion. * * @method Phaser.Math.Quaternion#normalize * @since 3.0.0 * * @return {Phaser.Math.Quaternion} This Quaternion. */ normalize: function () { var x = this.x; var y = this.y; var z = this.z; var w = this.w; var len = x * x + y * y + z * z + w * w; if (len > 0) { len = 1 / Math.sqrt(len); this._x = x * len; this._y = y * len; this._z = z * len; this._w = w * len; } this.onChangeCallback(this); return this; }, /** * Calculate the dot product of this Quaternion and the given Quaternion or Vector. * * @method Phaser.Math.Quaternion#dot * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to dot product with this Quaternion. * * @return {number} The dot product of this Quaternion and the given Quaternion or Vector. */ dot: function (v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, /** * Linearly interpolate this Quaternion towards the given Quaternion or Vector. * * @method Phaser.Math.Quaternion#lerp * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to interpolate towards. * @param {number} [t=0] - The percentage of interpolation. * * @return {Phaser.Math.Quaternion} This Quaternion. */ lerp: function (v, t) { if (t === undefined) { t = 0; } var ax = this.x; var ay = this.y; var az = this.z; var aw = this.w; return this.set( ax + t * (v.x - ax), ay + t * (v.y - ay), az + t * (v.z - az), aw + t * (v.w - aw) ); }, /** * Rotates this Quaternion based on the two given vectors. * * @method Phaser.Math.Quaternion#rotationTo * @since 3.0.0 * * @param {Phaser.Math.Vector3} a - The transform rotation vector. * @param {Phaser.Math.Vector3} b - The target rotation vector. * * @return {Phaser.Math.Quaternion} This Quaternion. */ rotationTo: function (a, b) { var dot = a.x * b.x + a.y * b.y + a.z * b.z; if (dot < -0.999999) { if (tmpvec.copy(xUnitVec3).cross(a).length() < EPSILON) { tmpvec.copy(yUnitVec3).cross(a); } tmpvec.normalize(); return this.setAxisAngle(tmpvec, Math.PI); } else if (dot > 0.999999) { return this.set(0, 0, 0, 1); } else { tmpvec.copy(a).cross(b); this._x = tmpvec.x; this._y = tmpvec.y; this._z = tmpvec.z; this._w = 1 + dot; return this.normalize(); } }, /** * Set the axes of this Quaternion. * * @method Phaser.Math.Quaternion#setAxes * @since 3.0.0 * * @param {Phaser.Math.Vector3} view - The view axis. * @param {Phaser.Math.Vector3} right - The right axis. * @param {Phaser.Math.Vector3} up - The upwards axis. * * @return {Phaser.Math.Quaternion} This Quaternion. */ setAxes: function (view, right, up) { var m = tmpMat3.val; m[0] = right.x; m[3] = right.y; m[6] = right.z; m[1] = up.x; m[4] = up.y; m[7] = up.z; m[2] = -view.x; m[5] = -view.y; m[8] = -view.z; return this.fromMat3(tmpMat3).normalize(); }, /** * Reset this Matrix to an identity (default) Quaternion. * * @method Phaser.Math.Quaternion#identity * @since 3.0.0 * * @return {Phaser.Math.Quaternion} This Quaternion. */ identity: function () { return this.set(0, 0, 0, 1); }, /** * Set the axis angle of this Quaternion. * * @method Phaser.Math.Quaternion#setAxisAngle * @since 3.0.0 * * @param {Phaser.Math.Vector3} axis - The axis. * @param {number} rad - The angle in radians. * * @return {Phaser.Math.Quaternion} This Quaternion. */ setAxisAngle: function (axis, rad) { rad = rad * 0.5; var s = Math.sin(rad); return this.set( s * axis.x, s * axis.y, s * axis.z, Math.cos(rad) ); }, /** * Multiply this Quaternion by the given Quaternion or Vector. * * @method Phaser.Math.Quaternion#multiply * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} b - The Quaternion or Vector to multiply this Quaternion by. * * @return {Phaser.Math.Quaternion} This Quaternion. */ multiply: function (b) { var ax = this.x; var ay = this.y; var az = this.z; var aw = this.w; var bx = b.x; var by = b.y; var bz = b.z; var bw = b.w; return this.set( ax * bw + aw * bx + ay * bz - az * by, ay * bw + aw * by + az * bx - ax * bz, az * bw + aw * bz + ax * by - ay * bx, aw * bw - ax * bx - ay * by - az * bz ); }, /** * Smoothly linearly interpolate this Quaternion towards the given Quaternion or Vector. * * @method Phaser.Math.Quaternion#slerp * @since 3.0.0 * * @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} b - The Quaternion or Vector to interpolate towards. * @param {number} t - The percentage of interpolation. * * @return {Phaser.Math.Quaternion} This Quaternion. */ slerp: function (b, t) { // benchmarks: http://jsperf.com/quaternion-slerp-implementations var ax = this.x; var ay = this.y; var az = this.z; var aw = this.w; var bx = b.x; var by = b.y; var bz = b.z; var bw = b.w; // calc cosine var cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary) if (cosom < 0) { cosom = -cosom; bx = - bx; by = - by; bz = - bz; bw = - bw; } // "from" and "to" quaternions are very close // ... so we can do a linear interpolation var scale0 = 1 - t; var scale1 = t; // calculate coefficients if ((1 - cosom) > EPSILON) { // standard case (slerp) var omega = Math.acos(cosom); var sinom = Math.sin(omega); scale0 = Math.sin((1.0 - t) * omega) / sinom; scale1 = Math.sin(t * omega) / sinom; } // calculate final values return this.set( scale0 * ax + scale1 * bx, scale0 * ay + scale1 * by, scale0 * az + scale1 * bz, scale0 * aw + scale1 * bw ); }, /** * Invert this Quaternion. * * @method Phaser.Math.Quaternion#invert * @since 3.0.0 * * @return {Phaser.Math.Quaternion} This Quaternion. */ invert: function () { var a0 = this.x; var a1 = this.y; var a2 = this.z; var a3 = this.w; var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3; var invDot = (dot) ? 1 / dot : 0; return this.set( -a0 * invDot, -a1 * invDot, -a2 * invDot, a3 * invDot ); }, /** * Convert this Quaternion into its conjugate. * * Sets the x, y and z components. * * @method Phaser.Math.Quaternion#conjugate * @since 3.0.0 * * @return {Phaser.Math.Quaternion} This Quaternion. */ conjugate: function () { this._x = -this.x; this._y = -this.y; this._z = -this.z; this.onChangeCallback(this); return this; }, /** * Rotate this Quaternion on the X axis. * * @method Phaser.Math.Quaternion#rotateX * @since 3.0.0 * * @param {number} rad - The rotation angle in radians. * * @return {Phaser.Math.Quaternion} This Quaternion. */ rotateX: function (rad) { rad *= 0.5; var ax = this.x; var ay = this.y; var az = this.z; var aw = this.w; var bx = Math.sin(rad); var bw = Math.cos(rad); return this.set( ax * bw + aw * bx, ay * bw + az * bx, az * bw - ay * bx, aw * bw - ax * bx ); }, /** * Rotate this Quaternion on the Y axis. * * @method Phaser.Math.Quaternion#rotateY * @since 3.0.0 * * @param {number} rad - The rotation angle in radians. * * @return {Phaser.Math.Quaternion} This Quaternion. */ rotateY: function (rad) { rad *= 0.5; var ax = this.x; var ay = this.y; var az = this.z; var aw = this.w; var by = Math.sin(rad); var bw = Math.cos(rad); return this.set( ax * bw - az * by, ay * bw + aw * by, az * bw + ax * by, aw * bw - ay * by ); }, /** * Rotate this Quaternion on the Z axis. * * @method Phaser.Math.Quaternion#rotateZ * @since 3.0.0 * * @param {number} rad - The rotation angle in radians. * * @return {Phaser.Math.Quaternion} This Quaternion. */ rotateZ: function (rad) { rad *= 0.5; var ax = this.x; var ay = this.y; var az = this.z; var aw = this.w; var bz = Math.sin(rad); var bw = Math.cos(rad); return this.set( ax * bw + ay * bz, ay * bw - ax * bz, az * bw + aw * bz, aw * bw - az * bz ); }, /** * Create a unit (or rotation) Quaternion from its x, y, and z components. * * Sets the w component. * * @method Phaser.Math.Quaternion#calculateW * @since 3.0.0 * * @return {Phaser.Math.Quaternion} This Quaternion. */ calculateW: function () { var x = this.x; var y = this.y; var z = this.z; this.w = -Math.sqrt(1.0 - x * x - y * y - z * z); return this; }, /** * Set this Quaternion from the given Euler, based on Euler order. * * @method Phaser.Math.Quaternion#setFromEuler * @since 3.50.0 * * @param {Phaser.Math.Euler} euler - The Euler to convert from. * @param {boolean} [update=true] - Run the `onChangeCallback`? * * @return {Phaser.Math.Quaternion} This Quaternion. */ setFromEuler: function (euler, update) { var x = euler.x / 2; var y = euler.y / 2; var z = euler.z / 2; var c1 = Math.cos(x); var c2 = Math.cos(y); var c3 = Math.cos(z); var s1 = Math.sin(x); var s2 = Math.sin(y); var s3 = Math.sin(z); switch (euler.order) { case 'XYZ': { this.set( s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3, c1 * c2 * s3 + s1 * s2 * c3, c1 * c2 * c3 - s1 * s2 * s3, update ); break; } case 'YXZ': { this.set( s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3, c1 * c2 * s3 - s1 * s2 * c3, c1 * c2 * c3 + s1 * s2 * s3, update ); break; } case 'ZXY': { this.set( s1 * c2 * c3 - c1 * s2 * s3, c1 * s2 * c3 + s1 * c2 * s3, c1 * c2 * s3 + s1 * s2 * c3, c1 * c2 * c3 - s1 * s2 * s3, update ); break; } case 'ZYX': { this.set( s1 * c2 * c3 - c1 * s2 * s3, c1 * s2 * c3 + s1 * c2 * s3, c1 * c2 * s3 - s1 * s2 * c3, c1 * c2 * c3 + s1 * s2 * s3, update ); break; } case 'YZX': { this.set( s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 + s1 * c2 * s3, c1 * c2 * s3 - s1 * s2 * c3, c1 * c2 * c3 - s1 * s2 * s3, update ); break; } case 'XZY': { this.set( s1 * c2 * c3 - c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3, c1 * c2 * s3 + s1 * s2 * c3, c1 * c2 * c3 + s1 * s2 * s3, update ); break; } } return this; }, /** * Sets the rotation of this Quaternion from the given Matrix4. * * @method Phaser.Math.Quaternion#setFromRotationMatrix * @since 3.50.0 * * @param {Phaser.Math.Matrix4} mat4 - The Matrix4 to set the rotation from. * * @return {Phaser.Math.Quaternion} This Quaternion. */ setFromRotationMatrix: function (mat4) { var m = mat4.val; var m11 = m[0]; var m12 = m[4]; var m13 = m[8]; var m21 = m[1]; var m22 = m[5]; var m23 = m[9]; var m31 = m[2]; var m32 = m[6]; var m33 = m[10]; var trace = m11 + m22 + m33; var s; if (trace > 0) { s = 0.5 / Math.sqrt(trace + 1.0); this.set( (m32 - m23) * s, (m13 - m31) * s, (m21 - m12) * s, 0.25 / s ); } else if (m11 > m22 && m11 > m33) { s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33); this.set( 0.25 * s, (m12 + m21) / s, (m13 + m31) / s, (m32 - m23) / s ); } else if (m22 > m33) { s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33); this.set( (m12 + m21) / s, 0.25 * s, (m23 + m32) / s, (m13 - m31) / s ); } else { s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22); this.set( (m13 + m31) / s, (m23 + m32) / s, 0.25 * s, (m21 - m12) / s ); } return this; }, /** * Convert the given Matrix into this Quaternion. * * @method Phaser.Math.Quaternion#fromMat3 * @since 3.0.0 * * @param {Phaser.Math.Matrix3} mat - The Matrix to convert from. * * @return {Phaser.Math.Quaternion} This Quaternion. */ fromMat3: function (mat) { // benchmarks: // http://jsperf.com/typed-array-access-speed // http://jsperf.com/conversion-of-3x3-matrix-to-quaternion // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes // article "Quaternion Calculus and Fast Animation". var m = mat.val; var fTrace = m[0] + m[4] + m[8]; var fRoot; if (fTrace > 0) { // |w| > 1/2, may as well choose w > 1/2 fRoot = Math.sqrt(fTrace + 1.0); // 2w this.w = 0.5 * fRoot; fRoot = 0.5 / fRoot; // 1/(4w) this._x = (m[7] - m[5]) * fRoot; this._y = (m[2] - m[6]) * fRoot; this._z = (m[3] - m[1]) * fRoot; } else { // |w| <= 1/2 var i = 0; if (m[4] > m[0]) { i = 1; } if (m[8] > m[i * 3 + i]) { i = 2; } var j = siNext[i]; var k = siNext[j]; // This isn't quite as clean without array access fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1); tmp[i] = 0.5 * fRoot; fRoot = 0.5 / fRoot; tmp[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot; tmp[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot; this._x = tmp[0]; this._y = tmp[1]; this._z = tmp[2]; this._w = (m[k * 3 + j] - m[j * 3 + k]) * fRoot; } this.onChangeCallback(this); return this; } }); module.exports = Quaternion;