/* jshint camelcase: false */ /** * @author Richard Davey * @copyright 2015 Photon Storm Ltd. * @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License} */ /** * Ninja Physics AABB constructor. * Note: This class could be massively optimised and reduced in size. I leave that challenge up to you. * * @class Phaser.Physics.Ninja.AABB * @constructor * @param {Phaser.Physics.Ninja.Body} body - The body that owns this shape. * @param {number} x - The x coordinate to create this shape at. * @param {number} y - The y coordinate to create this shape at. * @param {number} width - The width of this AABB. * @param {number} height - The height of this AABB. */ Phaser.Physics.Ninja.AABB = function (body, x, y, width, height) { /** * @property {Phaser.Physics.Ninja.Body} system - A reference to the body that owns this shape. */ this.body = body; /** * @property {Phaser.Physics.Ninja} system - A reference to the physics system. */ this.system = body.system; /** * @property {Phaser.Point} pos - The position of this object. */ this.pos = new Phaser.Point(x, y); /** * @property {Phaser.Point} oldpos - The position of this object in the previous update. */ this.oldpos = new Phaser.Point(x, y); /** * @property {number} xw - Half the width. * @readonly */ this.xw = Math.abs(width / 2); /** * @property {number} xw - Half the height. * @readonly */ this.yw = Math.abs(height / 2); /** * @property {number} width - The width. * @readonly */ this.width = width; /** * @property {number} height - The height. * @readonly */ this.height = height; /** * @property {number} oH - Internal var. * @private */ this.oH = 0; /** * @property {number} oV - Internal var. * @private */ this.oV = 0; /** * @property {Phaser.Point} velocity - The velocity of this object. */ this.velocity = new Phaser.Point(); /** * @property {object} aabbTileProjections - All of the collision response handlers. */ this.aabbTileProjections = {}; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_FULL] = this.projAABB_Full; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_45DEG] = this.projAABB_45Deg; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONCAVE] = this.projAABB_Concave; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONVEX] = this.projAABB_Convex; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGs] = this.projAABB_22DegS; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGb] = this.projAABB_22DegB; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGs] = this.projAABB_67DegS; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGb] = this.projAABB_67DegB; this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_HALF] = this.projAABB_Half; }; Phaser.Physics.Ninja.AABB.prototype.constructor = Phaser.Physics.Ninja.AABB; Phaser.Physics.Ninja.AABB.COL_NONE = 0; Phaser.Physics.Ninja.AABB.COL_AXIS = 1; Phaser.Physics.Ninja.AABB.COL_OTHER = 2; Phaser.Physics.Ninja.AABB.prototype = { /** * Updates this AABBs position. * * @method Phaser.Physics.Ninja.AABB#integrate */ integrate: function () { var px = this.pos.x; var py = this.pos.y; // integrate this.pos.x += (this.body.drag * this.pos.x) - (this.body.drag * this.oldpos.x); this.pos.y += (this.body.drag * this.pos.y) - (this.body.drag * this.oldpos.y) + (this.system.gravity * this.body.gravityScale); // store this.velocity.set(this.pos.x - px, this.pos.y - py); this.oldpos.set(px, py); }, /** * Process a collision partner-agnostic collision response and apply the resulting forces. * * @method Phaser.Phyiscs.Ninja.AABB#reportCollision * @param {number} px - The tangent velocity * @param {number} py - The tangent velocity * @param {number} dx - Collision normal * @param {number} dy - Collision normal */ reportCollision: function(px, py, dx, dy) { var p = this.pos; var o = this.oldpos; // Calc velocity var vx = p.x - o.x; var vy = p.y - o.y; // Find component of velocity parallel to collision normal var dp = (vx * dx + vy * dy); var nx = dp * dx; //project velocity onto collision normal var ny = dp * dy; //nx,ny is normal velocity var tx = vx - nx; //tx,ty is tangent velocity var ty = vy - ny; // We only want to apply collision response forces if the object is travelling into, and not out of, the collision var b, bx, by, fx, fy; if (dp < 0) { fx = tx * this.body.friction; fy = ty * this.body.friction; b = 1 + this.body.bounce; bx = (nx * b); by = (ny * b); if (dx === 1) { this.body.touching.left = true; } else if (dx === -1) { this.body.touching.right = true; } if (dy === 1) { this.body.touching.up = true; } else if (dy === -1) { this.body.touching.down = true; } } else { // Moving out of collision, do not apply forces bx = by = fx = fy = 0; } // Project object out of collision p.x += px; p.y += py; // Apply bounce+friction impulses which alter velocity o.x += px + bx + fx; o.y += py + by + fy; }, /** * Process a world collision and apply the resulting forces. * * @method Phaser.Physics.Ninja.AABB#reportCollisionVsWorld * @param {number} px - The tangent velocity * @param {number} py - The tangent velocity * @param {number} dx - Collision normal * @param {number} dy - Collision normal */ reportCollisionVsWorld: function (px, py, dx, dy) { this.reportCollision(px,py,dx,dy); }, reverse: function () { var vx = this.pos.x - this.oldpos.x; var vy = this.pos.y - this.oldpos.y; if (this.oldpos.x < this.pos.x) { this.oldpos.x = this.pos.x + vx; // this.oldpos.x = this.pos.x + (vx + 1 + this.body.bounce); } else if (this.oldpos.x > this.pos.x) { this.oldpos.x = this.pos.x - vx; // this.oldpos.x = this.pos.x - (vx + 1 + this.body.bounce); } if (this.oldpos.y < this.pos.y) { this.oldpos.y = this.pos.y + vy; // this.oldpos.y = this.pos.y + (vy + 1 + this.body.bounce); } else if (this.oldpos.y > this.pos.y) { this.oldpos.y = this.pos.y - vy; // this.oldpos.y = this.pos.y - (vy + 1 + this.body.bounce); } }, /** * Process a body collision and apply the resulting forces. Still very much WIP and doesn't work fully. Feel free to fix! * * @method Phaser.Physics.Ninja.AABB#reportCollisionVsBody * @param {number} px - The tangent velocity * @param {number} py - The tangent velocity * @param {number} dx - Collision normal * @param {number} dy - Collision normal * @param {number} obj - Object this AABB collided with */ reportCollisionVsBody: function (px, py, dx, dy, obj) { var vx1 = this.pos.x - this.oldpos.x; // Calc velocity of this object var vy1 = this.pos.y - this.oldpos.y; var dp1 = (vx1 * dx + vy1 * dy); // Find component of velocity parallel to collision normal // We only want to apply collision response forces if the object is travelling into, and not out of, the collision if (this.body.immovable && obj.body.immovable) { // Split the separation then return, no forces applied as they come to a stand-still px *= 0.5; py *= 0.5; this.pos.add(px, py); this.oldpos.set(this.pos.x, this.pos.y); obj.pos.subtract(px, py); obj.oldpos.set(obj.pos.x, obj.pos.y); return; } else if (!this.body.immovable && !obj.body.immovable) { // separate px *= 0.5; py *= 0.5; this.reportCollision(px, py, dx, dy); obj.reportCollision(-px, -py, -dx, -dy); } else if (!this.body.immovable) { this.reportCollision(px,py,dx,dy); } else if (!obj.body.immovable) { obj.reportCollision(-px, -py, -dx, -dy); } }, /** * Collides this AABB against the world bounds. * * @method Phaser.Physics.Ninja.AABB#collideWorldBounds */ collideWorldBounds: function () { var dx = this.system.bounds.x - (this.pos.x - this.xw); if (0 < dx) { this.reportCollisionVsWorld(dx, 0, 1, 0, null); } else { dx = (this.pos.x + this.xw) - this.system.bounds.right; if (0 < dx) { this.reportCollisionVsWorld(-dx, 0, -1, 0, null); } } var dy = this.system.bounds.y - (this.pos.y - this.yw); if (0 < dy) { this.reportCollisionVsWorld(0, dy, 0, 1, null); } else { dy = (this.pos.y + this.yw) - this.system.bounds.bottom; if (0 < dy) { this.reportCollisionVsWorld(0, -dy, 0, -1, null); } } }, /** * Collides this AABB against a AABB. * * @method Phaser.Physics.Ninja.AABB#collideAABBVsAABB * @param {Phaser.Physics.Ninja.AABB} aabb - The AABB to collide against. */ collideAABBVsAABB: function (aabb) { var pos = this.pos; var c = aabb; var tx = c.pos.x; var ty = c.pos.y; var txw = c.xw; var tyw = c.yw; var dx = pos.x - tx;//tile->obj delta var px = (txw + this.xw) - Math.abs(dx);//penetration depth in x if (0 < px) { var dy = pos.y - ty;//tile->obj delta var py = (tyw + this.yw) - Math.abs(dy);//pen depth in y if (0 < py) { //object may be colliding with tile; call tile-specific collision function //calculate projection vectors if (px < py) { //project in x if (dx < 0) { //project to the left px *= -1; py = 0; } else { //proj to right py = 0; } } else { //project in y if (dy < 0) { //project up px = 0; py *= -1; } else { //project down px = 0; } } var l = Math.sqrt(px * px + py * py); this.reportCollisionVsBody(px, py, px / l, py / l, c); return Phaser.Physics.Ninja.AABB.COL_AXIS; } } return false; }, /** * Collides this AABB against a Tile. * * @method Phaser.Physics.Ninja.AABB#collideAABBVsTile * @param {Phaser.Physics.Ninja.Tile} tile - The Tile to collide against. */ collideAABBVsTile: function (tile) { var dx = this.pos.x - tile.pos.x; // tile->obj delta var px = (tile.xw + this.xw) - Math.abs(dx); // penetration depth in x if (0 < px) { var dy = this.pos.y - tile.pos.y; // tile->obj delta var py = (tile.yw + this.yw) - Math.abs(dy); // pen depth in y if (0 < py) { // Calculate projection vectors if (px < py) { // Project in x if (dx < 0) { // Project to the left px *= -1; py = 0; } else { // Project to the right py = 0; } } else { // Project in y if (dy < 0) { // Project up px = 0; py *= -1; } else { // Project down px = 0; } } // Object may be colliding with tile; call tile-specific collision function return this.resolveTile(px, py, this, tile); } } return false; }, /** * Resolves tile collision. * * @method Phaser.Physics.Ninja.AABB#resolveTile * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} body - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} tile - The Tile involved in the collision. * @return {boolean} True if the collision was processed, otherwise false. */ resolveTile: function (x, y, body, tile) { if (0 < tile.id) { return this.aabbTileProjections[tile.type](x, y, body, tile); } else { // console.warn("Ninja.AABB.resolveTile was called with an empty (or unknown) tile!: id=" + tile.id + ")"); return false; } }, /** * Resolves Full tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_Full * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_Full: function (x, y, obj, t) { var l = Math.sqrt(x * x + y * y); obj.reportCollisionVsWorld(x, y, x / l, y / l, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; }, /** * Resolves Half tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_Half * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_Half: function (x, y, obj, t) { //signx or signy must be 0; the other must be -1 or 1 //calculate the projection vector for the half-edge, and then //(if collision is occuring) pick the minimum var sx = t.signx; var sy = t.signy; var ox = (obj.pos.x - (sx*obj.xw)) - t.pos.x;//this gives is the coordinates of the innermost var oy = (obj.pos.y - (sy*obj.yw)) - t.pos.y;//point on the AABB, relative to the tile center //we perform operations analogous to the 45deg tile, except we're using //an axis-aligned slope instead of an angled one.. //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); if (lenP < lenN) { //project along axis; note that we're assuming that this tile is horizontal OR vertical //relative to the AABB's current tile, and not diagonal OR the current tile. obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } else { //note that we could use -= instead of -dp obj.reportCollisionVsWorld(sx,sy,t.signx, t.signy, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves 45 Degree tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_45Deg * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_45Deg: function (x, y, obj, t) { var signx = t.signx; var signy = t.signy; var ox = (obj.pos.x - (signx*obj.xw)) - t.pos.x;//this gives is the coordinates of the innermost var oy = (obj.pos.y - (signy*obj.yw)) - t.pos.y;//point on the AABB, relative to the tile center var sx = t.sx; var sy = t.sy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); if (lenP < lenN) { //project along axis obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } else { //project along slope obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves 22 Degree tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_22DegS * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_22DegS: function (x, y, obj, t) { var signx = t.signx; var signy = t.signy; //first we need to check to make sure we're colliding with the slope at all var py = obj.pos.y - (signy*obj.yw); var penY = t.pos.y - py;//this is the vector from the innermost point on the box to the highest point on //the tile; if it is positive, this means the box is above the tile and //no collision is occuring if (0 < (penY*signy)) { var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope var sx = t.sx;//get slope unit normal var sy = t.sy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); var aY = Math.abs(penY); if (lenP < lenN) { if (aY < lenP) { obj.reportCollisionVsWorld(0, penY, 0, penY/aY, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } else { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } } else { if (aY < lenN) { obj.reportCollisionVsWorld(0, penY, 0, penY/aY, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } else { obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } } } //if we've reached this point, no collision has occured return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves 22 Degree tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_22DegB * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_22DegB: function (x, y, obj, t) { var signx = t.signx; var signy = t.signy; var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope var sx = t.sx;//get slope unit normal var sy = t.sy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); if (lenP < lenN) { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } else { obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves 67 Degree tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_67DegS * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_67DegS: function (x, y, obj, t) { var signx = t.signx; var signy = t.signy; var px = obj.pos.x - (signx*obj.xw); var penX = t.pos.x - px; if (0 < (penX*signx)) { var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope var sx = t.sx;//get slope unit normal var sy = t.sy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need to project it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); var aX = Math.abs(penX); if (lenP < lenN) { if (aX < lenP) { obj.reportCollisionVsWorld(penX, 0, penX/aX, 0, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } else { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } } else { if (aX < lenN) { obj.reportCollisionVsWorld(penX, 0, penX/aX, 0, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } else { obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } } } //if we've reached this point, no collision has occured return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves 67 Degree tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_67DegB * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_67DegB: function (x, y, obj, t) { var signx = t.signx; var signy = t.signy; var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope var sx = t.sx;//get slope unit normal var sy = t.sy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); if (lenP < lenN) { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } else { obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves Convex tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_Convex * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_Convex: function (x, y, obj, t) { //if distance from "innermost" corner of AABB is less than than tile radius, //collision is occuring and we need to project var signx = t.signx; var signy = t.signy; var ox = (obj.pos.x - (signx * obj.xw)) - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the circle center to var oy = (obj.pos.y - (signy * obj.yw)) - (t.pos.y - (signy * t.yw));//the AABB var len = Math.sqrt(ox * ox + oy * oy); var twid = t.xw * 2; var rad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var pen = rad - len; if (((signx * ox) < 0) || ((signy * oy) < 0)) { //the test corner is "outside" the 1/4 of the circle we're interested in var lenP = Math.sqrt(x * x + y * y); obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS;//we need to report } else if (0 < pen) { //project along corner->circle vector ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Resolves Concave tile collision. * * @method Phaser.Physics.Ninja.AABB#projAABB_Concave * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projAABB_Concave: function (x, y, obj, t) { //if distance from "innermost" corner of AABB is further than tile radius, //collision is occuring and we need to project var signx = t.signx; var signy = t.signy; var ox = (t.pos.x + (signx * t.xw)) - (obj.pos.x - (signx * obj.xw));//(ox,oy) is the vector form the innermost AABB corner to the var oy = (t.pos.y + (signy * t.yw)) - (obj.pos.y - (signy * obj.yw));//circle's center var twid = t.xw * 2; var rad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var len = Math.sqrt(ox * ox + oy * oy); var pen = len - rad; if (0 < pen) { //collision; we need to either project along the axes, or project along corner->circlecenter vector var lenP = Math.sqrt(x * x + y * y); if (lenP < pen) { //it's shorter to move along axis directions obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Ninja.AABB.COL_AXIS; } else { //project along corner->circle vector ox /= len;//len should never be 0, since if it IS 0, rad should be > than len oy /= len;//and we should never reach here obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.AABB.COL_OTHER; } } return Phaser.Physics.Ninja.AABB.COL_NONE; }, /** * Destroys this AABB's reference to Body and System * * @method Phaser.Physics.Ninja.AABB#destroy */ destroy: function() { this.body = null; this.system = null; }, /** * Render this AABB for debugging purposes. * * @method Phaser.Physics.Ninja.AABB#render * @param {object} context - The context to render to. * @param {number} xOffset - X offset from AABB's position to render at. * @param {number} yOffset - Y offset from AABB's position to render at. * @param {string} color - color of the debug shape to be rendered. (format is css color string). * @param {boolean} filled - Render the shape as solid (true) or hollow (false). */ render: function(context, xOffset, yOffset, color, filled) { var left = this.pos.x - this.xw - xOffset; var top = this.pos.y - this.yw - yOffset; if (filled) { context.fillStyle = color; context.fillRect(left, top, this.width, this.height); } else { context.strokeStyle = color; context.strokeRect(left, top, this.width, this.height); } } };