/* jshint camelcase: false */ /** * @author Richard Davey <rich@photonstorm.com> * @copyright 2016 Photon Storm Ltd. * @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License} */ /** * Ninja Physics Circle constructor. * Note: This class could be massively optimised and reduced in size. I leave that challenge up to you. * * @class Phaser.Physics.Ninja.Circle * @constructor * @param {Phaser.Physics.Ninja.Body} body - The body that owns this shape. * @param {number} x - The x coordinate to create this shape at. * @param {number} y - The y coordinate to create this shape at. * @param {number} radius - The radius of this Circle. */ Phaser.Physics.Ninja.Circle = function (body, x, y, radius) { /** * @property {Phaser.Physics.Ninja.Body} system - A reference to the body that owns this shape. */ this.body = body; /** * @property {Phaser.Physics.Ninja} system - A reference to the physics system. */ this.system = body.system; /** * @property {Phaser.Point} pos - The position of this object. */ this.pos = new Phaser.Point(x, y); /** * @property {Phaser.Point} oldpos - The position of this object in the previous update. */ this.oldpos = new Phaser.Point(x, y); /** * @property {number} radius - The radius of this circle shape. */ this.radius = radius; /** * @property {number} xw - Half the width. * @readonly */ this.xw = radius; /** * @property {number} xw - Half the height. * @readonly */ this.yw = radius; /** * @property {number} width - The width. * @readonly */ this.width = radius * 2; /** * @property {number} height - The height. * @readonly */ this.height = radius * 2; /** * @property {number} oH - Internal var. * @private */ this.oH = 0; /** * @property {number} oV - Internal var. * @private */ this.oV = 0; /** * @property {Phaser.Point} velocity - The velocity of this object. */ this.velocity = new Phaser.Point(); /** * @property {object} circleTileProjections - All of the collision response handlers. */ this.circleTileProjections = {}; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_FULL] = this.projCircle_Full; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_45DEG] = this.projCircle_45Deg; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONCAVE] = this.projCircle_Concave; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONVEX] = this.projCircle_Convex; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGs] = this.projCircle_22DegS; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGb] = this.projCircle_22DegB; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGs] = this.projCircle_67DegS; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGb] = this.projCircle_67DegB; this.circleTileProjections[Phaser.Physics.Ninja.Tile.TYPE_HALF] = this.projCircle_Half; }; Phaser.Physics.Ninja.Circle.prototype.constructor = Phaser.Physics.Ninja.Circle; Phaser.Physics.Ninja.Circle.COL_NONE = 0; Phaser.Physics.Ninja.Circle.COL_AXIS = 1; Phaser.Physics.Ninja.Circle.COL_OTHER = 2; Phaser.Physics.Ninja.Circle.prototype = { /** * Updates this Circles position. * * @method Phaser.Physics.Ninja.Circle#integrate */ integrate: function () { var px = this.pos.x; var py = this.pos.y; // integrate this.pos.x += (this.body.drag * this.pos.x) - (this.body.drag * this.oldpos.x); this.pos.y += (this.body.drag * this.pos.y) - (this.body.drag * this.oldpos.y) + (this.system.gravity * this.body.gravityScale); // store this.velocity.set(this.pos.x - px, this.pos.y - py); this.oldpos.set(px, py); }, /** * Process a world collision and apply the resulting forces. * * @method Phaser.Physics.Ninja.Circle#reportCollisionVsWorld * @param {number} px - The tangent velocity * @param {number} py - The tangent velocity * @param {number} dx - Collision normal * @param {number} dy - Collision normal * @param {number} obj - Object this Circle collided with */ reportCollisionVsWorld: function (px, py, dx, dy) { var p = this.pos; var o = this.oldpos; // Calc velocity var vx = p.x - o.x; var vy = p.y - o.y; // Find component of velocity parallel to collision normal var dp = (vx * dx + vy * dy); var nx = dp * dx; //project velocity onto collision normal var ny = dp * dy; //nx,ny is normal velocity var tx = vx - nx; //px,py is tangent velocity var ty = vy - ny; // We only want to apply collision response forces if the object is travelling into, and not out of, the collision var b, bx, by, fx, fy; if (dp < 0) { fx = tx * this.body.friction; fy = ty * this.body.friction; b = 1 + this.body.bounce; bx = (nx * b); by = (ny * b); if (dx === 1) { this.body.touching.left = true; } else if (dx === -1) { this.body.touching.right = true; } if (dy === 1) { this.body.touching.up = true; } else if (dy === -1) { this.body.touching.down = true; } } else { // Moving out of collision, do not apply forces bx = by = fx = fy = 0; } // Project object out of collision p.x += px; p.y += py; // Apply bounce+friction impulses which alter velocity o.x += px + bx + fx; o.y += py + by + fy; }, /** * Collides this Circle against the world bounds. * * @method Phaser.Physics.Ninja.Circle#collideWorldBounds */ collideWorldBounds: function () { var dx = this.system.bounds.x - (this.pos.x - this.radius); if (0 < dx) { this.reportCollisionVsWorld(dx, 0, 1, 0, null); } else { dx = (this.pos.x + this.radius) - this.system.bounds.right; if (0 < dx) { this.reportCollisionVsWorld(-dx, 0, -1, 0, null); } } var dy = this.system.bounds.y - (this.pos.y - this.radius); if (0 < dy) { this.reportCollisionVsWorld(0, dy, 0, 1, null); } else { dy = (this.pos.y + this.radius) - this.system.bounds.bottom; if (0 < dy) { this.reportCollisionVsWorld(0, -dy, 0, -1, null); } } }, /** * Collides this Circle with a Tile. * * @method Phaser.Physics.Ninja.Circle#collideCircleVsTile * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {boolean} True if they collide, otherwise false. */ collideCircleVsTile: function (tile) { var pos = this.pos; var r = this.radius; var c = tile; var tx = c.pos.x; var ty = c.pos.y; var txw = c.xw; var tyw = c.yw; var dx = pos.x - tx; // tile->obj delta var px = (txw + r) - Math.abs(dx); // penetration depth in x if (0 < px) { var dy = pos.y - ty; // tile->obj delta var py = (tyw + r) - Math.abs(dy); // pen depth in y if (0 < py) { // object may be colliding with tile // determine grid/voronoi region of circle center this.oH = 0; this.oV = 0; if (dx < -txw) { // circle is on left side of tile this.oH = -1; } else if (txw < dx) { // circle is on right side of tile this.oH = 1; } if (dy < -tyw) { // circle is on top side of tile this.oV = -1; } else if (tyw < dy) { // circle is on bottom side of tile this.oV = 1; } return this.resolveCircleTile(px, py, this.oH, this.oV, this, c); } } }, /** * Resolves tile collision. * * @method Phaser.Physics.Ninja.Circle#resolveCircleTile * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ resolveCircleTile: function (x, y, oH, oV, obj, t) { if (0 < t.id) { return this.circleTileProjections[t.type](x, y, oH, oV, obj, t); } else { return false; } }, /** * Resolves Full tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_Full * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_Full: function (x, y, oH, oV, obj, t) { //if we're colliding vs. the current cell, we need to project along the //smallest penetration vector. //if we're colliding vs. horiz. or vert. neighb, we simply project horiz/vert //if we're colliding diagonally, we need to collide vs. tile corner if (oH === 0) { if (oV === 0) { //collision with current cell if (x < y) { //penetration in x is smaller; project in x var dx = obj.pos.x - t.pos.x;//get sign for projection along x-axis //NOTE: should we handle the delta === 0 case?! and how? (project towards oldpos?) if (dx < 0) { obj.reportCollisionVsWorld(-x, 0, -1, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(x, 0, 1, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } } else { //penetration in y is smaller; project in y var dy = obj.pos.y - t.pos.y;//get sign for projection along y-axis //NOTE: should we handle the delta === 0 case?! and how? (project towards oldpos?) if (dy < 0) { obj.reportCollisionVsWorld(0, -y, 0, -1, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(0, y, 0, 1, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } } } else { //collision with vertical neighbor obj.reportCollisionVsWorld(0, y * oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } } else if (oV === 0) { //collision with horizontal neighbor obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //diagonal collision //get diag vertex position var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves 45 Degree tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_45Deg * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_45Deg: function (x, y, oH, oV, obj, t) { //if we're colliding diagonally: // -if obj is in the diagonal pointed to by the slope normal: we can't collide, do nothing // -else, collide vs. the appropriate vertex //if obj is in this tile: perform collision as for aabb-ve-45deg //if obj is horiz OR very neighb in direction of slope: collide only vs. slope //if obj is horiz or vert neigh against direction of slope: collide vs. face var signx = t.signx; var signy = t.signy; var lenP; if (oH === 0) { if (oV === 0) { //colliding with current tile var sx = t.sx; var sy = t.sy; var ox = (obj.pos.x - (sx * obj.radius)) - t.pos.x;//this gives is the coordinates of the innermost var oy = (obj.pos.y - (sy * obj.radius)) - t.pos.y;//point on the circle, relative to the tile center //if the dotprod of (ox,oy) and (sx,sy) is negative, the innermost point is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox * sx) + (oy * sy); if (dp < 0) { //collision; project delta onto slope and use this as the slope penetration vector sx *= -dp;//(sx,sy) is now the penetration vector sy *= -dp; //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y) < 0) { y *= -1; } } var lenN = Math.sqrt(sx * sx + sy * sy); if (lenP < lenN) { obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //colliding vertically if ((signy * oV) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(0, y * oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y + (oV * t.yw));//point on the circle, relative to the closest tile vert //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the normal. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronoi region, or that of the vertex. var perp = (ox * -sy) + (oy * sx); if (0 < (perp * signx * signy)) { //collide vs. vertex var len = Math.sqrt(ox * ox + oy * oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox * sx) + (oy * sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } } else if (oV === 0) { //colliding horizontally if ((signx * oH) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var ox = obj.pos.x - (t.pos.x + (oH * t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//point on the circle, relative to the closest tile vert //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the normal, otherwise by the vertex. //(NOTE: this is the opposite logic of the vertical case; // for vertical, if the perp prod and the slope's slope agree, it's outside. // for horizontal, if the perp prod and the slope's slope agree, circle is inside. // ..but this is only a property of flahs' coord system (i.e the rules might swap // in righthanded systems)) //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox * -sy) + (oy * sx); if ((perp * signx * signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox * ox + oy * oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox * sx) + (oy * sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else { //colliding diagonally if (0 < ((signx * oH) + (signy * oV))) { //the dotprod of slope normal and cell offset is strictly positive, //therefore obj is in the diagonal neighb pointed at by the normal, and //it cannot possibly reach/touch/penetrate the slope return Phaser.Physics.Ninja.Circle.COL_NONE; } else { //collide vs. vertex //get diag vertex position var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves Concave tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_Concave * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_Concave: function (x, y, oH, oV, obj, t) { //if we're colliding diagonally: // -if obj is in the diagonal pointed to by the slope normal: we can't collide, do nothing // -else, collide vs. the appropriate vertex //if obj is in this tile: perform collision as for aabb //if obj is horiz OR very neighb in direction of slope: collide vs vert //if obj is horiz or vert neigh against direction of slope: collide vs. face var signx = t.signx; var signy = t.signy; var lenP; if (oH === 0) { if (oV === 0) { //colliding with current tile var ox = (t.pos.x + (signx * t.xw)) - obj.pos.x;//(ox,oy) is the vector from the circle to var oy = (t.pos.y + (signy * t.yw)) - obj.pos.y;//tile-circle's center var twid = t.xw * 2; var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var len = Math.sqrt(ox * ox + oy * oy); var pen = (len + obj.radius) - trad; if (0 < pen) { //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y) < 0) { y *= -1; } } if (lenP < pen) { obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we can assume that len >0, because if we're here then //(len + obj.radius) > trad, and since obj.radius <= trad //len MUST be > 0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { return Phaser.Physics.Ninja.Circle.COL_NONE; } } else { //colliding vertically if ((signy * oV) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(0, y * oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we could only be colliding vs the vertical tip //get diag vertex position var vx = t.pos.x - (signx * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out vertically dx = 0; dy = oV; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else if (oV === 0) { //colliding horizontally if ((signx * oH) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we could only be colliding vs the horizontal tip //get diag vertex position var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y - (signy * t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out horizontally dx = oH; dy = 0; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //colliding diagonally if (0 < ((signx * oH) + (signy * oV))) { //the dotprod of slope normal and cell offset is strictly positive, //therefore obj is in the diagonal neighb pointed at by the normal, and //it cannot possibly reach/touch/penetrate the slope return Phaser.Physics.Ninja.Circle.COL_NONE; } else { //collide vs. vertex //get diag vertex position var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves Convex tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_Convex * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_Convex: function (x, y, oH, oV, obj, t) { //if the object is horiz AND/OR vertical neighbor in the normal (signx,signy) //direction, collide vs. tile-circle only. //if we're colliding diagonally: // -else, collide vs. the appropriate vertex //if obj is in this tile: perform collision as for aabb //if obj is horiz or vert neigh against direction of slope: collide vs. face var signx = t.signx; var signy = t.signy; var lenP; if (oH === 0) { if (oV === 0) { //colliding with current tile var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center var twid = t.xw * 2; var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var len = Math.sqrt(ox * ox + oy * oy); var pen = (trad + obj.radius) - len; if (0 < pen) { //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y) < 0) { y *= -1; } } if (lenP < pen) { obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //note: len should NEVER be === 0, because if it is, //projeciton by an axis shoudl always be shorter, and we should //never arrive here ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //colliding vertically if ((signy * oV) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(0, y * oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //obj in neighboring cell pointed at by tile normal; //we could only be colliding vs the tile-circle surface var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center var twid = t.xw * 2; var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var len = Math.sqrt(ox * ox + oy * oy); var pen = (trad + obj.radius) - len; if (0 < pen) { //note: len should NEVER be === 0, because if it is, //obj is not in a neighboring cell! ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else if (oV === 0) { //colliding horizontally if ((signx * oH) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //obj in neighboring cell pointed at by tile normal; //we could only be colliding vs the tile-circle surface var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center var twid = t.xw * 2; var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var len = Math.sqrt(ox * ox + oy * oy); var pen = (trad + obj.radius) - len; if (0 < pen) { //note: len should NEVER be === 0, because if it is, //obj is not in a neighboring cell! ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //colliding diagonally if (0 < ((signx * oH) + (signy * oV))) { //obj in diag neighb cell pointed at by tile normal; //we could only be colliding vs the tile-circle surface var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the tile-circle to var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//the circle's center var twid = t.xw * 2; var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile; //note that this should be precomputed at compile-time since it's constant var len = Math.sqrt(ox * ox + oy * oy); var pen = (trad + obj.radius) - len; if (0 < pen) { //note: len should NEVER be === 0, because if it is, //obj is not in a neighboring cell! ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. vertex //get diag vertex position var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves Half tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_Half * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_Half: function (x,y,oH,oV,obj,t) { //if obj is in a neighbor pointed at by the halfedge normal, //we'll never collide (i.e if the normal is (0,1) and the obj is in the DL.D, or R neighbors) // //if obj is in a neigbor perpendicular to the halfedge normal, it might //collide with the halfedge-vertex, or with the halfedge side. // //if obj is in a neigb pointing opposite the halfedge normal, obj collides with edge // //if obj is in a diagonal (pointing away from the normal), obj collides vs vertex // //if obj is in the halfedge cell, it collides as with aabb var signx = t.signx; var signy = t.signy; var celldp = (oH*signx + oV*signy);//this tells us about the configuration of cell-offset relative to tile normal if (0 < celldp) { //obj is in "far" (pointed-at-by-normal) neighbor of halffull tile, and will never hit return Phaser.Physics.Ninja.Circle.COL_NONE; } else if (oH === 0) { if (oV === 0) { //colliding with current tile var r = obj.radius; var ox = (obj.pos.x - (signx*r)) - t.pos.x;//this gives is the coordinates of the innermost var oy = (obj.pos.y - (signy*r)) - t.pos.y;//point on the circle, relative to the tile center //we perform operations analogous to the 45deg tile, except we're using //an axis-aligned slope instead of an angled one.. var sx = signx; var sy = signy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); var lenP = Math.sqrt(x*x + y*y); if (lenP < lenN) { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP,t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx,sy,t.signx,t.signy); return Phaser.Physics.Ninja.Circle.COL_OTHER; } return true; } } else { //colliding vertically if (celldp === 0) { var dx = obj.pos.x - t.pos.x; //we're in a cell perpendicular to the normal, and can collide vs. halfedge vertex //or halfedge side if ((dx*signx) < 0) { //collision with halfedge side obj.reportCollisionVsWorld(0,y*oV,0,oV,t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //collision with halfedge vertex var dy = obj.pos.y - (t.pos.y + oV*t.yw);//(dx,dy) is now the vector from the appropriate halfedge vertex to the circle var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = signx / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //due to the first conditional (celldp >0), we know we're in the cell "opposite" the normal, and so //we can only collide with the cell edge //collision with vertical neighbor obj.reportCollisionVsWorld(0,y*oV,0,oV,t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } } } else if (oV === 0) { //colliding horizontally if (celldp === 0) { var dy = obj.pos.y - t.pos.y; //we're in a cell perpendicular to the normal, and can collide vs. halfedge vertex //or halfedge side if ((dy*signy) < 0) { //collision with halfedge side obj.reportCollisionVsWorld(x*oH,0,oH,0,t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //collision with halfedge vertex var dx = obj.pos.x - (t.pos.x + oH*t.xw);//(dx,dy) is now the vector from the appropriate halfedge vertex to the circle var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = signx / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //due to the first conditional (celldp >0), we know w're in the cell "opposite" the normal, and so //we can only collide with the cell edge obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } } else { //colliding diagonally; we know, due to the initial (celldp >0) test which has failed //if we've reached this point, that we're in a diagonal neighbor on the non-normal side, so //we could only be colliding with the cell vertex, if at all. //get diag vertex position var vx = t.pos.x + (oH*t.xw); var vy = t.pos.y + (oV*t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves 22 Degree tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_22DegS * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_22DegS: function (x,y,oH,oV,obj,t) { //if the object is in a cell pointed at by signy, no collision will ever occur //otherwise, // //if we're colliding diagonally: // -collide vs. the appropriate vertex //if obj is in this tile: collide vs slope or vertex //if obj is horiz neighb in direction of slope: collide vs. slope or vertex //if obj is horiz neighb against the slope: // if (distance in y from circle to 90deg corner of tile < 1/2 tileheight, collide vs. face) // else(collide vs. corner of slope) (vert collision with a non-grid-aligned vert) //if obj is vert neighb against direction of slope: collide vs. face var lenP; var signx = t.signx; var signy = t.signy; if (0 < (signy*oV)) { //object will never collide vs tile, it can't reach that far return Phaser.Physics.Ninja.Circle.COL_NONE; } else if (oH === 0) { if (oV === 0) { //colliding with current tile //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var r = obj.radius; var ox = obj.pos.x - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - t.pos.y;//point on the circle, relative to the tile corner //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the normal or axially. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if (0 < (perp*signx*signy)) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = r - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope or vs axis ox -= r*sx;//this gives us the vector from oy -= r*sy;//a point on the slope to the innermost point on the circle //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y)< 0) { y *= -1; } } if (lenP < lenN) { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else { //colliding vertically; we can assume that (signy*oV) < 0 //due to the first conditional far above obj.reportCollisionVsWorld(0,y*oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } } else if (oV === 0) { //colliding horizontally if ((signx*oH) < 0) { //colliding with face/edge OR with corner of wedge, depending on our position vertically //collide vs. vertex //get diag vertex position var vx = t.pos.x - (signx*t.xw); var vy = t.pos.y; var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; if ((dy*signy) < 0) { //colliding vs face obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding vs. vertex var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var ox = obj.pos.x - (t.pos.x + (oH*t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y - (signy*t.yw));//point on the circle, relative to the closest tile vert //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the normal, otherwise by the vertex. //(NOTE: this is the opposite logic of the vertical case; // for vertical, if the perp prod and the slope's slope agree, it's outside. // for horizontal, if the perp prod and the slope's slope agree, circle is inside. // ..but this is only a property of flahs' coord system (i.e the rules might swap // in righthanded systems)) //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if ((perp*signx*signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox*sx) + (oy*sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx*pen, sy*pen, sx, sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else { //colliding diagonally; due to the first conditional above, //obj is vertically offset against slope, and offset in either direction horizontally //collide vs. vertex //get diag vertex position var vx = t.pos.x + (oH*t.xw); var vy = t.pos.y + (oV*t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves 22 Degree tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_22DegB * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_22DegB: function (x,y,oH, oV, obj,t) { //if we're colliding diagonally: // -if we're in the cell pointed at by the normal, collide vs slope, else // collide vs. the appropriate corner/vertex // //if obj is in this tile: collide as with aabb // //if obj is horiz or vertical neighbor AGAINST the slope: collide with edge // //if obj is horiz neighb in direction of slope: collide vs. slope or vertex or edge // //if obj is vert neighb in direction of slope: collide vs. slope or vertex var lenP; var signx = t.signx; var signy = t.signy; if (oH === 0) { if (oV === 0) { //colliding with current cell var sx = t.sx; var sy = t.sy; var r = obj.radius; var ox = (obj.pos.x - (sx*r)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (sy*r)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y)< 0) { y *= -1; } } if (lenP < lenN) { obj.reportCollisionVsWorld(x, y, x/lenP, y/lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //colliding vertically if ((signy*oV) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(0, y*oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var ox = obj.pos.x - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y + (signy*t.yw));//point on the circle, relative to the closest tile vert //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the normal. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if (0 < (perp*signx*signy)) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox*sx) + (oy*sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx*pen, sy*pen,sx, sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } } else if (oV === 0) { //colliding horizontally if ((signx*oH) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding with edge, slope, or vertex var ox = obj.pos.x - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - t.pos.y;//point on the circle, relative to the closest tile vert if ((oy*signy) < 0) { //we're colliding with the halfface obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding with the vertex or slope var sx = t.sx; var sy = t.sy; //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the slope, otherwise by the vertex. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if ((perp*signx*signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox*sx) + (oy*sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx*pen, sy*pen, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } } else { //colliding diagonally if ( 0 < ((signx*oH) + (signy*oV)) ) { //the dotprod of slope normal and cell offset is strictly positive, //therefore obj is in the diagonal neighb pointed at by the normal. //collide vs slope //we should really precalc this at compile time, but for now, fuck it var slen = Math.sqrt(2*2 + 1*1);//the raw slope is (-2,-1) var sx = (signx*1) / slen;//get slope _unit_ normal; var sy = (signy*2) / slen;//raw RH normal is (1,-2) var r = obj.radius; var ox = (obj.pos.x - (sx*r)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (sy*r)) - (t.pos.y + (signy*t.yw));//point on the circle, relative to a point on the slope //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object //(sx,sy)*-dp is the projection vector obj.reportCollisionVsWorld(-sx*dp, -sy*dp, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } return Phaser.Physics.Ninja.Circle.COL_NONE; } else { //collide vs the appropriate vertex var vx = t.pos.x + (oH*t.xw); var vy = t.pos.y + (oV*t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves 67 Degree tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_67DegS * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_67DegS: function (x,y,oH,oV,obj,t) { //if the object is in a cell pointed at by signx, no collision will ever occur //otherwise, // //if we're colliding diagonally: // -collide vs. the appropriate vertex //if obj is in this tile: collide vs slope or vertex or axis //if obj is vert neighb in direction of slope: collide vs. slope or vertex //if obj is vert neighb against the slope: // if (distance in y from circle to 90deg corner of tile < 1/2 tileheight, collide vs. face) // else(collide vs. corner of slope) (vert collision with a non-grid-aligned vert) //if obj is horiz neighb against direction of slope: collide vs. face var signx = t.signx; var signy = t.signy; if (0 < (signx*oH)) { //object will never collide vs tile, it can't reach that far return Phaser.Physics.Ninja.Circle.COL_NONE; } else if (oH === 0) { if (oV === 0) { //colliding with current tile //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var lenP; var sx = t.sx; var sy = t.sy; var r = obj.radius; var ox = obj.pos.x - t.pos.x;//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y - (signy*t.yw));//point on the circle, relative to the tile corner //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the normal or axis, otherwise by the corner/vertex //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronoi region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if ((perp*signx*signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = r - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope or vs axis ox -= r*sx;//this gives us the vector from oy -= r*sy;//a point on the slope to the innermost point on the circle //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y)< 0) { y *= -1; } } if (lenP < lenN) { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else { //colliding vertically if ((signy*oV) < 0) { //colliding with face/edge OR with corner of wedge, depending on our position vertically //collide vs. vertex //get diag vertex position var vx = t.pos.x; var vy = t.pos.y - (signy*t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; if ((dx*signx) < 0) { //colliding vs face obj.reportCollisionVsWorld(0, y*oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding vs. vertex var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var ox = obj.pos.x - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y + (oV*t.yw));//point on the circle, relative to the closest tile vert //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the normal. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if (0 < (perp*signx*signy)) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox*sx) + (oy*sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx*pen, sy*pen, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } } else if (oV === 0) { //colliding horizontally; we can assume that (signy*oV) < 0 //due to the first conditional far above obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding diagonally; due to the first conditional above, //obj is vertically offset against slope, and offset in either direction horizontally //collide vs. vertex //get diag vertex position var vx = t.pos.x + (oH*t.xw); var vy = t.pos.y + (oV*t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Resolves 67 Degree tile collision. * * @method Phaser.Physics.Ninja.Circle#projCircle_67DegB * @param {number} x - Penetration depth on the x axis. * @param {number} y - Penetration depth on the y axis. * @param {number} oH - Grid / voronoi region. * @param {number} oV - Grid / voronoi region. * @param {Phaser.Physics.Ninja.Circle} obj - The Circle involved in the collision. * @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision. * @return {number} The result of the collision. */ projCircle_67DegB: function (x,y,oH, oV, obj,t) { //if we're colliding diagonally: // -if we're in the cell pointed at by the normal, collide vs slope, else // collide vs. the appropriate corner/vertex // //if obj is in this tile: collide as with aabb // //if obj is horiz or vertical neighbor AGAINST the slope: collide with edge // //if obj is vert neighb in direction of slope: collide vs. slope or vertex or halfedge // //if obj is horiz neighb in direction of slope: collide vs. slope or vertex var signx = t.signx; var signy = t.signy; if (oH === 0) { if (oV === 0) { //colliding with current cell var lenP; var sx = t.sx; var sy = t.sy; var r = obj.radius; var ox = (obj.pos.x - (sx*r)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (sy*r)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp;//(sx,sy) is now the projection vector sy *= -dp; var lenN = Math.sqrt(sx*sx + sy*sy); //find the smallest axial projection vector if (x < y) { //penetration in x is smaller lenP = x; y = 0; //get sign for projection along x-axis if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; //get sign for projection along y-axis if ((obj.pos.y - t.pos.y)< 0) { y *= -1; } } if (lenP < lenN) { obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } else { //colliding vertically if ((signy*oV) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(0, y*oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding with edge, slope, or vertex var ox = obj.pos.x - t.pos.x;//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y + (signy*t.yw));//point on the circle, relative to the closest tile vert if ((ox*signx) < 0) { //we're colliding with the halfface obj.reportCollisionVsWorld(0, y*oV, 0, oV, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //colliding with the vertex or slope var sx = t.sx; var sy = t.sy; //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the slope. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if (0 < (perp*signx*signy)) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox*sx) + (oy*sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx*pen, sy*pen, sx, sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } } } else if (oV === 0) { //colliding horizontally if ((signx*oH) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(x*oH, 0, oH, 0, t); return Phaser.Physics.Ninja.Circle.COL_AXIS; } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var slen = Math.sqrt(2*2 + 1*1);//the raw slope is (-2,-1) var sx = (signx*2) / slen;//get slope _unit_ normal; var sy = (signy*1) / slen;//raw RH normal is (1,-2) var ox = obj.pos.x - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost var oy = obj.pos.y - (t.pos.y - (signy*t.yw));//point on the circle, relative to the closest tile vert //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the slope, otherwise by the vertex. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox*-sy) + (oy*sx); if ((perp*signx*signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox*ox + oy*oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox*pen, oy*pen, ox, oy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox*sx) + (oy*sy); var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case.. if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx*pen, sy*pen, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } } else { //colliding diagonally if ( 0 < ((signx*oH) + (signy*oV)) ) { //the dotprod of slope normal and cell offset is strictly positive, //therefore obj is in the diagonal neighb pointed at by the normal. //collide vs slope var sx = t.sx; var sy = t.sy; var r = obj.radius; var ox = (obj.pos.x - (sx*r)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost var oy = (obj.pos.y - (sy*r)) - (t.pos.y - (signy*t.yw));//point on the circle, relative to a point on the slope //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox*sx) + (oy*sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object //(sx,sy)*-dp is the projection vector obj.reportCollisionVsWorld(-sx*dp, -sy*dp, t.sx, t.sy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } return Phaser.Physics.Ninja.Circle.COL_NONE; } else { //collide vs the appropriate vertex var vx = t.pos.x + (oH*t.xw); var vy = t.pos.y + (oV*t.yw); var dx = obj.pos.x - vx;//calc vert->circle vector var dy = obj.pos.y - vy; var len = Math.sqrt(dx*dx + dy*dy); var pen = obj.radius - len; if (0 < pen) { //vertex is in the circle; project outward if (len === 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx*pen, dy*pen, dx, dy, t); return Phaser.Physics.Ninja.Circle.COL_OTHER; } } } return Phaser.Physics.Ninja.Circle.COL_NONE; }, /** * Destroys this Circle's reference to Body and System * * @method Phaser.Physics.Ninja.Circle#destroy */ destroy: function() { this.body = null; this.system = null; }, /** * Render this circle for debugging purposes. * * @method Phaser.Physics.Ninja.Circle#render * @param {object} context - The context to render to. * @param {number} xOffset - X offset from circle's position to render at. * @param {number} yOffset - Y offset from circle's position to render at. * @param {string} color - color of the debug shape to be rendered. (format is css color string). * @param {boolean} filled - Render the shape as solid (true) or hollow (false). */ render: function(context, xOffset, yOffset, color, filled) { var x = this.pos.x - xOffset; var y = this.pos.y - yOffset; context.beginPath(); context.arc(x, y, this.radius, 0, 2 * Math.PI, false); if (filled) { context.fillStyle = color; context.fill(); } else { context.strokeStyle = color; context.stroke(); } } };