// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji // and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl var Class = require('../utils/Class'); var Vector3 = new Class({ initialize: function Vector3 (x, y, z) { if (typeof x === 'object') { this.x = x.x || 0; this.y = x.y || 0; this.z = x.z || 0; } else { this.x = x || 0; this.y = y || 0; this.z = z || 0; } }, clone: function () { return new Vector3(this.x, this.y, this.z); }, copy: function (src) { this.x = src.x; this.y = src.y; this.z = src.z || 0; return this; }, set: function (x, y, z) { if (typeof x === 'object') { this.x = x.x || 0; this.y = x.y || 0; this.z = x.z || 0; } else { this.x = x || 0; this.y = y || 0; this.z = z || 0; } return this; }, add: function (v) { this.x += v.x; this.y += v.y; this.z += v.z || 0; return this; }, subtract: function (v) { this.x -= v.x; this.y -= v.y; this.z -= v.z || 0; return this; }, multiply: function (v) { this.x *= v.x; this.y *= v.y; this.z *= v.z || 1; return this; }, scale: function (scale) { this.x *= scale; this.y *= scale; this.z *= scale; return this; }, divide: function (v) { this.x /= v.x; this.y /= v.y; this.z /= v.z || 1; return this; }, negate: function () { this.x = -this.x; this.y = -this.y; this.z = -this.z; return this; }, distance: function (v) { var dx = v.x - this.x; var dy = v.y - this.y; var dz = v.z - this.z || 0; return Math.sqrt(dx * dx + dy * dy + dz * dz); }, distanceSq: function (v) { var dx = v.x - this.x; var dy = v.y - this.y; var dz = v.z - this.z || 0; return dx * dx + dy * dy + dz * dz; }, length: function () { var x = this.x; var y = this.y; var z = this.z; return Math.sqrt(x * x + y * y + z * z); }, lengthSq: function () { var x = this.x; var y = this.y; var z = this.z; return x * x + y * y + z * z; }, normalize: function () { var x = this.x; var y = this.y; var z = this.z; var len = x * x + y * y + z * z; if (len > 0) { len = 1 / Math.sqrt(len); this.x = x * len; this.y = y * len; this.z = z * len; } return this; }, dot: function (v) { return this.x * v.x + this.y * v.y + this.z * v.z; }, cross: function (v) { var ax = this.x; var ay = this.y; var az = this.z; var bx = v.x; var by = v.y; var bz = v.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, lerp: function (v, t) { if (t === undefined) { t = 0; } var ax = this.x; var ay = this.y; var az = this.z; this.x = ax + t * (v.x - ax); this.y = ay + t * (v.y - ay); this.z = az + t * (v.z - az); return this; }, transformMat3: function (mat) { var x = this.x; var y = this.y; var z = this.z; var m = mat.val; this.x = x * m[0] + y * m[3] + z * m[6]; this.y = x * m[1] + y * m[4] + z * m[7]; this.z = x * m[2] + y * m[5] + z * m[8]; return this; }, transformMat4: function (mat) { var x = this.x; var y = this.y; var z = this.z; var m = mat.val; this.x = m[0] * x + m[4] * y + m[8] * z + m[12]; this.y = m[1] * x + m[5] * y + m[9] * z + m[13]; this.z = m[2] * x + m[6] * y + m[10] * z + m[14]; return this; }, transformQuat: function (q) { // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations var x = this.x; var y = this.y; var z = this.z; var qx = q.x; var qy = q.y; var qz = q.z; var qw = q.w; // calculate quat * vec var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return this; }, /** * Multiplies this Vector3 by the specified matrix, * applying a W divide. This is useful for projection, * e.g. unprojecting a 2D point into 3D space. * * @method project * @param {Matrix4} the 4x4 matrix to multiply with * @return {Vector3} this object for chaining */ project: function (mat) { var x = this.x; var y = this.y; var z = this.z; var m = mat.val; var a00 = m[0]; var a01 = m[1]; var a02 = m[2]; var a03 = m[3]; var a10 = m[4]; var a11 = m[5]; var a12 = m[6]; var a13 = m[7]; var a20 = m[8]; var a21 = m[9]; var a22 = m[10]; var a23 = m[11]; var a30 = m[12]; var a31 = m[13]; var a32 = m[14]; var a33 = m[15]; var lw = 1 / (x * a03 + y * a13 + z * a23 + a33); this.x = (x * a00 + y * a10 + z * a20 + a30) * lw; this.y = (x * a01 + y * a11 + z * a21 + a31) * lw; this.z = (x * a02 + y * a12 + z * a22 + a32) * lw; return this; }, /** * Unproject this point from 2D space to 3D space. * The point should have its x and y properties set to * 2D screen space, and the z either at 0 (near plane) * or 1 (far plane). The provided matrix is assumed to already * be combined, i.e. projection * view * model. * * After this operation, this vector's (x, y, z) components will * represent the unprojected 3D coordinate. * * @param {Vector4} viewport screen x, y, width and height in pixels * @param {Matrix4} invProjectionView combined projection and view matrix * @return {Vector3} this object, for chaining */ unproject: function (viewport, invProjectionView) { var viewX = viewport.x; var viewY = viewport.y; var viewWidth = viewport.z; var viewHeight = viewport.w; var x = this.x - viewX; var y = (viewHeight - this.y - 1) - viewY; var z = this.z; this.x = (2 * x) / viewWidth - 1; this.y = (2 * y) / viewHeight - 1; this.z = 2 * z - 1; return this.project(invProjectionView); }, reset: function () { this.x = 0; this.y = 0; this.z = 0; return this; } }); Vector3.prototype.sub = Vector3.prototype.subtract; Vector3.prototype.mul = Vector3.prototype.multiply; Vector3.prototype.div = Vector3.prototype.divide; Vector3.prototype.dist = Vector3.prototype.distance; Vector3.prototype.distSq = Vector3.prototype.distanceSq; Vector3.prototype.len = Vector3.prototype.length; Vector3.prototype.lenSq = Vector3.prototype.lengthSq; module.exports = Vector3;