// Type definitions for Matter.js - 0.10.1 // Project: https://github.com/liabru/matter-js // Definitions by: Ivane Gegia , // David Asmuth , // Piotr Pietrzak // Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped export = Matter; export as namespace Matter; declare namespace Matter { /** * Installs the given plugins on the `Matter` namespace. * This is a short-hand for `Plugin.use`, see it for more information. * Call this function once at the start of your code, with all of the plugins you wish to install as arguments. * Avoid calling this function multiple times unless you intend to manually control installation order. * @method use * @param ...plugin {Function} The plugin(s) to install on `base` (multi-argument). */ export function use(...plugins: (Plugin | string)[]): void; /** * The `Matter.Axes` module contains methods for creating and manipulating sets of axes. * * @class Axes */ export class Axes { /** * Creates a new set of axes from the given vertices. * @method fromVertices * @param {vertices} vertices * @return {axes} A new axes from the given vertices */ static fromVertices(vertices: Array): Array; /** * Rotates a set of axes by the given angle. * @method rotate * @param {axes} axes * @param {number} angle */ static rotate(axes: Array, angle: number): void; } interface IChamfer { radius?: number | Array; quality?: number; qualityMin?: number; qualityMax?: number; } interface IChamferableBodyDefinition extends IBodyDefinition { chamfer?: IChamfer; } /** * The `Matter.Bodies` module contains factory methods for creating rigid body models * with commonly used body configurations (such as rectangles, circles and other polygons). * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Bodies */ export class Bodies { /** * Creates a new rigid body model with a circle hull. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method circle * @param {number} x * @param {number} y * @param {number} radius * @param {object} [options] * @param {number} [maxSides] * @return {body} A new circle body */ static circle(x: number, y: number, radius: number, options?: IBodyDefinition, maxSides?: number): Body; /** * Creates a new rigid body model with a regular polygon hull with the given number of sides. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method polygon * @param {number} x * @param {number} y * @param {number} sides * @param {number} radius * @param {object} [options] * @return {body} A new regular polygon body */ static polygon(x: number, y: number, sides: number, radius: number, options?: IChamferableBodyDefinition): Body; /** * Creates a new rigid body model with a rectangle hull. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method rectangle * @param {number} x * @param {number} y * @param {number} width * @param {number} height * @param {object} [options] * @return {body} A new rectangle body */ static rectangle(x: number, y: number, width: number, height: number, options?: IChamferableBodyDefinition): Body; /** * Creates a new rigid body model with a trapezoid hull. * The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method trapezoid * @param {number} x * @param {number} y * @param {number} width * @param {number} height * @param {number} slope * @param {object} [options] * @return {body} A new trapezoid body */ static trapezoid(x: number, y: number, width: number, height: number, slope: number, options?: IChamferableBodyDefinition): Body; /** * Creates a body using the supplied vertices (or an array containing multiple sets of vertices). * If the vertices are convex, they will pass through as supplied. * Otherwise if the vertices are concave, they will be decomposed if [poly-decomp.js](https://github.com/schteppe/poly-decomp.js) is available. * Note that this process is not guaranteed to support complex sets of vertices (e.g. those with holes may fail). * By default the decomposition will discard collinear edges (to improve performance). * It can also optionally discard any parts that have an area less than `minimumArea`. * If the vertices can not be decomposed, the result will fall back to using the convex hull. * The options parameter is an object that specifies any `Matter.Body` properties you wish to override the defaults. * See the properties section of the `Matter.Body` module for detailed information on what you can pass via the `options` object. * @method fromVertices * @param {number} x * @param {number} y * @param [[vector]] vertexSets * @param {object} [options] * @param {bool} [flagInternal=false] * @param {number} [removeCollinear=0.01] * @param {number} [minimumArea=10] * @return {body} */ static fromVertices(x: number, y: number, vertexSets: Array>, options?: IBodyDefinition, flagInternal?: boolean, removeCollinear?: number, minimumArea?: number): Body; } export interface IBodyDefinition { /** * A `Number` specifying the angle of the body, in radians. * * @property angle * @type number * @default 0 */ angle?: number; /** * A `Number` that _measures_ the current angular speed of the body after the last `Body.update`. It is read-only and always positive (it's the magnitude of `body.angularVelocity`). * * @readOnly * @property angularSpeed * @type number * @default 0 */ angularSpeed?: number; /** * A `Number` that _measures_ the current angular velocity of the body after the last `Body.update`. It is read-only. * If you need to modify a body's angular velocity directly, you should apply a torque or simply change the body's `angle` (as the engine uses position-Verlet integration). * * @readOnly * @property angularVelocity * @type number * @default 0 */ angularVelocity?: number; /** * A `Number` that _measures_ the area of the body's convex hull, calculated at creation by `Body.create`. * * @property area * @type string * @default */ area?: number; /** * An array of unique axis vectors (edge normals) used for collision detection. * These are automatically calculated from the given convex hull (`vertices` array) in `Body.create`. * They are constantly updated by `Body.update` during the simulation. * * @property axes * @type vector[] */ axes?: Array; /** * A `Bounds` object that defines the AABB region for the body. * It is automatically calculated from the given convex hull (`vertices` array) in `Body.create` and constantly updated by `Body.update` during simulation. * * @property bounds * @type bounds */ bounds?: Bounds; /** * A `Number` that defines the density of the body, that is its mass per unit area. * If you pass the density via `Body.create` the `mass` property is automatically calculated for you based on the size (area) of the object. * This is generally preferable to simply setting mass and allows for more intuitive definition of materials (e.g. rock has a higher density than wood). * * @property density * @type number * @default 0.001 */ density?: number; /** * A `Vector` that specifies the force to apply in the current step. It is zeroed after every `Body.update`. See also `Body.applyForce`. * * @property force * @type vector * @default { x: 0, y: 0 } */ force?: Vector; /** * A `Number` that defines the friction of the body. The value is always positive and is in the range `(0, 1)`. * A value of `0` means that the body may slide indefinitely. * A value of `1` means the body may come to a stop almost instantly after a force is applied. * * The effects of the value may be non-linear. * High values may be unstable depending on the body. * The engine uses a Coulomb friction model including static and kinetic friction. * Note that collision response is based on _pairs_ of bodies, and that `friction` values are _combined_ with the following formula: * * Math.min(bodyA.friction, bodyB.friction) * * @property friction * @type number * @default 0.1 */ friction?: number; /** * A `Number` that defines the air friction of the body (air resistance). * A value of `0` means the body will never slow as it moves through space. * The higher the value, the faster a body slows when moving through space. * The effects of the value are non-linear. * * @property frictionAir * @type number * @default 0.01 */ frictionAir?: number; /** * An integer `Number` uniquely identifying number generated in `Body.create` by `Common.nextId`. * * @property id * @type number */ id?: number; /** * A `Number` that defines the moment of inertia (i.e. second moment of area) of the body. * It is automatically calculated from the given convex hull (`vertices` array) and density in `Body.create`. * If you modify this value, you must also modify the `body.inverseInertia` property (`1 / inertia`). * * @property inertia * @type number */ inertia?: number; /** * A `Number` that defines the inverse moment of inertia of the body (`1 / inertia`). * If you modify this value, you must also modify the `body.inertia` property. * * @property inverseInertia * @type number */ inverseInertia?: number; /** * A `Number` that defines the inverse mass of the body (`1 / mass`). * If you modify this value, you must also modify the `body.mass` property. * * @property inverseMass * @type number */ inverseMass?: number; /** * A flag that indicates whether a body is a sensor. Sensor triggers collision events, but doesn't react with colliding body physically. * * @property isSensor * @type boolean * @default false */ isSensor?: boolean; /** * A flag that indicates whether the body is considered sleeping. A sleeping body acts similar to a static body, except it is only temporary and can be awoken. * If you need to set a body as sleeping, you should use `Sleeping.set` as this requires more than just setting this flag. * * @property isSleeping * @type boolean * @default false */ isSleeping?: boolean; /** * A flag that indicates whether a body is considered static. A static body can never change position or angle and is completely fixed. * If you need to set a body as static after its creation, you should use `Body.setStatic` as this requires more than just setting this flag. * * @property isStatic * @type boolean * @default false */ isStatic?: boolean; /** * An arbitrary `String` name to help the user identify and manage bodies. * * @property label * @type string * @default "Body" */ label?: string; /** * A `Number` that defines the mass of the body, although it may be more appropriate to specify the `density` property instead. * If you modify this value, you must also modify the `body.inverseMass` property (`1 / mass`). * * @property mass * @type number */ mass?: number; /** * A `Number` that _measures_ the amount of movement a body currently has (a combination of `speed` and `angularSpeed`). It is read-only and always positive. * It is used and updated by the `Matter.Sleeping` module during simulation to decide if a body has come to rest. * * @readOnly * @property motion * @type number * @default 0 */ motion?: number; /** * A `Vector` that specifies the current world-space position of the body. * * @property position * @type vector * @default { x: 0, y: */ position?: Vector; /** * An `Object` that defines the rendering properties to be consumed by the module `Matter.Render`. * * @property render * @type object */ render?: IBodyRenderOptions; /** * A `Number` that defines the restitution (elasticity) of the body. The value is always positive and is in the range `(0, 1)`. * A value of `0` means collisions may be perfectly inelastic and no bouncing may occur. * A value of `0.8` means the body may bounce back with approximately 80% of its kinetic energy. * Note that collision response is based on _pairs_ of bodies, and that `restitution` values are _combined_ with the following formula: * * Math.max(bodyA.restitution, bodyB.restitution) * * @property restitution * @type number * @default 0 */ restitution?: number; /** * A `Number` that defines the number of updates in which this body must have near-zero velocity before it is set as sleeping by the `Matter.Sleeping` module (if sleeping is enabled by the engine). * * @property sleepThreshold * @type number * @default 60 */ sleepThreshold?: number; /** * A `Number` that specifies a tolerance on how far a body is allowed to 'sink' or rotate into other bodies. * Avoid changing this value unless you understand the purpose of `slop` in physics engines. * The default should generally suffice, although very large bodies may require larger values for stable stacking. * * @property slop * @type number * @default 0.05 */ slop?: number; /** * A `Number` that _measures_ the current speed of the body after the last `Body.update`. It is read-only and always positive (it's the magnitude of `body.velocity`). * * @readOnly * @property speed * @type number * @default 0 */ speed?: number; /** * A `Number` that allows per-body time scaling, e.g. a force-field where bodies inside are in slow-motion, while others are at full speed. * * @property timeScale * @type number * @default 1 */ timeScale?: number; /** * A `Number` that specifies the torque (turning force) to apply in the current step. It is zeroed after every `Body.update`. * * @property torque * @type number * @default 0 */ torque?: number; /** * A `String` denoting the type of object. * * @property type * @type string * @default "body" */ type?: string; /** * A `Vector` that _measures_ the current velocity of the body after the last `Body.update`. It is read-only. * If you need to modify a body's velocity directly, you should either apply a force or simply change the body's `position` (as the engine uses position-Verlet integration). * * @readOnly * @property velocity * @type vector * @default { x: 0, y: 0 } */ velocity?: Vector; /** * An array of `Vector` objects that specify the convex hull of the rigid body. * These should be provided about the origin `(0, 0)`. E.g. * * [{ x: 0, y: 0 }, { x: 25, y: 50 }, { x: 50, y: 0 }] * * When passed via `Body.create`, the vertices are translated relative to `body.position` (i.e. world-space, and constantly updated by `Body.update` during simulation). * The `Vector` objects are also augmented with additional properties required for efficient collision detection. * * Other properties such as `inertia` and `bounds` are automatically calculated from the passed vertices (unless provided via `options`). * Concave hulls are not currently supported. The module `Matter.Vertices` contains useful methods for working with vertices. * * @property vertices * @type vector[] */ vertices?: Array; /** * An array of bodies that make up this body. * The first body in the array must always be a self reference to the current body instance. * All bodies in the `parts` array together form a single rigid compound body. * Parts are allowed to overlap, have gaps or holes or even form concave bodies. * Parts themselves should never be added to a `World`, only the parent body should be. * Use `Body.setParts` when setting parts to ensure correct updates of all properties. * * @property parts * @type body[] */ parts?: Array; /** * A self reference if the body is _not_ a part of another body. * Otherwise this is a reference to the body that this is a part of. * See `body.parts`. * * @property parent * @type body */ parent?: Body; /** * A `Number` that defines the static friction of the body (in the Coulomb friction model). * A value of `0` means the body will never 'stick' when it is nearly stationary and only dynamic `friction` is used. * The higher the value (e.g. `10`), the more force it will take to initially get the body moving when nearly stationary. * This value is multiplied with the `friction` property to make it easier to change `friction` and maintain an appropriate amount of static friction. * * @property frictionStatic * @type number * @default 0.5 */ frictionStatic?: number; /** * An `Object` that specifies the collision filtering properties of this body. * * Collisions between two bodies will obey the following rules: * - If the two bodies have the same non-zero value of `collisionFilter.group`, * they will always collide if the value is positive, and they will never collide * if the value is negative. * - If the two bodies have different values of `collisionFilter.group` or if one * (or both) of the bodies has a value of 0, then the category/mask rules apply as follows: * * Each body belongs to a collision category, given by `collisionFilter.category`. This * value is used as a bit field and the category should have only one bit set, meaning that * the value of this property is a power of two in the range [1, 2^31]. Thus, there are 32 * different collision categories available. * * Each body also defines a collision bitmask, given by `collisionFilter.mask` which specifies * the categories it collides with (the value is the bitwise AND value of all these categories). * * Using the category/mask rules, two bodies `A` and `B` collide if each includes the other's * category in its mask, i.e. `(categoryA & maskB) !== 0` and `(categoryB & maskA) !== 0` * are both true. * * @property collisionFilter * @type object */ collisionFilter?: ICollisionFilter; } export interface IBodyRenderOptions { /** * A flag that indicates if the body should be rendered. * * @property render.visible * @type boolean * @default true */ visible?: boolean; /** * An `Object` that defines the sprite properties to use when rendering, if any. * * @property render.sprite * @type object */ sprite?: IBodyRenderOptionsSprite; /** * A String that defines the fill style to use when rendering the body (if a sprite is not defined). It is the same as when using a canvas, so it accepts CSS style property values. Default: a random colour */ fillStyle?: string; /** * A Number that defines the line width to use when rendering the body outline (if a sprite is not defined). A value of 0 means no outline will be rendered. Default: 1.5 */ lineWidth?: number; /** * A String that defines the stroke style to use when rendering the body outline (if a sprite is not defined). It is the same as when using a canvas, so it accepts CSS style property values. Default: a random colour */ strokeStyle?: string; /* * Sets the opacity. 1.0 is fully opaque. 0.0 is fully translucent */ opacity?: number; } export interface IBodyRenderOptionsSprite { /** * An `String` that defines the path to the image to use as the sprite texture, if any. * * @property render.sprite.texture * @type string */ texture: string; /** * A `Number` that defines the scaling in the x-axis for the sprite, if any. * * @property render.sprite.xScale * @type number * @default 1 */ xScale: number; /** * A `Number` that defines the scaling in the y-axis for the sprite, if any. * * @property render.sprite.yScale * @type number * @default 1 */ yScale: number; } /** * The `Matter.Body` module contains methods for creating and manipulating body models. * A `Matter.Body` is a rigid body that can be simulated by a `Matter.Engine`. * Factories for commonly used body configurations (such as rectangles, circles and other polygons) can be found in the module `Matter.Bodies`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * @class Body */ export class Body { /** * Applies a force to a body from a given world-space position, including resulting torque. * @method applyForce * @param {body} body * @param {vector} position * @param {vector} force */ static applyForce(body: Body, position: Vector, force: Vector): void; /** * Creates a new rigid body model. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {} options * @return {body} body */ static create(options: IBodyDefinition): Body; /** * Rotates a body by a given angle relative to its current angle, without imparting any angular velocity. * @method rotate * @param {body} body * @param {number} rotation */ static rotate(body: Body, rotation: number): void; /** * Returns the next unique group index for which bodies will collide. * If `isNonColliding` is `true`, returns the next unique group index for which bodies will _not_ collide. * See `body.collisionFilter` for more information. * @method nextGroup * @param {bool} [isNonColliding=false] * @return {Number} Unique group index */ static nextGroup(isNonColliding: boolean): number; /** * Returns the next unique category bitfield (starting after the initial default category `0x0001`). * There are 32 available. See `body.collisionFilter` for more information. * @method nextCategory * @return {Number} Unique category bitfield */ static nextCategory(): number; /** * Given a property and a value (or map of), sets the property(s) on the body, using the appropriate setter functions if they exist. * Prefer to use the actual setter functions in performance critical situations. * @method set * @param {body} body * @param {} settings A property name (or map of properties and values) to set on the body. * @param {} value The value to set if `settings` is a single property name. */ static set(body: Body, settings: any, value?: any): void; /** * Sets the mass of the body. Inverse mass and density are automatically updated to reflect the change. * @method setMass * @param {body} body * @param {number} mass */ static setMass(body: Body, mass: number): void; /** * Sets the density of the body. Mass is automatically updated to reflect the change. * @method setDensity * @param {body} body * @param {number} density */ static setDensity(body: Body, density: number): void; /** * Sets the moment of inertia (i.e. second moment of area) of the body of the body. * Inverse inertia is automatically updated to reflect the change. Mass is not changed. * @method setInertia * @param {body} body * @param {number} inertia */ static setInertia(body: Body, interna: number): void; /** * Sets the body's vertices and updates body properties accordingly, including inertia, area and mass (with respect to `body.density`). * Vertices will be automatically transformed to be orientated around their centre of mass as the origin. * They are then automatically translated to world space based on `body.position`. * * The `vertices` argument should be passed as an array of `Matter.Vector` points (or a `Matter.Vertices` array). * Vertices must form a convex hull, concave hulls are not supported. * * @method setVertices * @param {body} body * @param {vector[]} vertices */ static setVertices(body: Body, vertices: Array): void; /** * Sets the parts of the `body` and updates mass, inertia and centroid. * Each part will have its parent set to `body`. * By default the convex hull will be automatically computed and set on `body`, unless `autoHull` is set to `false.` * Note that this method will ensure that the first part in `body.parts` will always be the `body`. * @method setParts * @param {body} body * @param [body] parts * @param {bool} [autoHull=true] */ static setParts(body: Body, parts: Body[], autoHull?: boolean): void; /** * Sets the position of the body instantly. Velocity, angle, force etc. are unchanged. * @method setPosition * @param {body} body * @param {vector} position */ static setPosition(body: Body, position: Vector): void; /** * Sets the angle of the body instantly. Angular velocity, position, force etc. are unchanged. * @method setAngle * @param {body} body * @param {number} angle */ static setAngle(body: Body, angle: number): void; /** * Sets the linear velocity of the body instantly. Position, angle, force etc. are unchanged. See also `Body.applyForce`. * @method setVelocity * @param {body} body * @param {vector} velocity */ static setVelocity(body: Body, velocity: Vector): void; /** * Sets the angular velocity of the body instantly. Position, angle, force etc. are unchanged. See also `Body.applyForce`. * @method setAngularVelocity * @param {body} body * @param {number} velocity */ static setAngularVelocity(body: Body, velocity: number): void; /** * Sets the body as static, including isStatic flag and setting mass and inertia to Infinity. * @method setStatic * @param {body} body * @param {bool} isStatic */ static setStatic(body: Body, isStatic: boolean): void; /** * Scales the body, including updating physical properties (mass, area, axes, inertia), from a world-space point (default is body centre). * @method scale * @param {body} body * @param {number} scaleX * @param {number} scaleY * @param {vector} [point] */ static scale(body: Body, scaleX: number, scaleY: number, point?: Vector): void; /** * Moves a body by a given vector relative to its current position, without imparting any velocity. * @method translate * @param {body} body * @param {vector} translation */ static translate(body: Body, translation: Vector): void; /** * Performs a simulation step for the given `body`, including updating position and angle using Verlet integration. * @method update * @param {body} body * @param {number} deltaTime * @param {number} timeScale * @param {number} correction */ static update(body: Body, deltaTime: number, timeScale: number, correction: number): void; /** * A `Number` specifying the angle of the body, in radians. * * @property angle * @type number * @default 0 */ angle: number; /** * A `Number` that _measures_ the current angular speed of the body after the last `Body.update`. It is read-only and always positive (it's the magnitude of `body.angularVelocity`). * * @readOnly * @property angularSpeed * @type number * @default 0 */ angularSpeed: number; /** * A `Number` that _measures_ the current angular velocity of the body after the last `Body.update`. It is read-only. * If you need to modify a body's angular velocity directly, you should apply a torque or simply change the body's `angle` (as the engine uses position-Verlet integration). * * @readOnly * @property angularVelocity * @type number * @default 0 */ angularVelocity: number; /** * A `Number` that _measures_ the area of the body's convex hull, calculated at creation by `Body.create`. * * @property area * @type string * @default */ area: number; /** * An array of unique axis vectors (edge normals) used for collision detection. * These are automatically calculated from the given convex hull (`vertices` array) in `Body.create`. * They are constantly updated by `Body.update` during the simulation. * * @property axes * @type vector[] */ axes: Array; /** * A `Bounds` object that defines the AABB region for the body. * It is automatically calculated from the given convex hull (`vertices` array) in `Body.create` and constantly updated by `Body.update` during simulation. * * @property bounds * @type bounds */ bounds: Bounds; /** * A `Number` that defines the density of the body, that is its mass per unit area. * If you pass the density via `Body.create` the `mass` property is automatically calculated for you based on the size (area) of the object. * This is generally preferable to simply setting mass and allows for more intuitive definition of materials (e.g. rock has a higher density than wood). * * @property density * @type number * @default 0.001 */ density: number; /** * A `Vector` that specifies the force to apply in the current step. It is zeroed after every `Body.update`. See also `Body.applyForce`. * * @property force * @type vector * @default { x: 0, y: 0 } */ force: Vector; /** * A `Number` that defines the friction of the body. The value is always positive and is in the range `(0, 1)`. * A value of `0` means that the body may slide indefinitely. * A value of `1` means the body may come to a stop almost instantly after a force is applied. * * The effects of the value may be non-linear. * High values may be unstable depending on the body. * The engine uses a Coulomb friction model including static and kinetic friction. * Note that collision response is based on _pairs_ of bodies, and that `friction` values are _combined_ with the following formula: * * Math.min(bodyA.friction, bodyB.friction) * * @property friction * @type number * @default 0.1 */ friction: number; /** * A `Number` that defines the air friction of the body (air resistance). * A value of `0` means the body will never slow as it moves through space. * The higher the value, the faster a body slows when moving through space. * The effects of the value are non-linear. * * @property frictionAir * @type number * @default 0.01 */ frictionAir: number; /** * An integer `Number` uniquely identifying number generated in `Body.create` by `Common.nextId`. * * @property id * @type number */ id: number; /** * A `Number` that defines the moment of inertia (i.e. second moment of area) of the body. * It is automatically calculated from the given convex hull (`vertices` array) and density in `Body.create`. * If you modify this value, you must also modify the `body.inverseInertia` property (`1 / inertia`). * * @property inertia * @type number */ inertia: number; /** * A `Number` that defines the inverse moment of inertia of the body (`1 / inertia`). * If you modify this value, you must also modify the `body.inertia` property. * * @property inverseInertia * @type number */ inverseInertia: number; /** * A `Number` that defines the inverse mass of the body (`1 / mass`). * If you modify this value, you must also modify the `body.mass` property. * * @property inverseMass * @type number */ inverseMass: number; /** * A flag that indicates whether the body is considered sleeping. A sleeping body acts similar to a static body, except it is only temporary and can be awoken. * If you need to set a body as sleeping, you should use `Sleeping.set` as this requires more than just setting this flag. * * @property isSleeping * @type boolean * @default false */ isSleeping: boolean; /** * A flag that indicates whether a body is considered static. A static body can never change position or angle and is completely fixed. * If you need to set a body as static after its creation, you should use `Body.setStatic` as this requires more than just setting this flag. * * @property isStatic * @type boolean * @default false */ isStatic: boolean; /** * A flag that indicates whether a body is a sensor. Sensor triggers collision events, but doesn't react with colliding body physically. * * @property isSensor * @type boolean * @default false */ isSensor: boolean; /** * An arbitrary `String` name to help the user identify and manage bodies. * * @property label * @type string * @default "Body" */ label: string; /** * A `Number` that defines the mass of the body, although it may be more appropriate to specify the `density` property instead. * If you modify this value, you must also modify the `body.inverseMass` property (`1 / mass`). * * @property mass * @type number */ mass: number; /** * A `Number` that _measures_ the amount of movement a body currently has (a combination of `speed` and `angularSpeed`). It is read-only and always positive. * It is used and updated by the `Matter.Sleeping` module during simulation to decide if a body has come to rest. * * @readOnly * @property motion * @type number * @default 0 */ motion: number; /** * A `Vector` that specifies the current world-space position of the body. * * @property position * @type vector * @default { x: 0, y: */ position: Vector; /** * An `Object` that defines the rendering properties to be consumed by the module `Matter.Render`. * * @property render * @type object */ render: IBodyRenderOptions; /** * A `Number` that defines the restitution (elasticity) of the body. The value is always positive and is in the range `(0, 1)`. * A value of `0` means collisions may be perfectly inelastic and no bouncing may occur. * A value of `0.8` means the body may bounce back with approximately 80% of its kinetic energy. * Note that collision response is based on _pairs_ of bodies, and that `restitution` values are _combined_ with the following formula: * * Math.max(bodyA.restitution, bodyB.restitution) * * @property restitution * @type number * @default 0 */ restitution: number; /** * A `Number` that defines the number of updates in which this body must have near-zero velocity before it is set as sleeping by the `Matter.Sleeping` module (if sleeping is enabled by the engine). * * @property sleepThreshold * @type number * @default 60 */ sleepThreshold: number; /** * A `Number` that specifies a tolerance on how far a body is allowed to 'sink' or rotate into other bodies. * Avoid changing this value unless you understand the purpose of `slop` in physics engines. * The default should generally suffice, although very large bodies may require larger values for stable stacking. * * @property slop * @type number * @default 0.05 */ slop: number; /** * A `Number` that _measures_ the current speed of the body after the last `Body.update`. It is read-only and always positive (it's the magnitude of `body.velocity`). * * @readOnly * @property speed * @type number * @default 0 */ speed: number; /** * A `Number` that allows per-body time scaling, e.g. a force-field where bodies inside are in slow-motion, while others are at full speed. * * @property timeScale * @type number * @default 1 */ timeScale: number; /** * A `Number` that specifies the torque (turning force) to apply in the current step. It is zeroed after every `Body.update`. * * @property torque * @type number * @default 0 */ torque: number; /** * A `String` denoting the type of object. * * @property type * @type string * @default "body" */ type: string; /** * A `Vector` that _measures_ the current velocity of the body after the last `Body.update`. It is read-only. * If you need to modify a body's velocity directly, you should either apply a force or simply change the body's `position` (as the engine uses position-Verlet integration). * * @readOnly * @property velocity * @type vector * @default { x: 0, y: 0 } */ velocity: Vector; /** * An array of `Vector` objects that specify the convex hull of the rigid body. * These should be provided about the origin `(0, 0)`. E.g. * * [{ x: 0, y: 0 }, { x: 25, y: 50 }, { x: 50, y: 0 }] * * When passed via `Body.create`, the vertices are translated relative to `body.position` (i.e. world-space, and constantly updated by `Body.update` during simulation). * The `Vector` objects are also augmented with additional properties required for efficient collision detection. * * Other properties such as `inertia` and `bounds` are automatically calculated from the passed vertices (unless provided via `options`). * Concave hulls are not currently supported. The module `Matter.Vertices` contains useful methods for working with vertices. * * @property vertices * @type vector[] */ vertices: Array; /** * An array of bodies that make up this body. * The first body in the array must always be a self reference to the current body instance. * All bodies in the `parts` array together form a single rigid compound body. * Parts are allowed to overlap, have gaps or holes or even form concave bodies. * Parts themselves should never be added to a `World`, only the parent body should be. * Use `Body.setParts` when setting parts to ensure correct updates of all properties. * * @property parts * @type body[] */ parts: Array; /** * A self reference if the body is _not_ a part of another body. * Otherwise this is a reference to the body that this is a part of. * See `body.parts`. * * @property parent * @type body */ parent: Body; /** * A `Number` that defines the static friction of the body (in the Coulomb friction model). * A value of `0` means the body will never 'stick' when it is nearly stationary and only dynamic `friction` is used. * The higher the value (e.g. `10`), the more force it will take to initially get the body moving when nearly stationary. * This value is multiplied with the `friction` property to make it easier to change `friction` and maintain an appropriate amount of static friction. * * @property frictionStatic * @type number * @default 0.5 */ frictionStatic: number; /** * An `Object` that specifies the collision filtering properties of this body. * * Collisions between two bodies will obey the following rules: * - If the two bodies have the same non-zero value of `collisionFilter.group`, * they will always collide if the value is positive, and they will never collide * if the value is negative. * - If the two bodies have different values of `collisionFilter.group` or if one * (or both) of the bodies has a value of 0, then the category/mask rules apply as follows: * * Each body belongs to a collision category, given by `collisionFilter.category`. This * value is used as a bit field and the category should have only one bit set, meaning that * the value of this property is a power of two in the range [1, 2^31]. Thus, there are 32 * different collision categories available. * * Each body also defines a collision bitmask, given by `collisionFilter.mask` which specifies * the categories it collides with (the value is the bitwise AND value of all these categories). * * Using the category/mask rules, two bodies `A` and `B` collide if each includes the other's * category in its mask, i.e. `(categoryA & maskB) !== 0` and `(categoryB & maskA) !== 0` * are both true. * * @property collisionFilter * @type object */ collisionFilter: ICollisionFilter; } export interface IBound { min: { x: number, y: number } max: { x: number, y: number } } /** * The `Matter.Bounds` module contains methods for creating and manipulating axis-aligned bounding boxes (AABB). * * @class Bounds */ export class Bounds { /** * Creates a new axis-aligned bounding box (AABB) for the given vertices. * @method create * @param {vertices} vertices * @return {bounds} A new bounds object */ static create (vertices: Vertices): Bounds; /** * Updates bounds using the given vertices and extends the bounds given a velocity. * @method update * @param {bounds} bounds * @param {vertices} vertices * @param {vector} velocity */ static update(bounds: Bounds, vertices: Vertices, velocity: Vector): void; /** * Returns true if the bounds contains the given point. * @method contains * @param {bounds} bounds * @param {vector} point * @return {boolean} True if the bounds contain the point, otherwise false */ static contains(bounds: Bounds, point: Vector): boolean; /** * Returns true if the two bounds intersect. * @method overlaps * @param {bounds} boundsA * @param {bounds} boundsB * @return {boolean} True if the bounds overlap, otherwise false */ static overlaps(boundsA: Bounds, boundsB: Bounds): boolean; /** * Translates the bounds by the given vector. * @method translate * @param {bounds} bounds * @param {vector} vector */ static translate(bounds: Bounds, vector: Vector): void; /** * Shifts the bounds to the given position. * @method shift * @param {bounds} bounds * @param {vector} position */ static shift(bounds: Bounds, position: Vector): void; } export interface ICompositeDefinition { /** * An array of `Body` that are _direct_ children of this composite. * To add or remove bodies you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allBodies` method. * * @property bodies * @type body[] * @default [] */ bodies?: Array; /** * An array of `Composite` that are _direct_ children of this composite. * To add or remove composites you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allComposites` method. * * @property composites * @type composite[] * @default [] */ composites?: Array; /** * An array of `Constraint` that are _direct_ children of this composite. * To add or remove constraints you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allConstraints` method. * * @property constraints * @type constraint[] * @default [] */ constraints?: Array; /** * An integer `Number` uniquely identifying number generated in `Composite.create` by `Common.nextId`. * * @property id * @type number */ id?: number; /** * A flag that specifies whether the composite has been modified during the current step. * Most `Matter.Composite` methods will automatically set this flag to `true` to inform the engine of changes to be handled. * If you need to change it manually, you should use the `Composite.setModified` method. * * @property isModified * @type boolean * @default false */ isModified?: boolean; /** * An arbitrary `String` name to help the user identify and manage composites. * * @property label * @type string * @default "Composite" */ label?: string; /** * The `Composite` that is the parent of this composite. It is automatically managed by the `Matter.Composite` methods. * * @property parent * @type composite * @default null */ parent?: Composite; /** * A `String` denoting the type of object. * * @property type * @type string * @default "composite" */ type?: String; } /** * The `Matter.Composite` module contains methods for creating and manipulating composite bodies. * A composite body is a collection of `Matter.Body`, `Matter.Constraint` and other `Matter.Composite`, therefore composites form a tree structure. * It is important to use the functions in this module to modify composites, rather than directly modifying their properties. * Note that the `Matter.World` object is also a type of `Matter.Composite` and as such all composite methods here can also operate on a `Matter.World`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Composite */ export class Composite { /** * Generic add function. Adds one or many body(s), constraint(s) or a composite(s) to the given composite. * Triggers `beforeAdd` and `afterAdd` events on the `composite`. * @method add * @param {composite} composite * @param {} object * @return {composite} The original composite with the objects added */ static add(composite: Composite, object: Body | Composite | Constraint): Composite; /** * Returns all bodies in the given composite, including all bodies in its children, recursively. * @method allBodies * @param {composite} composite * @return {body[]} All the bodies */ static allBodies(composite: Composite): Array; /** * Returns all composites in the given composite, including all composites in its children, recursively. * @method allComposites * @param {composite} composite * @return {composite[]} All the composites */ static allComposites(composite: Composite): Array; /** * Returns all constraints in the given composite, including all constraints in its children, recursively. * @method allConstraints * @param {composite} composite * @return {constraint[]} All the constraints */ static allConstraints(composite: Composite): Array; /** * Removes all bodies, constraints and composites from the given composite. * Optionally clearing its children recursively. * @method clear * @param {composite} composite * @param {boolean} keepStatic * @param {boolean} [deep=false] */ static clear(composite: Composite, keepStatic: boolean, deep?: boolean): void; /** * Creates a new composite. The options parameter is an object that specifies any properties you wish to override the defaults. * See the properites section below for detailed information on what you can pass via the `options` object. * @method create * @param {} [options] * @return {composite} A new composite */ static create(options?: ICompositeDefinition): Composite; /** * Searches the composite recursively for an object matching the type and id supplied, null if not found. * @method get * @param {composite} composite * @param {number} id * @param {string} type * @return {object} The requested object, if found */ static get(composite: Composite, id: number, type: string): Body | Composite | Constraint; /** * Moves the given object(s) from compositeA to compositeB (equal to a remove followed by an add). * @method move * @param {compositeA} compositeA * @param {object[]} objects * @param {compositeB} compositeB * @return {composite} Returns compositeA */ static move(compositeA: Composite, objects: Array, compositeB: Composite): Composite; /** * Assigns new ids for all objects in the composite, recursively. * @method rebase * @param {composite} composite * @return {composite} Returns composite */ static rebase(composite: Composite): Composite; /** * Generic remove function. Removes one or many body(s), constraint(s) or a composite(s) to the given composite. * Optionally searching its children recursively. * Triggers `beforeRemove` and `afterRemove` events on the `composite`. * @method remove * @param {composite} composite * @param {} object * @param {boolean} [deep=false] * @return {composite} The original composite with the objects removed */ static remove(composite: Composite, object: Body | Composite | Constraint, deep?: boolean): Composite; /** * Sets the composite's `isModified` flag. * If `updateParents` is true, all parents will be set (default: false). * If `updateChildren` is true, all children will be set (default: false). * @method setModified * @param {composite} composite * @param {boolean} isModified * @param {boolean} [updateParents=false] * @param {boolean} [updateChildren=false] */ static setModified(composite: Composite, isModified: boolean, updateParents?: boolean, updateChildren?: boolean): void; /** * Translates all children in the composite by a given vector relative to their current positions, * without imparting any velocity. * @method translate * @param {composite} composite * @param {vector} translation * @param {bool} [recursive=true] */ static translate(composite: Composite, translation: Vector, recursive?: boolean): void; /** * Rotates all children in the composite by a given angle about the given point, without imparting any angular velocity. * @method rotate * @param {composite} composite * @param {number} rotation * @param {vector} point * @param {bool} [recursive=true] */ static rotate(composite: Composite, rotation: number, point: Vector, recursive?: boolean): void; /** * Scales all children in the composite, including updating physical properties (mass, area, axes, inertia), from a world-space point. * @method scale * @param {composite} composite * @param {number} scaleX * @param {number} scaleY * @param {vector} point * @param {bool} [recursive=true] */ static scale(composite: Composite, scaleX: number, scaleY: number, point: Vector, recursive?: boolean): void; /** * An array of `Body` that are _direct_ children of this composite. * To add or remove bodies you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allBodies` method. * * @property bodies * @type body[] * @default [] */ bodies: Array; /** * An array of `Composite` that are _direct_ children of this composite. * To add or remove composites you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allComposites` method. * * @property composites * @type composite[] * @default [] */ composites: Array; /** * An array of `Constraint` that are _direct_ children of this composite. * To add or remove constraints you should use `Composite.add` and `Composite.remove` methods rather than directly modifying this property. * If you wish to recursively find all descendants, you should use the `Composite.allConstraints` method. * * @property constraints * @type constraint[] * @default [] */ constraints: Array; /** * An integer `Number` uniquely identifying number generated in `Composite.create` by `Common.nextId`. * * @property id * @type number */ id: number; /** * A flag that specifies whether the composite has been modified during the current step. * Most `Matter.Composite` methods will automatically set this flag to `true` to inform the engine of changes to be handled. * If you need to change it manually, you should use the `Composite.setModified` method. * * @property isModified * @type boolean * @default false */ isModified: boolean; /** * An arbitrary `String` name to help the user identify and manage composites. * * @property label * @type string * @default "Composite" */ label: string; /** * The `Composite` that is the parent of this composite. It is automatically managed by the `Matter.Composite` methods. * * @property parent * @type composite * @default null */ parent: Composite; /** * A `String` denoting the type of object. * * @property type * @type string * @default "composite" */ type: String; } /** * The `Matter.Composites` module contains factory methods for creating composite bodies * with commonly used configurations (such as stacks and chains). * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Composites */ export class Composites { /** * Creates a composite with simple car setup of bodies and constraints. * @method car * @param {number} xx * @param {number} yy * @param {number} width * @param {number} height * @param {number} wheelSize * @return {composite} A new composite car body */ static car(xx: number, yy: number, width: number, height: number, wheelSize: number): Composite; /** * Chains all bodies in the given composite together using constraints. * @method chain * @param {composite} composite * @param {number} xOffsetA * @param {number} yOffsetA * @param {number} xOffsetB * @param {number} yOffsetB * @param {object} options * @return {composite} A new composite containing objects chained together with constraints */ static chain(composite: Composite, xOffsetA: number, yOffsetA: number, xOffsetB: number, yOffsetB: number, options: any): Composite; /** * Connects bodies in the composite with constraints in a grid pattern, with optional cross braces. * @method mesh * @param {composite} composite * @param {number} columns * @param {number} rows * @param {boolean} crossBrace * @param {object} options * @return {composite} The composite containing objects meshed together with constraints */ static mesh(composite: Composite, columns: number, rows: number, crossBrace: boolean, options: any): Composite; /** * Creates a composite with a Newton's Cradle setup of bodies and constraints. * @method newtonsCradle * @param {number} xx * @param {number} yy * @param {number} number * @param {number} size * @param {number} length * @return {composite} A new composite newtonsCradle body */ newtonsCradle(xx: number, yy: number, _number: number, size: number, length: number): Composite; /** * Create a new composite containing bodies created in the callback in a pyramid arrangement. * This function uses the body's bounds to prevent overlaps. * @method pyramid * @param {number} xx * @param {number} yy * @param {number} columns * @param {number} rows * @param {number} columnGap * @param {number} rowGap * @param {function} callback * @return {composite} A new composite containing objects created in the callback */ static pyramid(xx: number, yy: number, columns: number, rows: number, columnGap: number, rowGap: number, callback: Function): Composite; /** * Creates a simple soft body like object. * @method softBody * @param {number} xx * @param {number} yy * @param {number} columns * @param {number} rows * @param {number} columnGap * @param {number} rowGap * @param {boolean} crossBrace * @param {number} particleRadius * @param {} particleOptions * @param {} constraintOptions * @return {composite} A new composite softBody */ static softBody(xx: number, yy: number, columns: number, rows: number, columnGap: number, rowGap: number, crossBrace: boolean, particleRadius: number, particleOptions: any, constraintOptions: any): Composite; /** * Create a new composite containing bodies created in the callback in a grid arrangement. * This function uses the body's bounds to prevent overlaps. * @method stack * @param {number} xx * @param {number} yy * @param {number} columns * @param {number} rows * @param {number} columnGap * @param {number} rowGap * @param {function} callback * @return {composite} A new composite containing objects created in the callback */ static stack(xx: number, yy: number, columns: number, rows: number, columnGap: number, rowGap: number, callback: Function): Composite; } export interface IConstraintDefinition { /** * The first possible `Body` that this constraint is attached to. * * @property bodyA * @type body * @default null */ bodyA?: Body; /** * The second possible `Body` that this constraint is attached to. * * @property bodyB * @type body * @default null */ bodyB?: Body; /** * An integer `Number` uniquely identifying number generated in `Composite.create` by `Common.nextId`. * * @property id * @type number */ id?: number; /** * An arbitrary `String` name to help the user identify and manage bodies. * * @property label * @type string * @default "Constraint" */ label?: string; /** * A `Number` that specifies the target resting length of the constraint. * It is calculated automatically in `Constraint.create` from initial positions of the `constraint.bodyA` and `constraint.bodyB`. * * @property length * @type number */ length?: number; /** * A `Vector` that specifies the offset of the constraint from center of the `constraint.bodyA` if defined, otherwise a world-space position. * * @property pointA * @type vector * @default { x: 0, y: 0 } */ pointA?: Vector; /** * A `Vector` that specifies the offset of the constraint from center of the `constraint.bodyA` if defined, otherwise a world-space position. * * @property pointB * @type vector * @default { x: 0, y: 0 } */ pointB?: Vector; /** * An `Object` that defines the rendering properties to be consumed by the module `Matter.Render`. * * @property render * @type object */ render?: IConstraintRenderDefinition; /** * A `Number` that specifies the stiffness of the constraint, i.e. the rate at which it returns to its resting `constraint.length`. * A value of `1` means the constraint should be very stiff. * A value of `0.2` means the constraint acts like a soft spring. * * @property stiffness * @type number * @default 1 */ stiffness?: number; /** * A `Number` that specifies the damping of the constraint, * i.e. the amount of resistance applied to each body based on their velocities to limit the amount of oscillation. * Damping will only be apparent when the constraint also has a very low `stiffness`. * A value of `0.1` means the constraint will apply heavy damping, resulting in little to no oscillation. * A value of `0` means the constraint will apply no damping. * * @property damping * @type number * @default 0 */ damping?: number; /** * A `String` denoting the type of object. * * @property type * @type string * @default "constraint" */ type?: string; } export interface IConstraintRenderDefinition { /** * A `Number` that defines the line width to use when rendering the constraint outline. * A value of `0` means no outline will be rendered. * * @property render.lineWidth * @type number * @default 2 */ lineWidth: number; /** * A `String` that defines the stroke style to use when rendering the constraint outline. * It is the same as when using a canvas, so it accepts CSS style property values. * * @property render.strokeStyle * @type string * @default a random colour */ strokeStyle: string; /** * A flag that indicates if the constraint should be rendered. * * @property render.visible * @type boolean * @default true */ visible: boolean; } /** * The `Matter.Constraint` module contains methods for creating and manipulating constraints. * Constraints are used for specifying that a fixed distance must be maintained between two bodies (or a body and a fixed world-space position). * The stiffness of constraints can be modified to create springs or elastic. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Constraint */ export class Constraint { /** * Creates a new constraint. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {} options * @return {constraint} constraint */ static create(options: IConstraintDefinition): Constraint; /** * The first possible `Body` that this constraint is attached to. * * @property bodyA * @type body * @default null */ bodyA: Body; /** * The second possible `Body` that this constraint is attached to. * * @property bodyB * @type body * @default null */ bodyB: Body; /** * An integer `Number` uniquely identifying number generated in `Composite.create` by `Common.nextId`. * * @property id * @type number */ id: number; /** * An arbitrary `String` name to help the user identify and manage bodies. * * @property label * @type string * @default "Constraint" */ label: string; /** * A `Number` that specifies the target resting length of the constraint. * It is calculated automatically in `Constraint.create` from initial positions of the `constraint.bodyA` and `constraint.bodyB`. * * @property length * @type number */ length: number; /** * A `Vector` that specifies the offset of the constraint from center of the `constraint.bodyA` if defined, otherwise a world-space position. * * @property pointA * @type vector * @default { x: 0, y: 0 } */ pointA: Vector; /** * A `Vector` that specifies the offset of the constraint from center of the `constraint.bodyA` if defined, otherwise a world-space position. * * @property pointB * @type vector * @default { x: 0, y: 0 } */ pointB: Vector; /** * An `Object` that defines the rendering properties to be consumed by the module `Matter.Render`. * * @property render * @type object */ render: IConstraintRenderDefinition; /** * A `Number` that specifies the stiffness of the constraint, i.e. the rate at which it returns to its resting `constraint.length`. * A value of `1` means the constraint should be very stiff. * A value of `0.2` means the constraint acts like a soft spring. * * @property stiffness * @type number * @default 1 */ stiffness: number; /** * A `Number` that specifies the damping of the constraint, * i.e. the amount of resistance applied to each body based on their velocities to limit the amount of oscillation. * Damping will only be apparent when the constraint also has a very low `stiffness`. * A value of `0.1` means the constraint will apply heavy damping, resulting in little to no oscillation. * A value of `0` means the constraint will apply no damping. * * @property damping * @type number * @default 0 */ damping: number; /** * A `String` denoting the type of object. * * @property type * @type string * @default "constraint" */ type: string; } export interface IEngineDefinition { /** * An integer `Number` that specifies the number of position iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * * @property positionIterations * @type number * @default 6 */ positionIterations?: number; /** * An integer `Number` that specifies the number of velocity iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * * @property velocityIterations * @type number * @default 4 */ velocityIterations?: number; /** * An integer `Number` that specifies the number of constraint iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * The default value of `2` is usually very adequate. * * @property constraintIterations * @type number * @default 2 */ constraintIterations?: number; /** * A flag that specifies whether the engine should allow sleeping via the `Matter.Sleeping` module. * Sleeping can improve stability and performance, but often at the expense of accuracy. * * @property enableSleeping * @type boolean * @default false */ enableSleeping?: boolean; /** * An `Object` containing properties regarding the timing systems of the engine. * * @property timing * @type object */ timing?: IEngineTimingOptions; /** * An instance of a broadphase controller. The default value is a `Matter.Grid` instance created by `Engine.create`. * * @property broadphase * @type grid * @default a Matter.Grid instance */ grid?: Grid; /** * A `World` composite object that will contain all simulated bodies and constraints. * * @property world * @type world * @default a Matter.World instance */ world?: World; } export interface IEngineTimingOptions { /** * A `Number` that specifies the global scaling factor of time for all bodies. * A value of `0` freezes the simulation. * A value of `0.1` gives a slow-motion effect. * A value of `1.2` gives a speed-up effect. * * @property timing.timeScale * @type number * @default 1 */ timeScale: number; /** * A `Number` that specifies the current simulation-time in milliseconds starting from `0`. * It is incremented on every `Engine.update` by the given `delta` argument. * * @property timing.timestamp * @type number * @default 0 */ timestamp: number; } /** * The `Matter.Engine` module contains methods for creating and manipulating engines. * An engine is a controller that manages updating the simulation of the world. * See `Matter.Runner` for an optional game loop utility. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Engine */ export class Engine { /** * Clears the engine including the world, pairs and broadphase. * @method clear * @param {engine} engine */ static clear(engine: Engine): void; /** * Creates a new engine. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {HTMLElement} element * @param {object} [options] * @return {engine} engine * @deprecated */ static create(element?: HTMLElement | IEngineDefinition, options?: IEngineDefinition): Engine; /** * Creates a new engine. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {object} [options] * @return {engine} engine * @deprecated */ static create(options?: IEngineDefinition): Engine; /** * Merges two engines by keeping the configuration of `engineA` but replacing the world with the one from `engineB`. * @method merge * @param {engine} engineA * @param {engine} engineB */ static merge(engineA: Engine, engineB: Engine): void; /** * Moves the simulation forward in time by `delta` ms. * The `correction` argument is an optional `Number` that specifies the time correction factor to apply to the update. * This can help improve the accuracy of the simulation in cases where `delta` is changing between updates. * The value of `correction` is defined as `delta / lastDelta`, i.e. the percentage change of `delta` over the last step. * Therefore the value is always `1` (no correction) when `delta` constant (or when no correction is desired, which is the default). * See the paper on Time Corrected Verlet for more information. * * Triggers `beforeUpdate` and `afterUpdate` events. * Triggers `collisionStart`, `collisionActive` and `collisionEnd` events. * @method update * @param {engine} engine * @param {number} [delta=16.666] * @param {number} [correction=1] */ static update(engine: Engine, delta?: number, correction?: number): Engine; /** * An alias for `Runner.run`, see `Matter.Runner` for more information. * @method run * @param {engine} engine */ static run(enige: Engine): void; /** * An instance of a broadphase controller. The default value is a `Matter.Grid` instance created by `Engine.create`. * * @property broadphase * @type grid * @default a Matter.Grid instance */ broadphase: Grid; /** * An integer `Number` that specifies the number of constraint iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * The default value of `2` is usually very adequate. * * @property constraintIterations * @type number * @default 2 */ constraintIterations: number; /** * A flag that specifies whether the engine is running or not. */ enabled: boolean; /** * A flag that specifies whether the engine should allow sleeping via the `Matter.Sleeping` module. * Sleeping can improve stability and performance, but often at the expense of accuracy. * * @property enableSleeping * @type boolean * @default false */ enableSleeping: boolean; /** * Collision pair set for this `Engine`. */ pairs: any; /** * An integer `Number` that specifies the number of position iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * * @property positionIterations * @type number * @default 6 */ positionIterations: number; /** * An instance of a `Render` controller. The default value is a `Matter.Render` instance created by `Engine.create`. * One may also develop a custom renderer module based on `Matter.Render` and pass an instance of it to `Engine.create` via `options.render`. * * A minimal custom renderer object must define at least three functions: `create`, `clear` and `world` (see `Matter.Render`). * It is also possible to instead pass the _module_ reference via `options.render.controller` and `Engine.create` will instantiate one for you. * * @property render * @type render * @default a Matter.Render instance */ render: Render; /** * An `Object` containing properties regarding the timing systems of the engine. * * @property timing * @type object */ timing: IEngineTimingOptions; /** * An integer `Number` that specifies the number of velocity iterations to perform each update. * The higher the value, the higher quality the simulation will be at the expense of performance. * * @property velocityIterations * @type number * @default 4 */ velocityIterations: number; /** * A `World` composite object that will contain all simulated bodies and constraints. * * @property world * @type world * @default a Matter.World instance */ world: World; } export interface IGridDefinition { } /** * The `Matter.Grid` module contains methods for creating and manipulating collision broadphase grid structures. * * @class Grid */ export class Grid { /** * Creates a new grid. * @method create * @param {} options * @return {grid} A new grid */ static create(options?: IGridDefinition): Grid; /** * Updates the grid. * @method update * @param {grid} grid * @param {body[]} bodies * @param {engine} engine * @param {boolean} forceUpdate */ static update(grid: Grid, bodies: Array, engine: Engine, forceUpdate: boolean): void; /** * Clears the grid. * @method clear * @param {grid} grid */ static clear(grid: Grid): void; } export interface IMouseConstraintDefinition { /** * The `Constraint` object that is used to move the body during interaction. * * @property constraint * @type constraint */ constraint?: Constraint; /** * An `Object` that specifies the collision filter properties. * The collision filter allows the user to define which types of body this mouse constraint can interact with. * See `body.collisionFilter` for more information. * * @property collisionFilter * @type object */ collisionFilter?: ICollisionFilter; /** * The `Body` that is currently being moved by the user, or `null` if no body. * * @property body * @type body * @default null */ body?: Body; /** * The `Mouse` instance in use. If not supplied in `MouseConstraint.create`, one will be created. * * @property mouse * @type mouse * @default mouse */ mouse?: Mouse; /** * A `String` denoting the type of object. * * @property type * @type string * @default "constraint" */ type?: string; } /** * The `Matter.MouseConstraint` module contains methods for creating mouse constraints. * Mouse constraints are used for allowing user interaction, providing the ability to move bodies via the mouse or touch. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class MouseConstraint */ export class MouseConstraint { /** * Creates a new mouse constraint. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {engine} engine * @param {} options * @return {MouseConstraint} A new MouseConstraint */ static create(engine: Engine, options?: IMouseConstraintDefinition): MouseConstraint; /** * The `Constraint` object that is used to move the body during interaction. * * @property constraint * @type constraint */ constraint: Constraint; /** * An `Object` that specifies the collision filter properties. * The collision filter allows the user to define which types of body this mouse constraint can interact with. * See `body.collisionFilter` for more information. * * @property collisionFilter * @type object */ collisionFilter: ICollisionFilter; /** * The `Body` that is currently being moved by the user, or `null` if no body. * * @property body * @type body * @default null */ body: Body; /** * The `Mouse` instance in use. If not supplied in `MouseConstraint.create`, one will be created. * * @property mouse * @type mouse * @default mouse */ mouse: Mouse; /** * A `String` denoting the type of object. * * @property type * @type string * @default "constraint" */ type: string; } /** * The `Matter.Pairs` module contains methods for creating and manipulating collision pair sets. * * @class Pairs */ export class Pairs { /** * Clears the given pairs structure. * @method clear * @param {pairs} pairs * @return {pairs} pairs */ static clear(pairs: any): any; } export interface IPair { id: number; bodyA: Body; bodyB: Body; contacts: any; activeContacts: any; separation: number; isActive: boolean; timeCreated: number; timeUpdated: number, inverseMass: number; friction: number; frictionStatic: number; restitution: number; slop: number; } /** * The `Matter.Query` module contains methods for performing collision queries. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Query */ export class Query { /** * Casts a ray segment against a set of bodies and returns all collisions, ray width is optional. Intersection points are not provided. * @method ray * @param {body[]} bodies * @param {vector} startPoint * @param {vector} endPoint * @param {number} [rayWidth] * @return {object[]} Collisions */ static ray(bodies: Array, startPoint: Vector, endPoint: Vector, rayWidth?: number): Array; /** * Returns all bodies whose bounds are inside (or outside if set) the given set of bounds, from the given set of bodies. * @method region * @param {body[]} bodies * @param {bounds} bounds * @param {bool} [outside=false] * @return {body[]} The bodies matching the query */ static region(bodies: Array, bounds: Bounds, outside?: boolean): Array; /** * Returns all bodies whose vertices contain the given point, from the given set of bodies. * @method point * @param {body[]} bodies * @param {vector} point * @return {body[]} The bodies matching the query */ static point(bodies: Array, point: Vector): Array; } export interface IRenderDefinition { /** * A back-reference to the `Matter.Render` module. * * @property controller * @type render */ controller?: any; /** * A reference to the `Matter.Engine` instance to be used. * * @property engine * @type engine */ engine: Engine; /** * A reference to the element where the canvas is to be inserted (if `render.canvas` has not been specified) * * @property element * @type HTMLElement * @default null * @deprecated */ element?: HTMLElement; /** * The canvas element to render to. If not specified, one will be created if `render.element` has been specified. * * @property canvas * @type HTMLCanvasElement * @default null */ canvas?: HTMLCanvasElement; /** * The configuration options of the renderer. * * @property options * @type {} */ options?: IRendererOptions; /** * A `Bounds` object that specifies the drawing view region. * Rendering will be automatically transformed and scaled to fit within the canvas size (`render.options.width` and `render.options.height`). * This allows for creating views that can pan or zoom around the scene. * You must also set `render.options.hasBounds` to `true` to enable bounded rendering. * * @property bounds * @type bounds */ bounds?: Bounds; /** * The 2d rendering context from the `render.canvas` element. * * @property context * @type CanvasRenderingContext2D */ context?: CanvasRenderingContext2D; /** * The sprite texture cache. * * @property textures * @type {} */ textures?: any; } export interface IRendererOptions { /** * The target width in pixels of the `render.canvas` to be created. * * @property options.width * @type number * @default 800 */ width?: number; /** * The target height in pixels of the `render.canvas` to be created. * * @property options.height * @type number * @default 600 */ height?: number; /** * A flag that specifies if `render.bounds` should be used when rendering. * * @property options.hasBounds * @type boolean * @default false */ hasBounds?: boolean; /** * Render wireframes only * @type boolean * @default true */ wireframes?: boolean; } /** * The `Matter.Render` module is a simple HTML5 canvas based renderer for visualising instances of `Matter.Engine`. * It is intended for development and debugging purposes, but may also be suitable for simple games. * It includes a number of drawing options including wireframe, vector with support for sprites and viewports. * * @class Render */ export class Render { /** * Creates a new renderer. The options parameter is an object that specifies any properties you wish to override the defaults. * All properties have default values, and many are pre-calculated automatically based on other properties. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @param {object} [options] * @return {render} A new renderer */ static create(options: IRenderDefinition): Render; /** * Continuously updates the render canvas on the `requestAnimationFrame` event. * @method run * @param {render} render */ static run(render: Render): void; /** * Ends execution of `Render.run` on the given `render`, by canceling the animation frame request event loop. * @method stop * @param {render} render */ static stop(render: Render): void; /** * Sets the pixel ratio of the renderer and updates the canvas. * To automatically detect the correct ratio, pass the string `'auto'` for `pixelRatio`. * @method setPixelRatio * @param {render} render * @param {number} pixelRatio */ static setPixelRatio(render: Render, pixelRatio: number): void; /** * Renders the given `engine`'s `Matter.World` object. * This is the entry point for all rendering and should be called every time the scene changes. * @method world * @param {engine} engine */ static world(render: Render): void; /** * A back-reference to the `Matter.Render` module. * * @property controller * @type render */ controller: any; /** * A reference to the element where the canvas is to be inserted (if `render.canvas` has not been specified) * * @property element * @type HTMLElement * @default null */ element: HTMLElement; /** * The canvas element to render to. If not specified, one will be created if `render.element` has been specified. * * @property canvas * @type HTMLCanvasElement * @default null */ canvas: HTMLCanvasElement; /** * The configuration options of the renderer. * * @property options * @type {} */ options: IRendererOptions; /** * A `Bounds` object that specifies the drawing view region. * Rendering will be automatically transformed and scaled to fit within the canvas size (`render.options.width` and `render.options.height`). * This allows for creating views that can pan or zoom around the scene. * You must also set `render.options.hasBounds` to `true` to enable bounded rendering. * * @property bounds * @type bounds */ bounds: Bounds; /** * The 2d rendering context from the `render.canvas` element. * * @property context * @type CanvasRenderingContext2D */ context: CanvasRenderingContext2D; /** * The sprite texture cache. * * @property textures * @type {} */ textures: any; } export interface IRunnerOptions { /** * A `Boolean` that specifies if the runner should use a fixed timestep (otherwise it is variable). * If timing is fixed, then the apparent simulation speed will change depending on the frame rate (but behaviour will be deterministic). * If the timing is variable, then the apparent simulation speed will be constant (approximately, but at the cost of determininism). * * @property isFixed * @type boolean * @default false */ isFixed?: boolean; /** * A `Number` that specifies the time step between updates in milliseconds. * If `engine.timing.isFixed` is set to `true`, then `delta` is fixed. * If it is `false`, then `delta` can dynamically change to maintain the correct apparent simulation speed. * * @property delta * @type number * @default 1000 / 60 */ delta?: number; } /** * The `Matter.Runner` module is an optional utility which provides a game loop, * that handles updating and rendering a `Matter.Engine` for you within a browser. * It is intended for demo and testing purposes, but may be adequate for simple games. * If you are using your own game loop instead, then you do not need the `Matter.Runner` module. * Instead just call `Engine.update(engine, delta)` in your own loop. * Note that the method `Engine.run` is an alias for `Runner.run`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Runner */ export class Runner { /** * Creates a new Runner. The options parameter is an object that specifies any properties you wish to override the defaults. * @method create * @param {} options */ static create(options:IRunnerOptions): Runner; /** * Continuously ticks a `Matter.Engine` by calling `Runner.tick` on the `requestAnimationFrame` event. * @method run * @param {engine} engine */ static run(runner: Runner, engine: Engine): Runner; /** * Continuously ticks a `Matter.Engine` by calling `Runner.tick` on the `requestAnimationFrame` event. * @method run * @param {engine} engine */ static run(engine: Engine): Runner; /** * A game loop utility that updates the engine and renderer by one step (a 'tick'). * Features delta smoothing, time correction and fixed or dynamic timing. * Triggers `beforeTick`, `tick` and `afterTick` events on the engine. * Consider just `Engine.update(engine, delta)` if you're using your own loop. * @method tick * @param {runner} runner * @param {engine} engine * @param {number} time */ static tick(runner: Runner, engine: Engine, time: number): void; /** * Ends execution of `Runner.run` on the given `runner`, by canceling the animation frame request event loop. * If you wish to only temporarily pause the engine, see `engine.enabled` instead. * @method stop * @param {runner} runner */ static stop(runner: Runner): void; /** * Alias for `Runner.run`. * @method start * @param {runner} runner * @param {engine} engine */ static start(runner: Runner, engine: Engine): void; /** * A flag that specifies whether the runner is running or not. * * @property enabled * @type boolean * @default true */ enabled: boolean; /** * A `Boolean` that specifies if the runner should use a fixed timestep (otherwise it is variable). * If timing is fixed, then the apparent simulation speed will change depending on the frame rate (but behaviour will be deterministic). * If the timing is variable, then the apparent simulation speed will be constant (approximately, but at the cost of determininism). * * @property isFixed * @type boolean * @default false */ isFixed: boolean; /** * A `Number` that specifies the time step between updates in milliseconds. * If `engine.timing.isFixed` is set to `true`, then `delta` is fixed. * If it is `false`, then `delta` can dynamically change to maintain the correct apparent simulation speed. * * @property delta * @type number * @default 1000 / 60 */ delta: number; } /** * The `Matter.Sleeping` module contains methods to manage the sleeping state of bodies. * * @class Sleeping */ export class Sleeping { static set(body: Body, isSleeping: boolean): void; } /** * The `Matter.Svg` module contains methods for converting SVG images into an array of vector points. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Svg */ export class Svg { /** * Converts an SVG path into an array of vector points. * If the input path forms a concave shape, you must decompose the result into convex parts before use. * See `Bodies.fromVertices` which provides support for this. * Note that this function is not guaranteed to support complex paths (such as those with holes). * @method pathToVertices * @param {SVGPathElement} path * @param {Number} [sampleLength=15] * @return {Vector[]} points */ static pathToVertices(path: SVGPathElement, sampleLength: number): Array; } /** * The `Matter.Vector` module contains methods for creating and manipulating vectors. * Vectors are the basis of all the geometry related operations in the engine. * A `Matter.Vector` object is of the form `{ x: 0, y: 0 }`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Vector */ export class Vector { x: number; y: number; /** * Creates a new vector. * @method create * @param {number} x * @param {number} y * @return {vector} A new vector */ static create(x?: number, y?: number): Vector; /** * Returns a new vector with `x` and `y` copied from the given `vector`. * @method clone * @param {vector} vector * @return {vector} A new cloned vector */ static clone(vector: Vector): Vector; /** * Returns the cross-product of three vectors. * @method cross3 * @param {vector} vectorA * @param {vector} vectorB * @param {vector} vectorC * @return {number} The cross product of the three vectors */ static cross3(vectorA: Vector, vectorB: Vector, vectorC: Vector):number; /** * Adds the two vectors. * @method add * @param {vector} vectorA * @param {vector} vectorB * @param {vector} [output] * @return {vector} A new vector of vectorA and vectorB added */ static add(vectorA: Vector, vectorB: Vector, output?: Vector): Vector; /** * Returns the angle in radians between the two vectors relative to the x-axis. * @method angle * @param {vector} vectorA * @param {vector} vectorB * @return {number} The angle in radians */ static angle(vectorA: Vector, vectorB: Vector): number; /** * Returns the cross-product of two vectors. * @method cross * @param {vector} vectorA * @param {vector} vectorB * @return {number} The cross product of the two vectors */ static cross(vectorA: Vector, vectorB: Vector): number; /** * Divides a vector and a scalar. * @method div * @param {vector} vector * @param {number} scalar * @return {vector} A new vector divided by scalar */ static div(vector: Vector, scalar: number): Vector; /** * Returns the dot-product of two vectors. * @method dot * @param {vector} vectorA * @param {vector} vectorB * @return {number} The dot product of the two vectors */ static dot(vectorA: Vector, vectorB: Vector): Number; /** * Returns the magnitude (length) of a vector. * @method magnitude * @param {vector} vector * @return {number} The magnitude of the vector */ static magnitude(vector: Vector): number; /** * Returns the magnitude (length) of a vector (therefore saving a `sqrt` operation). * @method magnitudeSquared * @param {vector} vector * @return {number} The squared magnitude of the vector */ static magnitudeSquared(vector: Vector): number; /** * Multiplies a vector and a scalar. * @method mult * @param {vector} vector * @param {number} scalar * @return {vector} A new vector multiplied by scalar */ static mult(vector: Vector, scalar: number): Vector; /** * Negates both components of a vector such that it points in the opposite direction. * @method neg * @param {vector} vector * @return {vector} The negated vector */ static neg(vector: Vector): Vector; /** * Normalises a vector (such that its magnitude is `1`). * @method normalise * @param {vector} vector * @return {vector} A new vector normalised */ static normalise(vector: Vector): Vector; /** * Returns the perpendicular vector. Set `negate` to true for the perpendicular in the opposite direction. * @method perp * @param {vector} vector * @param {bool} [negate=false] * @return {vector} The perpendicular vector */ static perp(vector: Vector, negate?: boolean): Vector; /** * Rotates the vector about (0, 0) by specified angle. * @method rotate * @param {vector} vector * @param {number} angle * @return {vector} A new vector rotated about (0, 0) */ static rotate(vector: Vector, angle: number): Vector; /** * Rotates the vector about a specified point by specified angle. * @method rotateAbout * @param {vector} vector * @param {number} angle * @param {vector} point * @param {vector} [output] * @return {vector} A new vector rotated about the point */ static rotateAbout(vector: Vector, angle: number, point: Vector, output?: Vector): Vector; /** * Subtracts the two vectors. * @method sub * @param {vector} vectorA * @param {vector} vectorB * @param {vector} [output] * @return {vector} A new vector of vectorA and vectorB subtracted */ static sub(vectorA: Vector, vectorB: Vector, optional?: Vector): Vector; } /** * The `Matter.Vertices` module contains methods for creating and manipulating sets of vertices. * A set of vertices is an array of `Matter.Vector` with additional indexing properties inserted by `Vertices.create`. * A `Matter.Body` maintains a set of vertices to represent the shape of the object (its convex hull). * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Vertices */ export class Vertices { /** * Returns the average (mean) of the set of vertices. * @method mean * @param {vertices} vertices * @return {vector} The average point */ static mean(vertices: Array): Array; /** * Sorts the input vertices into clockwise order in place. * @method clockwiseSort * @param {vertices} vertices * @return {vertices} vertices */ static clockwiseSort(vertices: Array): Array; /** * Returns true if the vertices form a convex shape (vertices must be in clockwise order). * @method isConvex * @param {vertices} vertices * @return {bool} `true` if the `vertices` are convex, `false` if not (or `null` if not computable). */ static isConvex(vertices: Array): boolean; /** * Returns the convex hull of the input vertices as a new array of points. * @method hull * @param {vertices} vertices * @return [vertex] vertices */ static hull(vertices: Array): Array; /** * Returns the area of the set of vertices. * @method area * @param {vertices} vertices * @param {bool} signed * @return {number} The area */ static area(vertices: Array, signed: boolean): number; /** * Returns the centre (centroid) of the set of vertices. * @method centre * @param {vertices} vertices * @return {vector} The centre point */ static centre(vertices: Array): Vector; /** * Chamfers a set of vertices by giving them rounded corners, returns a new set of vertices. * The radius parameter is a single number or an array to specify the radius for each vertex. * @method chamfer * @param {vertices} vertices * @param {number[]} radius * @param {number} quality * @param {number} qualityMin * @param {number} qualityMax */ static chamfer(vertices: Array, radius: number | Array, quality: number, qualityMin: number, qualityMax: number): void; /** * Returns `true` if the `point` is inside the set of `vertices`. * @method contains * @param {vertices} vertices * @param {vector} point * @return {boolean} True if the vertices contains point, otherwise false */ static contains(vertices: Array, point: Vector): boolean; /** * Creates a new set of `Matter.Body` compatible vertices. * The `points` argument accepts an array of `Matter.Vector` points orientated around the origin `(0, 0)`, for example: * * [{ x: 0, y: 0 }, { x: 25, y: 50 }, { x: 50, y: 0 }] * * The `Vertices.create` method returns a new array of vertices, which are similar to Matter.Vector objects, * but with some additional references required for efficient collision detection routines. * * Note that the `body` argument is not optional, a `Matter.Body` reference must be provided. * * @method create * @param {vector[]} points * @param {body} body */ static create(points: Array, body: Body): void; /** * Parses a string containing ordered x y pairs separated by spaces (and optionally commas), * into a `Matter.Vertices` object for the given `Matter.Body`. * For parsing SVG paths, see `Svg.pathToVertices`. * @method fromPath * @param {string} path * @param {body} body * @return {vertices} vertices */ static fromPath(path: string, body: Body): Array; /** * Returns the moment of inertia (second moment of area) of the set of vertices given the total mass. * @method inertia * @param {vertices} vertices * @param {number} mass * @return {number} The polygon's moment of inertia */ static inertia(vertices: Array, mass: number): number; /** * Rotates the set of vertices in-place. * @method rotate * @param {vertices} vertices * @param {number} angle * @param {vector} point */ static rotate(vertices: Array, angle: number, point: Vector): void; /** * Scales the vertices from a point (default is centre) in-place. * @method scale * @param {vertices} vertices * @param {number} scaleX * @param {number} scaleY * @param {vector} point */ static scale(vertices: Array, scaleX: number, scaleY: number, point: Vector): void; /** * Translates the set of vertices in-place. * @method translate * @param {vertices} vertices * @param {vector} vector * @param {number} scalar */ static translate(vertices: Array, vector: Vector, scalar: number): void; } interface IWorldDefinition extends ICompositeDefinition { gravity?: Gravity; bounds?: Bounds; } interface Gravity extends Vector { scale: number; } /** * The `Matter.World` module contains methods for creating and manipulating the world composite. * A `Matter.World` is a `Matter.Composite` body, which is a collection of `Matter.Body`, `Matter.Constraint` and other `Matter.Composite`. * A `Matter.World` has a few additional properties including `gravity` and `bounds`. * It is important to use the functions in the `Matter.Composite` module to modify the world composite, rather than directly modifying its properties. * There are also a few methods here that alias those in `Matter.Composite` for easier readability. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class World * @extends Composite */ export class World extends Composite { /** * Add objects or arrays of objects of types: Body, Constraint, Composite * @param world * @param body * @returns world */ static add(world: World, body: Body | Array | Composite | Array | Constraint | Array | MouseConstraint): World; /** * An alias for Composite.addBody since World is also a Composite * @method addBody * @param {world} world * @param {body} body * @return {world} The original world with the body added */ static addBody(world: World, body: Body): World; /** * An alias for Composite.add since World is also a Composite * @method addComposite * @param {world} world * @param {composite} composite * @return {world} The original world with the objects from composite added */ static addComposite(world: World, composite: Composite): World; /** * An alias for Composite.addConstraint since World is also a Composite * @method addConstraint * @param {world} world * @param {constraint} constraint * @return {world} The original world with the constraint added */ static addConstraint(world: World, constraint: Constraint): World; /** * An alias for Composite.clear since World is also a Composite * @method clear * @param {world} world * @param {boolean} keepStatic */ static clear(world: World, keepStatic: boolean): void; /** * Creates a new world composite. The options parameter is an object that specifies any properties you wish to override the defaults. * See the properties section below for detailed information on what you can pass via the `options` object. * @method create * @constructor * @param {} options * @return {world} A new world */ static create(options: IWorldDefinition): World; gravity: Gravity; bounds: Bounds; } export interface ICollisionFilter { category: number; mask: number; group: number; } export interface IMousePoint { x: number; y: number; } export class Mouse { static create(element: HTMLElement): Mouse; static setElement(mouse: Mouse, element: HTMLElement): void; static clearSourceEvents(mouse: Mouse): void; static setOffset(mouse: Mouse, offset: Vector): void; static setScale(mouse: Mouse, scale: Vector): void; element: HTMLElement; absolute: IMousePoint; position: IMousePoint; mousedownPosition: IMousePoint; mouseupPosition: IMousePoint; offset: IMousePoint; scale: IMousePoint; wheelDelta: number; button: number; pixelRatio: number; } export interface IEvent { /** * The name of the event */ name: string; /** * The source object of the event */ source: T; } export interface IEventComposite extends IEvent { /** * EventObjects (may be a single body, constraint, composite or a mixed array of these) */ object: any; } export interface IEventTimestamped extends IEvent { /** * The engine.timing.timestamp of the event */ timestamp: number; } export interface IEventCollision extends IEventTimestamped { /** * The collision pair */ pairs: Array; } export class Events { /** * Fired when a body starts sleeping (where `this` is the body). * * @event sleepStart * @this {body} The body that has started sleeping * @param {} event An event object * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Body, name: "sleepStart", callback: (e: IEvent) => void): void; /** * Fired when a body ends sleeping (where `this` is the body). * * @event sleepEnd * @this {body} The body that has ended sleeping * @param {} event An event object * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Body, name: "sleepEnd", callback: (e: IEvent) => void): void; /** * Fired when a call to `Composite.add` is made, before objects have been added. * * @event beforeAdd * @param {} event An event object * @param {} event.object The object(s) to be added (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "beforeAdd", callback: (e: IEventComposite) => void): void; /** * Fired when a call to `Composite.add` is made, after objects have been added. * * @event afterAdd * @param {} event An event object * @param {} event.object The object(s) that have been added (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "afterAdd", callback: (e: IEventComposite) => void): void; /** * Fired when a call to `Composite.remove` is made, before objects have been removed. * * @event beforeRemove * @param {} event An event object * @param {} event.object The object(s) to be removed (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "beforeRemove", callback: (e: IEventComposite) => void): void; /** * Fired when a call to `Composite.remove` is made, after objects have been removed. * * @event afterRemove * @param {} event An event object * @param {} event.object The object(s) that have been removed (may be a single body, constraint, composite or a mixed array of these) * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "afterRemove", callback: (e: IEventComposite) => void): void; /** * Fired after engine update and all collision events * * @event afterUpdate * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "afterUpdate", callback: (e: IEventTimestamped) => void): void; /** * Fired before rendering * * @event beforeRender * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "beforeRender", callback: (e: IEventTimestamped) => void): void; /** * Fired after rendering * * @event afterRender * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "afterRender", callback: (e: IEventTimestamped) => void): void; /** * Fired just before an update * * @event beforeUpdate * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "beforeUpdate", callback: (e: IEventTimestamped) => void): void; /** * Fired after engine update, provides a list of all pairs that are colliding in the current tick (if any) * * @event collisionActive * @param {} event An event object * @param {} event.pairs List of affected pairs * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "collisionActive", callback: (e: IEventCollision) => void): void; /** * Fired after engine update, provides a list of all pairs that have ended collision in the current tick (if any) * * @event collisionEnd * @param {} event An event object * @param {} event.pairs List of affected pairs * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "collisionEnd", callback: (e: IEventCollision) => void): void; /** * Fired after engine update, provides a list of all pairs that have started to collide in the current tick (if any) * * @event collisionStart * @param {} event An event object * @param {} event.pairs List of affected pairs * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "collisionStart", callback: (e: IEventCollision) => void): void; /** * Fired at the start of a tick, before any updates to the engine or timing * * @event beforeTick * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "beforeTick", callback: (e: IEventTimestamped) => void): void; /** * Fired after engine timing updated, but just before update * * @event tick * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "tick", callback: (e: IEventTimestamped) => void): void; /** * Fired at the end of a tick, after engine update and after rendering * * @event afterTick * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "afterTick", callback: (e: IEventTimestamped) => void): void; /** * Fired before rendering * * @event beforeRender * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "beforeRender", callback: (e: IEventTimestamped) => void): void; /** * Fired after rendering * * @event afterRender * @param {} event An event object * @param {number} event.timestamp The engine.timing.timestamp of the event * @param {} event.source The source object of the event * @param {} event.name The name of the event */ static on(obj: Engine, name: "afterRender", callback: (e: IEventTimestamped) => void): void; /** * Fired when the mouse is down (or a touch has started) during the last step * @param obj * @param name * @param callback */ static on(obj: MouseConstraint, name: "mousedown", callback: (e: any) => void): void; /** * Fired when the mouse has moved (or a touch moves) during the last step * @param obj * @param name * @param callback */ static on(obj: MouseConstraint, name: "mousemove", callback: (e: any) => void): void; /** * Fired when the mouse is up (or a touch has ended) during the last step * @param obj * @param name * @param callback */ static on(obj: MouseConstraint, name: "mouseup", callback: (e: any) => void): void; static on(obj: any, name: string, callback: (e: any) => void): void; /** * Removes the given event callback. If no callback, clears all callbacks in eventNames. If no eventNames, clears all events. * * @param obj * @param eventName * @param callback */ static off(obj: any, eventName: string, callback: (e: any) => void): void; /** * Fires all the callbacks subscribed to the given object's eventName, in the order they subscribed, if any. * * @param object * @param eventNames * @param event */ static trigger(object: any, eventNames: string, event?: (e: any) => void): void; } type Dependency = {name: string, range: string} | {name: string, version: string} | string; export class Plugin { name: string; version: string; install: () => void; for?: string; /** * Registers a plugin object so it can be resolved later by name. * @method register * @param plugin {} The plugin to register. * @return {object} The plugin. */ static register(plugin: Plugin): Plugin; /** * Resolves a dependency to a plugin object from the registry if it exists. * The `dependency` may contain a version, but only the name matters when resolving. * @method resolve * @param dependency {string} The dependency. * @return {object} The plugin if resolved, otherwise `undefined`. */ static resolve(dependency: string): Plugin | undefined; /** * Returns `true` if the object meets the minimum standard to be considered a plugin. * This means it must define the following properties: * - `name` * - `version` * - `install` * @method isPlugin * @param obj {} The obj to test. * @return {boolean} `true` if the object can be considered a plugin otherwise `false`. */ static isPlugin(obj: {}): boolean; /** * Returns a pretty printed plugin name and version. * @method toString * @param plugin {} The plugin. * @return {string} Pretty printed plugin name and version. */ static toString(plugin: string | Plugin): string; /** * Returns `true` if `plugin.for` is applicable to `module` by comparing against `module.name` and `module.version`. * If `plugin.for` is not specified then it is assumed to be applicable. * The value of `plugin.for` is a string of the format `'module-name'` or `'module-name@version'`. * @method isFor * @param plugin {} The plugin. * @param module {} The module. * @return {boolean} `true` if `plugin.for` is applicable to `module`, otherwise `false`. */ static isFor(plugin: Plugin, module: {name?: string, [_: string]: any}): boolean; /** * Installs the plugins by calling `plugin.install` on each plugin specified in `plugins` if passed, otherwise `module.uses`. * For installing plugins on `Matter` see the convenience function `Matter.use`. * Plugins may be specified either by their name or a reference to the plugin object. * Plugins themselves may specify further dependencies, but each plugin is installed only once. * Order is important, a topological sort is performed to find the best resulting order of installation. * This sorting attempts to satisfy every dependency's requested ordering, but may not be exact in all cases. * This function logs the resulting status of each dependency in the console, along with any warnings. * - A green tick ✅ indicates a dependency was resolved and installed. * - An orange diamond 🔶 indicates a dependency was resolved but a warning was thrown for it or one if its dependencies. * - A red cross ❌ indicates a dependency could not be resolved. * Avoid calling this function multiple times on the same module unless you intend to manually control installation order. * @method use * @param module {} The module install plugins on. * @param [plugins=module.uses] {} The plugins to install on module (optional, defaults to `module.uses`). */ static use( module: {uses?: (Plugin | string)[]; [_: string]: any}, plugins: (Plugin | string)[] ): void; /** * Recursively finds all of a module's dependencies and returns a flat dependency graph. * @method dependencies * @param module {} The module. * @return {object} A dependency graph. */ static dependencies( module: Dependency, tracked?: {[_: string]: string[]} ): {[_: string]: string[]} | string | undefined /** * Parses a dependency string into its components. * The `dependency` is a string of the format `'module-name'` or `'module-name@version'`. * See documentation for `Plugin.versionParse` for a description of the format. * This function can also handle dependencies that are already resolved (e.g. a module object). * @method dependencyParse * @param dependency {string} The dependency of the format `'module-name'` or `'module-name@version'`. * @return {object} The dependency parsed into its components. */ static dependencyParse(dependency: Dependency) : {name: string, range: string}; /** * Parses a version string into its components. * Versions are strictly of the format `x.y.z` (as in [semver](http://semver.org/)). * Versions may optionally have a prerelease tag in the format `x.y.z-alpha`. * Ranges are a strict subset of [npm ranges](https://docs.npmjs.com/misc/semver#advanced-range-syntax). * Only the following range types are supported: * - Tilde ranges e.g. `~1.2.3` * - Caret ranges e.g. `^1.2.3` * - Exact version e.g. `1.2.3` * - Any version `*` * @method versionParse * @param range {string} The version string. * @return {object} The version range parsed into its components. */ static versionParse(range: string) : { isRange: boolean, version: string, range: string, operator: string parts: number[], prerelease: string, number: number }; /** * Returns `true` if `version` satisfies the given `range`. * See documentation for `Plugin.versionParse` for a description of the format. * If a version or range is not specified, then any version (`*`) is assumed to satisfy. * @method versionSatisfies * @param version {string} The version string. * @param range {string} The range string. * @return {boolean} `true` if `version` satisfies `range`, otherwise `false`. */ static versionSatisfies(version: string, range: string): boolean; } }