/** * @author Richard Davey * @copyright 2020 Photon Storm Ltd. * @license {@link https://opensource.org/licenses/MIT|MIT License} */ /** * Using Bresenham's line algorithm this will return an array of all coordinates on this line. * * The `start` and `end` points are rounded before this runs as the algorithm works on integers. * * @function Phaser.Geom.Line.BresenhamPoints * @since 3.0.0 * * @param {Phaser.Geom.Line} line - The line. * @param {integer} [stepRate=1] - The optional step rate for the points on the line. * @param {Phaser.Types.Math.Vector2Like[]} [results] - An optional array to push the resulting coordinates into. * * @return {Phaser.Types.Math.Vector2Like[]} The array of coordinates on the line. */ var BresenhamPoints = function (line, stepRate, results) { if (stepRate === undefined) { stepRate = 1; } if (results === undefined) { results = []; } var x1 = Math.round(line.x1); var y1 = Math.round(line.y1); var x2 = Math.round(line.x2); var y2 = Math.round(line.y2); var dx = Math.abs(x2 - x1); var dy = Math.abs(y2 - y1); var sx = (x1 < x2) ? 1 : -1; var sy = (y1 < y2) ? 1 : -1; var err = dx - dy; results.push({ x: x1, y: y1 }); var i = 1; while (!((x1 === x2) && (y1 === y2))) { var e2 = err << 1; if (e2 > -dy) { err -= dy; x1 += sx; } if (e2 < dx) { err += dx; y1 += sy; } if (i % stepRate === 0) { results.push({ x: x1, y: y1 }); } i++; } return results; }; module.exports = BresenhamPoints;