///
var __extends = this.__extends || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
function __() { this.constructor = d; }
__.prototype = b.prototype;
d.prototype = new __();
};
/**
* Phaser - QuadTree
*
* A fairly generic quad tree structure for rapid overlap checks. QuadTree is also configured for single or dual list operation.
* You can add items either to its A list or its B list. When you do an overlap check, you can compare the A list to itself,
* or the A list against the B list. Handy for different things!
*/
var Phaser;
(function (Phaser) {
var QuadTree = (function (_super) {
__extends(QuadTree, _super);
/**
* Instantiate a new Quad Tree node.
*
* @param {Number} x The X-coordinate of the point in space.
* @param {Number} y The Y-coordinate of the point in space.
* @param {Number} width Desired width of this node.
* @param {Number} height Desired height of this node.
* @param {Number} parent The parent branch or node. Pass null to create a root.
*/
//constructor(manager: Phaser.Physics.Manager, x: number, y: number, width: number, height: number, parent: QuadTree = null) {
function QuadTree(manager, x, y, width, height, parent) {
if (typeof parent === "undefined") { parent = null; }
_super.call(this, x, y, width, height);
QuadTree.physics = manager;
this._headA = this._tailA = new Phaser.LinkedList();
this._headB = this._tailB = new Phaser.LinkedList();
if (parent != null) {
if (parent._headA.object != null) {
this._iterator = parent._headA;
while (this._iterator != null) {
if (this._tailA.object != null) {
this._ot = this._tailA;
this._tailA = new Phaser.LinkedList();
this._ot.next = this._tailA;
}
this._tailA.object = this._iterator.object;
this._iterator = this._iterator.next;
}
}
if (parent._headB.object != null) {
this._iterator = parent._headB;
while (this._iterator != null) {
if (this._tailB.object != null) {
this._ot = this._tailB;
this._tailB = new Phaser.LinkedList();
this._ot.next = this._tailB;
}
this._tailB.object = this._iterator.object;
this._iterator = this._iterator.next;
}
}
} else {
QuadTree._min = (this.width + this.height) / (2 * QuadTree.divisions);
}
this._canSubdivide = (this.width > QuadTree._min) || (this.height > QuadTree._min);
//Set up comparison/sort helpers
this._northWestTree = null;
this._northEastTree = null;
this._southEastTree = null;
this._southWestTree = null;
this._leftEdge = this.x;
this._rightEdge = this.x + this.width;
this._halfWidth = this.width / 2;
this._midpointX = this._leftEdge + this._halfWidth;
this._topEdge = this.y;
this._bottomEdge = this.y + this.height;
this._halfHeight = this.height / 2;
this._midpointY = this._topEdge + this._halfHeight;
}
/**
* Clean up memory.
*/
QuadTree.prototype.destroy = function () {
this._tailA.destroy();
this._tailB.destroy();
this._headA.destroy();
this._headB.destroy();
this._tailA = null;
this._tailB = null;
this._headA = null;
this._headB = null;
if (this._northWestTree != null) {
this._northWestTree.destroy();
}
if (this._northEastTree != null) {
this._northEastTree.destroy();
}
if (this._southEastTree != null) {
this._southEastTree.destroy();
}
if (this._southWestTree != null) {
this._southWestTree.destroy();
}
this._northWestTree = null;
this._northEastTree = null;
this._southEastTree = null;
this._southWestTree = null;
QuadTree._object = null;
QuadTree._processingCallback = null;
QuadTree._notifyCallback = null;
};
/**
* Load objects and/or groups into the quad tree, and register notify and processing callbacks.
*
* @param {} objectOrGroup1 Any object that is or extends IGameObject or Group.
* @param {} objectOrGroup2 Any object that is or extends IGameObject or Group. If null, the first parameter will be checked against itself.
* @param {Function} notifyCallback A function with the form myFunction(Object1:GameObject,Object2:GameObject)
that is called whenever two objects are found to overlap in world space, and either no processCallback is specified, or the processCallback returns true.
* @param {Function} processCallback A function with the form myFunction(Object1:GameObject,Object2:GameObject):bool
that is called whenever two objects are found to overlap in world space. The notifyCallback is only called if this function returns true. See GameObject.separate().
* @param context The context in which the callbacks will be called
*/
QuadTree.prototype.load = function (objectOrGroup1, objectOrGroup2, notifyCallback, processCallback, context) {
if (typeof objectOrGroup2 === "undefined") { objectOrGroup2 = null; }
if (typeof notifyCallback === "undefined") { notifyCallback = null; }
if (typeof processCallback === "undefined") { processCallback = null; }
if (typeof context === "undefined") { context = null; }
this.add(objectOrGroup1, QuadTree.A_LIST);
if (objectOrGroup2 != null) {
this.add(objectOrGroup2, QuadTree.B_LIST);
QuadTree._useBothLists = true;
} else {
QuadTree._useBothLists = false;
}
QuadTree._notifyCallback = notifyCallback;
QuadTree._processingCallback = processCallback;
QuadTree._callbackContext = context;
};
/**
* Call this function to add an object to the root of the tree.
* This function will recursively add all group members, but
* not the groups themselves.
*
* @param {} objectOrGroup GameObjects are just added, Groups are recursed and their applicable members added accordingly.
* @param {Number} list A uint
flag indicating the list to which you want to add the objects. Options are QuadTree.A_LIST
and QuadTree.B_LIST
.
*/
QuadTree.prototype.add = function (objectOrGroup, list) {
QuadTree._list = list;
if (objectOrGroup.type == Phaser.Types.GROUP) {
this._i = 0;
this._members = objectOrGroup['members'];
this._l = objectOrGroup['length'];
while (this._i < this._l) {
this._basic = this._members[this._i++];
if (this._basic != null && this._basic.exists) {
if (this._basic.type == Phaser.Types.GROUP) {
this.add(this._basic, list);
} else {
QuadTree._object = this._basic;
if (QuadTree._object.exists && QuadTree._object.body.allowCollisions) {
this.addObject();
}
}
}
}
} else {
QuadTree._object = objectOrGroup;
if (QuadTree._object.exists && QuadTree._object.body.allowCollisions) {
this.addObject();
}
}
};
/**
* Internal function for recursively navigating and creating the tree
* while adding objects to the appropriate nodes.
*/
QuadTree.prototype.addObject = function () {
if (!this._canSubdivide || ((this._leftEdge >= QuadTree._object.body.bounds.x) && (this._rightEdge <= QuadTree._object.body.bounds.right) && (this._topEdge >= QuadTree._object.body.bounds.y) && (this._bottomEdge <= QuadTree._object.body.bounds.bottom))) {
this.addToList();
return;
}
if ((QuadTree._object.body.bounds.x > this._leftEdge) && (QuadTree._object.body.bounds.right < this._midpointX)) {
if ((QuadTree._object.body.bounds.y > this._topEdge) && (QuadTree._object.body.bounds.bottom < this._midpointY)) {
if (this._northWestTree == null) {
this._northWestTree = new QuadTree(QuadTree.physics, this._leftEdge, this._topEdge, this._halfWidth, this._halfHeight, this);
}
this._northWestTree.addObject();
return;
}
if ((QuadTree._object.body.bounds.y > this._midpointY) && (QuadTree._object.body.bounds.bottom < this._bottomEdge)) {
if (this._southWestTree == null) {
this._southWestTree = new QuadTree(QuadTree.physics, this._leftEdge, this._midpointY, this._halfWidth, this._halfHeight, this);
}
this._southWestTree.addObject();
return;
}
}
if ((QuadTree._object.body.bounds.x > this._midpointX) && (QuadTree._object.body.bounds.right < this._rightEdge)) {
if ((QuadTree._object.body.bounds.y > this._topEdge) && (QuadTree._object.body.bounds.bottom < this._midpointY)) {
if (this._northEastTree == null) {
this._northEastTree = new QuadTree(QuadTree.physics, this._midpointX, this._topEdge, this._halfWidth, this._halfHeight, this);
}
this._northEastTree.addObject();
return;
}
if ((QuadTree._object.body.bounds.y > this._midpointY) && (QuadTree._object.body.bounds.bottom < this._bottomEdge)) {
if (this._southEastTree == null) {
this._southEastTree = new QuadTree(QuadTree.physics, this._midpointX, this._midpointY, this._halfWidth, this._halfHeight, this);
}
this._southEastTree.addObject();
return;
}
}
if ((QuadTree._object.body.bounds.right > this._leftEdge) && (QuadTree._object.body.bounds.x < this._midpointX) && (QuadTree._object.body.bounds.bottom > this._topEdge) && (QuadTree._object.body.bounds.y < this._midpointY)) {
if (this._northWestTree == null) {
this._northWestTree = new QuadTree(QuadTree.physics, this._leftEdge, this._topEdge, this._halfWidth, this._halfHeight, this);
}
this._northWestTree.addObject();
}
if ((QuadTree._object.body.bounds.right > this._midpointX) && (QuadTree._object.body.bounds.x < this._rightEdge) && (QuadTree._object.body.bounds.bottom > this._topEdge) && (QuadTree._object.body.bounds.y < this._midpointY)) {
if (this._northEastTree == null) {
this._northEastTree = new QuadTree(QuadTree.physics, this._midpointX, this._topEdge, this._halfWidth, this._halfHeight, this);
}
this._northEastTree.addObject();
}
if ((QuadTree._object.body.bounds.right > this._midpointX) && (QuadTree._object.body.bounds.x < this._rightEdge) && (QuadTree._object.body.bounds.bottom > this._midpointY) && (QuadTree._object.body.bounds.y < this._bottomEdge)) {
if (this._southEastTree == null) {
this._southEastTree = new QuadTree(QuadTree.physics, this._midpointX, this._midpointY, this._halfWidth, this._halfHeight, this);
}
this._southEastTree.addObject();
}
if ((QuadTree._object.body.bounds.right > this._leftEdge) && (QuadTree._object.body.bounds.x < this._midpointX) && (QuadTree._object.body.bounds.bottom > this._midpointY) && (QuadTree._object.body.bounds.y < this._bottomEdge)) {
if (this._southWestTree == null) {
this._southWestTree = new QuadTree(QuadTree.physics, this._leftEdge, this._midpointY, this._halfWidth, this._halfHeight, this);
}
this._southWestTree.addObject();
}
};
/**
* Internal function for recursively adding objects to leaf lists.
*/
QuadTree.prototype.addToList = function () {
if (QuadTree._list == QuadTree.A_LIST) {
if (this._tailA.object != null) {
this._ot = this._tailA;
this._tailA = new Phaser.LinkedList();
this._ot.next = this._tailA;
}
this._tailA.object = QuadTree._object;
} else {
if (this._tailB.object != null) {
this._ot = this._tailB;
this._tailB = new Phaser.LinkedList();
this._ot.next = this._tailB;
}
this._tailB.object = QuadTree._object;
}
if (!this._canSubdivide) {
return;
}
if (this._northWestTree != null) {
this._northWestTree.addToList();
}
if (this._northEastTree != null) {
this._northEastTree.addToList();
}
if (this._southEastTree != null) {
this._southEastTree.addToList();
}
if (this._southWestTree != null) {
this._southWestTree.addToList();
}
};
/**
* QuadTree
's other main function. Call this after adding objects
* using QuadTree.load()
to compare the objects that you loaded.
*
* @return {Boolean} Whether or not any overlaps were found.
*/
QuadTree.prototype.execute = function () {
this._overlapProcessed = false;
if (this._headA.object != null) {
this._iterator = this._headA;
while (this._iterator != null) {
QuadTree._object = this._iterator.object;
if (QuadTree._useBothLists) {
QuadTree._iterator = this._headB;
} else {
QuadTree._iterator = this._iterator.next;
}
if (QuadTree._object.exists && (QuadTree._object.body.allowCollisions > 0) && (QuadTree._iterator != null) && (QuadTree._iterator.object != null) && QuadTree._iterator.object.exists && this.overlapNode()) {
this._overlapProcessed = true;
}
this._iterator = this._iterator.next;
}
}
if ((this._northWestTree != null) && this._northWestTree.execute()) {
this._overlapProcessed = true;
}
if ((this._northEastTree != null) && this._northEastTree.execute()) {
this._overlapProcessed = true;
}
if ((this._southEastTree != null) && this._southEastTree.execute()) {
this._overlapProcessed = true;
}
if ((this._southWestTree != null) && this._southWestTree.execute()) {
this._overlapProcessed = true;
}
return this._overlapProcessed;
};
/**
* A private for comparing an object against the contents of a node.
*
* @return {Boolean} Whether or not any overlaps were found.
*/
QuadTree.prototype.overlapNode = function () {
//Walk the list and check for overlaps
this._overlapProcessed = false;
while (QuadTree._iterator != null) {
if (!QuadTree._object.exists || (QuadTree._object.body.allowCollisions <= 0)) {
break;
}
this._checkObject = QuadTree._iterator.object;
if ((QuadTree._object === this._checkObject) || !this._checkObject.exists || (this._checkObject.body.allowCollisions <= 0)) {
QuadTree._iterator = QuadTree._iterator.next;
continue;
}
/*
if (QuadTree.physics.checkHullIntersection(QuadTree._object.body, this._checkObject.body))
{
//Execute callback functions if they exist
if ((QuadTree._processingCallback == null) || QuadTree._processingCallback(QuadTree._object, this._checkObject))
{
this._overlapProcessed = true;
}
if (this._overlapProcessed && (QuadTree._notifyCallback != null))
{
if (QuadTree._callbackContext !== null)
{
QuadTree._notifyCallback.call(QuadTree._callbackContext, QuadTree._object, this._checkObject);
}
else
{
QuadTree._notifyCallback(QuadTree._object, this._checkObject);
}
}
}
*/
QuadTree._iterator = QuadTree._iterator.next;
}
return this._overlapProcessed;
};
QuadTree.A_LIST = 0;
QuadTree.B_LIST = 1;
return QuadTree;
})(Phaser.Rectangle);
Phaser.QuadTree = QuadTree;
})(Phaser || (Phaser = {}));