///
/**
* Phaser - GameMath
*
* Adds a set of extra Math functions used through-out Phaser.
* Includes methods written by Dylan Engelman and Adam Saltsman.
*/
var Phaser;
(function (Phaser) {
var GameMath = (function () {
function GameMath(game) {
this.cosTable = [];
this.sinTable = [];
this.game = game;
GameMath.sinA = [];
GameMath.cosA = [];
for (var i = 0; i < 360; i++) {
GameMath.sinA.push(Math.sin(this.degreesToRadians(i)));
GameMath.cosA.push(Math.cos(this.degreesToRadians(i)));
}
}
GameMath.prototype.fuzzyEqual = function (a, b, epsilon) {
if (typeof epsilon === "undefined") { epsilon = 0.0001; }
return Math.abs(a - b) < epsilon;
};
GameMath.prototype.fuzzyLessThan = function (a, b, epsilon) {
if (typeof epsilon === "undefined") { epsilon = 0.0001; }
return a < b + epsilon;
};
GameMath.prototype.fuzzyGreaterThan = function (a, b, epsilon) {
if (typeof epsilon === "undefined") { epsilon = 0.0001; }
return a > b - epsilon;
};
GameMath.prototype.fuzzyCeil = function (val, epsilon) {
if (typeof epsilon === "undefined") { epsilon = 0.0001; }
return Math.ceil(val - epsilon);
};
GameMath.prototype.fuzzyFloor = function (val, epsilon) {
if (typeof epsilon === "undefined") { epsilon = 0.0001; }
return Math.floor(val + epsilon);
};
GameMath.prototype.average = function () {
var args = [];
for (var _i = 0; _i < (arguments.length - 0); _i++) {
args[_i] = arguments[_i + 0];
}
var avg = 0;
for (var i = 0; i < args.length; i++) {
avg += args[i];
}
return avg / args.length;
};
GameMath.prototype.slam = function (value, target, epsilon) {
if (typeof epsilon === "undefined") { epsilon = 0.0001; }
return (Math.abs(value - target) < epsilon) ? target : value;
};
/**
* ratio of value to a range
*/
GameMath.prototype.percentageMinMax = function (val, max, min) {
if (typeof min === "undefined") { min = 0; }
val -= min;
max -= min;
if (!max)
return 0;
else
return val / max;
};
/**
* a value representing the sign of the value.
* -1 for negative, +1 for positive, 0 if value is 0
*/
GameMath.prototype.sign = function (n) {
if (n)
return n / Math.abs(n);
else
return 0;
};
GameMath.prototype.truncate = function (n) {
return (n > 0) ? Math.floor(n) : Math.ceil(n);
};
GameMath.prototype.shear = function (n) {
return n % 1;
};
/**
* wrap a value around a range, similar to modulus with a floating minimum
*/
GameMath.prototype.wrap = function (val, max, min) {
if (typeof min === "undefined") { min = 0; }
val -= min;
max -= min;
if (max == 0)
return min;
val %= max;
val += min;
while (val < min)
val += max;
return val;
};
/**
* arithmetic version of wrap... need to decide which is more efficient
*/
GameMath.prototype.arithWrap = function (value, max, min) {
if (typeof min === "undefined") { min = 0; }
max -= min;
if (max == 0)
return min;
return value - max * Math.floor((value - min) / max);
};
/**
* force a value within the boundaries of two values
*
* if max < min, min is returned
*/
GameMath.prototype.clamp = function (input, max, min) {
if (typeof min === "undefined") { min = 0; }
return Math.max(min, Math.min(max, input));
};
/**
* Snap a value to nearest grid slice, using rounding.
*
* example if you have an interval gap of 5 and a position of 12... you will snap to 10. Where as 14 will snap to 15
*
* @param input - the value to snap
* @param gap - the interval gap of the grid
* @param [start] - optional starting offset for gap
*/
GameMath.prototype.snapTo = function (input, gap, start) {
if (typeof start === "undefined") { start = 0; }
if (gap == 0)
return input;
input -= start;
input = gap * Math.round(input / gap);
return start + input;
};
/**
* Snap a value to nearest grid slice, using floor.
*
* example if you have an interval gap of 5 and a position of 12... you will snap to 10. As will 14 snap to 10... but 16 will snap to 15
*
* @param input - the value to snap
* @param gap - the interval gap of the grid
* @param [start] - optional starting offset for gap
*/
GameMath.prototype.snapToFloor = function (input, gap, start) {
if (typeof start === "undefined") { start = 0; }
if (gap == 0)
return input;
input -= start;
input = gap * Math.floor(input / gap);
return start + input;
};
/**
* Snap a value to nearest grid slice, using ceil.
*
* example if you have an interval gap of 5 and a position of 12... you will snap to 15. As will 14 will snap to 15... but 16 will snap to 20
*
* @param input - the value to snap
* @param gap - the interval gap of the grid
* @param [start] - optional starting offset for gap
*/
GameMath.prototype.snapToCeil = function (input, gap, start) {
if (typeof start === "undefined") { start = 0; }
if (gap == 0)
return input;
input -= start;
input = gap * Math.ceil(input / gap);
return start + input;
};
/**
* Snaps a value to the nearest value in an array.
*/
GameMath.prototype.snapToInArray = function (input, arr, sort) {
if (typeof sort === "undefined") { sort = true; }
if (sort)
arr.sort();
if (input < arr[0])
return arr[0];
var i = 1;
while (arr[i] < input)
i++;
var low = arr[i - 1];
var high = (i < arr.length) ? arr[i] : Number.POSITIVE_INFINITY;
return ((high - input) <= (input - low)) ? high : low;
};
/**
* roundTo some place comparative to a 'base', default is 10 for decimal place
*
* 'place' is represented by the power applied to 'base' to get that place
*
* @param value - the value to round
* @param place - the place to round to
* @param base - the base to round in... default is 10 for decimal
*
* e.g.
*
* 2000/7 ~= 285.714285714285714285714 ~= (bin)100011101.1011011011011011
*
* roundTo(2000/7,3) == 0
* roundTo(2000/7,2) == 300
* roundTo(2000/7,1) == 290
* roundTo(2000/7,0) == 286
* roundTo(2000/7,-1) == 285.7
* roundTo(2000/7,-2) == 285.71
* roundTo(2000/7,-3) == 285.714
* roundTo(2000/7,-4) == 285.7143
* roundTo(2000/7,-5) == 285.71429
*
* roundTo(2000/7,3,2) == 288 -- 100100000
* roundTo(2000/7,2,2) == 284 -- 100011100
* roundTo(2000/7,1,2) == 286 -- 100011110
* roundTo(2000/7,0,2) == 286 -- 100011110
* roundTo(2000/7,-1,2) == 285.5 -- 100011101.1
* roundTo(2000/7,-2,2) == 285.75 -- 100011101.11
* roundTo(2000/7,-3,2) == 285.75 -- 100011101.11
* roundTo(2000/7,-4,2) == 285.6875 -- 100011101.1011
* roundTo(2000/7,-5,2) == 285.71875 -- 100011101.10111
*
* note what occurs when we round to the 3rd space (8ths place), 100100000, this is to be assumed
* because we are rounding 100011.1011011011011011 which rounds up.
*/
GameMath.prototype.roundTo = function (value, place, base) {
if (typeof place === "undefined") { place = 0; }
if (typeof base === "undefined") { base = 10; }
var p = Math.pow(base, -place);
return Math.round(value * p) / p;
};
GameMath.prototype.floorTo = function (value, place, base) {
if (typeof place === "undefined") { place = 0; }
if (typeof base === "undefined") { base = 10; }
var p = Math.pow(base, -place);
return Math.floor(value * p) / p;
};
GameMath.prototype.ceilTo = function (value, place, base) {
if (typeof place === "undefined") { place = 0; }
if (typeof base === "undefined") { base = 10; }
var p = Math.pow(base, -place);
return Math.ceil(value * p) / p;
};
/**
* a one dimensional linear interpolation of a value.
*/
GameMath.prototype.interpolateFloat = function (a, b, weight) {
return (b - a) * weight + a;
};
/**
* convert radians to degrees
*/
GameMath.prototype.radiansToDegrees = function (angle) {
return angle * GameMath.RAD_TO_DEG;
};
/**
* convert degrees to radians
*/
GameMath.prototype.degreesToRadians = function (angle) {
return angle * GameMath.DEG_TO_RAD;
};
/**
* Find the angle of a segment from (x1, y1) -> (x2, y2 )
*/
GameMath.prototype.angleBetween = function (x1, y1, x2, y2) {
return Math.atan2(y2 - y1, x2 - x1);
};
/**
* set an angle within the bounds of -PI to PI
*/
GameMath.prototype.normalizeAngle = function (angle, radians) {
if (typeof radians === "undefined") { radians = true; }
var rd = (radians) ? GameMath.PI : 180;
return this.wrap(angle, rd, -rd);
};
/**
* closest angle between two angles from a1 to a2
* absolute value the return for exact angle
*/
GameMath.prototype.nearestAngleBetween = function (a1, a2, radians) {
if (typeof radians === "undefined") { radians = true; }
var rd = (radians) ? GameMath.PI : 180;
a1 = this.normalizeAngle(a1, radians);
a2 = this.normalizeAngle(a2, radians);
if (a1 < -rd / 2 && a2 > rd / 2)
a1 += rd * 2;
if (a2 < -rd / 2 && a1 > rd / 2)
a2 += rd * 2;
return a2 - a1;
};
/**
* normalizes independent and then sets dep to the nearest value respective to independent
*
* for instance if dep=-170 and ind=170 then 190 will be returned as an alternative to -170
*/
GameMath.prototype.normalizeAngleToAnother = function (dep, ind, radians) {
if (typeof radians === "undefined") { radians = true; }
return ind + this.nearestAngleBetween(ind, dep, radians);
};
/**
* normalize independent and dependent and then set dependent to an angle relative to 'after/clockwise' independent
*
* for instance dep=-170 and ind=170, then 190 will be reutrned as alternative to -170
*/
GameMath.prototype.normalizeAngleAfterAnother = function (dep, ind, radians) {
if (typeof radians === "undefined") { radians = true; }
dep = this.normalizeAngle(dep - ind, radians);
return ind + dep;
};
/**
* normalizes indendent and dependent and then sets dependent to an angle relative to 'before/counterclockwise' independent
*
* for instance dep = 190 and ind = 170, then -170 will be returned as an alternative to 190
*/
GameMath.prototype.normalizeAngleBeforeAnother = function (dep, ind, radians) {
if (typeof radians === "undefined") { radians = true; }
dep = this.normalizeAngle(ind - dep, radians);
return ind - dep;
};
/**
* interpolate across the shortest arc between two angles
*/
GameMath.prototype.interpolateAngles = function (a1, a2, weight, radians, ease) {
if (typeof radians === "undefined") { radians = true; }
if (typeof ease === "undefined") { ease = null; }
a1 = this.normalizeAngle(a1, radians);
a2 = this.normalizeAngleToAnother(a2, a1, radians);
return (typeof ease === 'function') ? ease(weight, a1, a2 - a1, 1) : this.interpolateFloat(a1, a2, weight);
};
/**
* Compute the logarithm of any value of any base
*
* a logarithm is the exponent that some constant (base) would have to be raised to
* to be equal to value.
*
* i.e.
* 4 ^ x = 16
* can be rewritten as to solve for x
* logB4(16) = x
* which with this function would be
* LoDMath.logBaseOf(16,4)
*
* which would return 2, because 4^2 = 16
*/
GameMath.prototype.logBaseOf = function (value, base) {
return Math.log(value) / Math.log(base);
};
/**
* Greatest Common Denominator using Euclid's algorithm
*/
GameMath.prototype.GCD = function (m, n) {
var r;
//make sure positive, GCD is always positive
m = Math.abs(m);
n = Math.abs(n);
if (m < n) {
r = m;
m = n;
n = r;
}
while (true) {
r = m % n;
if (!r)
return n;
m = n;
n = r;
}
return 1;
};
/**
* Lowest Common Multiple
*/
GameMath.prototype.LCM = function (m, n) {
return (m * n) / this.GCD(m, n);
};
/**
* Factorial - N!
*
* simple product series
*
* by definition:
* 0! == 1
*/
GameMath.prototype.factorial = function (value) {
if (value == 0)
return 1;
var res = value;
while (--value) {
res *= value;
}
return res;
};
/**
* gamma function
*
* defined: gamma(N) == (N - 1)!
*/
GameMath.prototype.gammaFunction = function (value) {
return this.factorial(value - 1);
};
/**
* falling factorial
*
* defined: (N)! / (N - x)!
*
* written subscript: (N)x OR (base)exp
*/
GameMath.prototype.fallingFactorial = function (base, exp) {
return this.factorial(base) / this.factorial(base - exp);
};
/**
* rising factorial
*
* defined: (N + x - 1)! / (N - 1)!
*
* written superscript N^(x) OR base^(exp)
*/
GameMath.prototype.risingFactorial = function (base, exp) {
//expanded from gammaFunction for speed
return this.factorial(base + exp - 1) / this.factorial(base - 1);
};
/**
* binomial coefficient
*
* defined: N! / (k!(N-k)!)
* reduced: N! / (N-k)! == (N)k (fallingfactorial)
* reduced: (N)k / k!
*/
GameMath.prototype.binCoef = function (n, k) {
return this.fallingFactorial(n, k) / this.factorial(k);
};
/**
* rising binomial coefficient
*
* as one can notice in the analysis of binCoef(...) that
* binCoef is the (N)k divided by k!. Similarly rising binCoef
* is merely N^(k) / k!
*/
GameMath.prototype.risingBinCoef = function (n, k) {
return this.risingFactorial(n, k) / this.factorial(k);
};
/**
* Generate a random boolean result based on the chance value
*
* Returns true or false based on the chance value (default 50%). For example if you wanted a player to have a 30% chance
* of getting a bonus, call chanceRoll(30) - true means the chance passed, false means it failed.
*
* @param chance The chance of receiving the value. A number between 0 and 100 (effectively 0% to 100%)
* @return true if the roll passed, or false
*/
GameMath.prototype.chanceRoll = function (chance) {
if (typeof chance === "undefined") { chance = 50; }
if (chance <= 0) {
return false;
} else if (chance >= 100) {
return true;
} else {
if (Math.random() * 100 >= chance) {
return false;
} else {
return true;
}
}
};
/**
* Adds the given amount to the value, but never lets the value go over the specified maximum
*
* @param value The value to add the amount to
* @param amount The amount to add to the value
* @param max The maximum the value is allowed to be
* @return The new value
*/
GameMath.prototype.maxAdd = function (value, amount, max) {
value += amount;
if (value > max) {
value = max;
}
return value;
};
/**
* Subtracts the given amount from the value, but never lets the value go below the specified minimum
*
* @param value The base value
* @param amount The amount to subtract from the base value
* @param min The minimum the value is allowed to be
* @return The new value
*/
GameMath.prototype.minSub = function (value, amount, min) {
value -= amount;
if (value < min) {
value = min;
}
return value;
};
/**
* Adds value to amount and ensures that the result always stays between 0 and max, by wrapping the value around.
* Values must be positive integers, and are passed through Math.abs
*
* @param value The value to add the amount to
* @param amount The amount to add to the value
* @param max The maximum the value is allowed to be
* @return The wrapped value
*/
GameMath.prototype.wrapValue = function (value, amount, max) {
var diff;
value = Math.abs(value);
amount = Math.abs(amount);
max = Math.abs(max);
diff = (value + amount) % max;
return diff;
};
/**
* Randomly returns either a 1 or -1
*
* @return 1 or -1
*/
GameMath.prototype.randomSign = function () {
return (Math.random() > 0.5) ? 1 : -1;
};
/**
* Returns true if the number given is odd.
*
* @param n The number to check
*
* @return True if the given number is odd. False if the given number is even.
*/
GameMath.prototype.isOdd = function (n) {
if (n & 1) {
return true;
} else {
return false;
}
};
/**
* Returns true if the number given is even.
*
* @param n The number to check
*
* @return True if the given number is even. False if the given number is odd.
*/
GameMath.prototype.isEven = function (n) {
if (n & 1) {
return false;
} else {
return true;
}
};
/**
* Keeps an angle value between -180 and +180
* Should be called whenever the angle is updated on the Sprite to stop it from going insane.
*
* @param angle The angle value to check
*
* @return The new angle value, returns the same as the input angle if it was within bounds
*/
GameMath.prototype.wrapAngle = function (angle) {
var result = angle;
if (angle >= -180 && angle <= 180) {
return angle;
}
// Else normalise it to -180, 180
result = (angle + 180) % 360;
if (result < 0) {
result += 360;
}
return result - 180;
};
/**
* Keeps an angle value between the given min and max values
*
* @param angle The angle value to check. Must be between -180 and +180
* @param min The minimum angle that is allowed (must be -180 or greater)
* @param max The maximum angle that is allowed (must be 180 or less)
*
* @return The new angle value, returns the same as the input angle if it was within bounds
*/
GameMath.prototype.angleLimit = function (angle, min, max) {
var result = angle;
if (angle > max) {
result = max;
} else if (angle < min) {
result = min;
}
return result;
};
/**
* @method linear
* @param {Any} v
* @param {Any} k
* @public
*/
GameMath.prototype.linearInterpolation = function (v, k) {
var m = v.length - 1;
var f = m * k;
var i = Math.floor(f);
if (k < 0)
return this.linear(v[0], v[1], f);
if (k > 1)
return this.linear(v[m], v[m - 1], m - f);
return this.linear(v[i], v[i + 1 > m ? m : i + 1], f - i);
};
/**
* @method Bezier
* @param {Any} v
* @param {Any} k
* @public
*/
GameMath.prototype.bezierInterpolation = function (v, k) {
var b = 0;
var n = v.length - 1;
for (var i = 0; i <= n; i++) {
b += Math.pow(1 - k, n - i) * Math.pow(k, i) * v[i] * this.bernstein(n, i);
}
return b;
};
/**
* @method CatmullRom
* @param {Any} v
* @param {Any} k
* @public
*/
GameMath.prototype.catmullRomInterpolation = function (v, k) {
var m = v.length - 1;
var f = m * k;
var i = Math.floor(f);
if (v[0] === v[m]) {
if (k < 0)
i = Math.floor(f = m * (1 + k));
return this.catmullRom(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i);
} else {
if (k < 0)
return v[0] - (this.catmullRom(v[0], v[0], v[1], v[1], -f) - v[0]);
if (k > 1)
return v[m] - (this.catmullRom(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]);
return this.catmullRom(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i);
}
};
/**
* @method Linear
* @param {Any} p0
* @param {Any} p1
* @param {Any} t
* @public
*/
GameMath.prototype.linear = function (p0, p1, t) {
return (p1 - p0) * t + p0;
};
/**
* @method Bernstein
* @param {Any} n
* @param {Any} i
* @public
*/
GameMath.prototype.bernstein = function (n, i) {
return this.factorial(n) / this.factorial(i) / this.factorial(n - i);
};
/**
* @method CatmullRom
* @param {Any} p0
* @param {Any} p1
* @param {Any} p2
* @param {Any} p3
* @param {Any} t
* @public
*/
GameMath.prototype.catmullRom = function (p0, p1, p2, p3, t) {
var v0 = (p2 - p0) * 0.5, v1 = (p3 - p1) * 0.5, t2 = t * t, t3 = t * t2;
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
};
GameMath.prototype.difference = function (a, b) {
return Math.abs(a - b);
};
/**
* Fetch a random entry from the given array.
* Will return null if random selection is missing, or array has no entries.
*
* @param objects An array of objects.
* @param startIndex Optional offset off the front of the array. Default value is 0, or the beginning of the array.
* @param length Optional restriction on the number of values you want to randomly select from.
*
* @return The random object that was selected.
*/
GameMath.prototype.getRandom = function (objects, startIndex, length) {
if (typeof startIndex === "undefined") { startIndex = 0; }
if (typeof length === "undefined") { length = 0; }
if (objects != null) {
var l = length;
if ((l == 0) || (l > objects.length - startIndex)) {
l = objects.length - startIndex;
}
if (l > 0) {
return objects[startIndex + Math.floor(Math.random() * l)];
}
}
return null;
};
/**
* Round down to the next whole number. E.g. floor(1.7) == 1, and floor(-2.7) == -2.
*
* @param Value Any number.
*
* @return The rounded value of that number.
*/
GameMath.prototype.floor = function (value) {
var n = value | 0;
return (value > 0) ? (n) : ((n != value) ? (n - 1) : (n));
};
/**
* Round up to the next whole number. E.g. ceil(1.3) == 2, and ceil(-2.3) == -3.
*
* @param Value Any number.
*
* @return The rounded value of that number.
*/
GameMath.prototype.ceil = function (value) {
var n = value | 0;
return (value > 0) ? ((n != value) ? (n + 1) : (n)) : (n);
};
/**
* Generate a sine and cosine table simultaneously and extremely quickly. Based on research by Franky of scene.at
*
* The parameters allow you to specify the length, amplitude and frequency of the wave. Once you have called this function
* you should get the results via getSinTable() and getCosTable(). This generator is fast enough to be used in real-time.
*
* @param length The length of the wave
* @param sinAmplitude The amplitude to apply to the sine table (default 1.0) if you need values between say -+ 125 then give 125 as the value
* @param cosAmplitude The amplitude to apply to the cosine table (default 1.0) if you need values between say -+ 125 then give 125 as the value
* @param frequency The frequency of the sine and cosine table data
* @return Returns the sine table
* @see getSinTable
* @see getCosTable
*/
GameMath.prototype.sinCosGenerator = function (length, sinAmplitude, cosAmplitude, frequency) {
if (typeof sinAmplitude === "undefined") { sinAmplitude = 1.0; }
if (typeof cosAmplitude === "undefined") { cosAmplitude = 1.0; }
if (typeof frequency === "undefined") { frequency = 1.0; }
var sin = sinAmplitude;
var cos = cosAmplitude;
var frq = frequency * Math.PI / length;
this.cosTable = [];
this.sinTable = [];
for (var c = 0; c < length; c++) {
cos -= sin * frq;
sin += cos * frq;
this.cosTable[c] = cos;
this.sinTable[c] = sin;
}
return this.sinTable;
};
/**
* Shifts through the sin table data by one value and returns it.
* This effectively moves the position of the data from the start to the end of the table.
* @return The sin value.
*/
GameMath.prototype.shiftSinTable = function () {
if (this.sinTable) {
var s = this.sinTable.shift();
this.sinTable.push(s);
return s;
}
};
/**
* Shifts through the cos table data by one value and returns it.
* This effectively moves the position of the data from the start to the end of the table.
* @return The cos value.
*/
GameMath.prototype.shiftCosTable = function () {
if (this.cosTable) {
var s = this.cosTable.shift();
this.cosTable.push(s);
return s;
}
};
/**
* Shuffles the data in the given array into a new order
* @param array The array to shuffle
* @return The array
*/
GameMath.prototype.shuffleArray = function (array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
return array;
};
/**
* Returns the distance from this Point object to the given Point object.
* @method distanceFrom
* @param {Point} target - The destination Point object.
* @param {Boolean} round - Round the distance to the nearest integer (default false)
* @return {Number} The distance between this Point object and the destination Point object.
**/
GameMath.prototype.distanceBetween = function (x1, y1, x2, y2) {
var dx = x1 - x2;
var dy = y1 - y2;
return Math.sqrt(dx * dx + dy * dy);
};
/**
* Finds the length of the given vector
*
* @param dx
* @param dy
*
* @return
*/
GameMath.prototype.vectorLength = function (dx, dy) {
return Math.sqrt(dx * dx + dy * dy);
};
GameMath.PI = 3.141592653589793;
GameMath.PI_2 = 1.5707963267948965;
GameMath.PI_4 = 0.7853981633974483;
GameMath.PI_8 = 0.39269908169872413;
GameMath.PI_16 = 0.19634954084936206;
GameMath.TWO_PI = 6.283185307179586;
GameMath.THREE_PI_2 = 4.7123889803846895;
GameMath.E = 2.71828182845905;
GameMath.LN10 = 2.302585092994046;
GameMath.LN2 = 0.6931471805599453;
GameMath.LOG10E = 0.4342944819032518;
GameMath.LOG2E = 1.442695040888963387;
GameMath.SQRT1_2 = 0.7071067811865476;
GameMath.SQRT2 = 1.4142135623730951;
GameMath.DEG_TO_RAD = 0.017453292519943294444444444444444;
GameMath.RAD_TO_DEG = 57.295779513082325225835265587527;
GameMath.B_16 = 65536;
GameMath.B_31 = 2147483648;
GameMath.B_32 = 4294967296;
GameMath.B_48 = 281474976710656;
GameMath.B_53 = 9007199254740992;
GameMath.B_64 = 18446744073709551616;
GameMath.ONE_THIRD = 0.333333333333333333333333333333333;
GameMath.TWO_THIRDS = 0.666666666666666666666666666666666;
GameMath.ONE_SIXTH = 0.166666666666666666666666666666666;
GameMath.COS_PI_3 = 0.86602540378443864676372317075294;
GameMath.SIN_2PI_3 = 0.03654595;
GameMath.CIRCLE_ALPHA = 0.5522847498307933984022516322796;
GameMath.ON = true;
GameMath.OFF = false;
GameMath.SHORT_EPSILON = 0.1;
GameMath.PERC_EPSILON = 0.001;
GameMath.EPSILON = 0.0001;
GameMath.LONG_EPSILON = 0.00000001;
return GameMath;
})();
Phaser.GameMath = GameMath;
})(Phaser || (Phaser = {}));