/** * @author Vladimir Agafonkin * @author Richard Davey * @copyright 2013-2024 Phaser Studio Inc. * @license {@link https://opensource.org/licenses/MIT|MIT License} */ var quickselect = require('../utils/array/QuickSelect'); /** * @classdesc * RBush is a high-performance JavaScript library for 2D spatial indexing of points and rectangles. * It's based on an optimized R-tree data structure with bulk insertion support. * * Spatial index is a special data structure for points and rectangles that allows you to perform queries like * "all items within this bounding box" very efficiently (e.g. hundreds of times faster than looping over all items). * * This version of RBush uses a fixed min/max accessor structure of `[ '.left', '.top', '.right', '.bottom' ]`. * This is to avoid the eval like function creation that the original library used, which caused CSP policy violations. * * rbush is forked from https://github.com/mourner/rbush by Vladimir Agafonkin * * @class RTree * @memberof Phaser.Structs * @constructor * @since 3.0.0 */ function rbush (maxEntries) { var format = [ '.left', '.top', '.right', '.bottom' ]; if (!(this instanceof rbush)) return new rbush(maxEntries, format); // max entries in a node is 9 by default; min node fill is 40% for best performance this._maxEntries = Math.max(4, maxEntries || 9); this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4)); this.clear(); } rbush.prototype = { all: function () { return this._all(this.data, []); }, search: function (bbox) { var node = this.data, result = [], toBBox = this.toBBox; if (!intersects(bbox, node)) return result; var nodesToSearch = [], i, len, child, childBBox; while (node) { for (i = 0, len = node.children.length; i < len; i++) { child = node.children[i]; childBBox = node.leaf ? toBBox(child) : child; if (intersects(bbox, childBBox)) { if (node.leaf) result.push(child); else if (contains(bbox, childBBox)) this._all(child, result); else nodesToSearch.push(child); } } node = nodesToSearch.pop(); } return result; }, collides: function (bbox) { var node = this.data, toBBox = this.toBBox; if (!intersects(bbox, node)) return false; var nodesToSearch = [], i, len, child, childBBox; while (node) { for (i = 0, len = node.children.length; i < len; i++) { child = node.children[i]; childBBox = node.leaf ? toBBox(child) : child; if (intersects(bbox, childBBox)) { if (node.leaf || contains(bbox, childBBox)) return true; nodesToSearch.push(child); } } node = nodesToSearch.pop(); } return false; }, load: function (data) { if (!(data && data.length)) return this; if (data.length < this._minEntries) { for (var i = 0, len = data.length; i < len; i++) { this.insert(data[i]); } return this; } // recursively build the tree with the given data from scratch using OMT algorithm var node = this._build(data.slice(), 0, data.length - 1, 0); if (!this.data.children.length) { // save as is if tree is empty this.data = node; } else if (this.data.height === node.height) { // split root if trees have the same height this._splitRoot(this.data, node); } else { if (this.data.height < node.height) { // swap trees if inserted one is bigger var tmpNode = this.data; this.data = node; node = tmpNode; } // insert the small tree into the large tree at appropriate level this._insert(node, this.data.height - node.height - 1, true); } return this; }, insert: function (item) { if (item) this._insert(item, this.data.height - 1); return this; }, clear: function () { this.data = createNode([]); return this; }, remove: function (item, equalsFn) { if (!item) return this; var node = this.data, bbox = this.toBBox(item), path = [], indexes = [], i, parent, index, goingUp; // depth-first iterative tree traversal while (node || path.length) { if (!node) { // go up node = path.pop(); parent = path[path.length - 1]; i = indexes.pop(); goingUp = true; } if (node.leaf) { // check current node index = findItem(item, node.children, equalsFn); if (index !== -1) { // item found, remove the item and condense tree upwards node.children.splice(index, 1); path.push(node); this._condense(path); return this; } } if (!goingUp && !node.leaf && contains(node, bbox)) { // go down path.push(node); indexes.push(i); i = 0; parent = node; node = node.children[0]; } else if (parent) { // go right i++; node = parent.children[i]; goingUp = false; } else node = null; // nothing found } return this; }, toBBox: function (item) { return item; }, compareMinX: compareNodeMinX, compareMinY: compareNodeMinY, toJSON: function () { return this.data; }, fromJSON: function (data) { this.data = data; return this; }, _all: function (node, result) { var nodesToSearch = []; while (node) { if (node.leaf) result.push.apply(result, node.children); else nodesToSearch.push.apply(nodesToSearch, node.children); node = nodesToSearch.pop(); } return result; }, _build: function (items, left, right, height) { var N = right - left + 1, M = this._maxEntries, node; if (N <= M) { // reached leaf level; return leaf node = createNode(items.slice(left, right + 1)); calcBBox(node, this.toBBox); return node; } if (!height) { // target height of the bulk-loaded tree height = Math.ceil(Math.log(N) / Math.log(M)); // target number of root entries to maximize storage utilization M = Math.ceil(N / Math.pow(M, height - 1)); } node = createNode([]); node.leaf = false; node.height = height; // split the items into M mostly square tiles var N2 = Math.ceil(N / M), N1 = N2 * Math.ceil(Math.sqrt(M)), i, j, right2, right3; multiSelect(items, left, right, N1, this.compareMinX); for (i = left; i <= right; i += N1) { right2 = Math.min(i + N1 - 1, right); multiSelect(items, i, right2, N2, this.compareMinY); for (j = i; j <= right2; j += N2) { right3 = Math.min(j + N2 - 1, right2); // pack each entry recursively node.children.push(this._build(items, j, right3, height - 1)); } } calcBBox(node, this.toBBox); return node; }, _chooseSubtree: function (bbox, node, level, path) { var i, len, child, targetNode, area, enlargement, minArea, minEnlargement; while (true) { path.push(node); if (node.leaf || path.length - 1 === level) break; minArea = minEnlargement = Infinity; for (i = 0, len = node.children.length; i < len; i++) { child = node.children[i]; area = bboxArea(child); enlargement = enlargedArea(bbox, child) - area; // choose entry with the least area enlargement if (enlargement < minEnlargement) { minEnlargement = enlargement; minArea = area < minArea ? area : minArea; targetNode = child; } else if (enlargement === minEnlargement) { // otherwise choose one with the smallest area if (area < minArea) { minArea = area; targetNode = child; } } } node = targetNode || node.children[0]; } return node; }, _insert: function (item, level, isNode) { var toBBox = this.toBBox, bbox = isNode ? item : toBBox(item), insertPath = []; // find the best node for accommodating the item, saving all nodes along the path too var node = this._chooseSubtree(bbox, this.data, level, insertPath); // put the item into the node node.children.push(item); extend(node, bbox); // split on node overflow; propagate upwards if necessary while (level >= 0) { if (insertPath[level].children.length > this._maxEntries) { this._split(insertPath, level); level--; } else break; } // adjust bboxes along the insertion path this._adjustParentBBoxes(bbox, insertPath, level); }, // split overflowed node into two _split: function (insertPath, level) { var node = insertPath[level], M = node.children.length, m = this._minEntries; this._chooseSplitAxis(node, m, M); var splitIndex = this._chooseSplitIndex(node, m, M); var newNode = createNode(node.children.splice(splitIndex, node.children.length - splitIndex)); newNode.height = node.height; newNode.leaf = node.leaf; calcBBox(node, this.toBBox); calcBBox(newNode, this.toBBox); if (level) insertPath[level - 1].children.push(newNode); else this._splitRoot(node, newNode); }, _splitRoot: function (node, newNode) { // split root node this.data = createNode([node, newNode]); this.data.height = node.height + 1; this.data.leaf = false; calcBBox(this.data, this.toBBox); }, _chooseSplitIndex: function (node, m, M) { var i, bbox1, bbox2, overlap, area, minOverlap, minArea, index; minOverlap = minArea = Infinity; for (i = m; i <= M - m; i++) { bbox1 = distBBox(node, 0, i, this.toBBox); bbox2 = distBBox(node, i, M, this.toBBox); overlap = intersectionArea(bbox1, bbox2); area = bboxArea(bbox1) + bboxArea(bbox2); // choose distribution with minimum overlap if (overlap < minOverlap) { minOverlap = overlap; index = i; minArea = area < minArea ? area : minArea; } else if (overlap === minOverlap) { // otherwise choose distribution with minimum area if (area < minArea) { minArea = area; index = i; } } } return index; }, // sorts node children by the best axis for split _chooseSplitAxis: function (node, m, M) { var compareMinX = node.leaf ? this.compareMinX : compareNodeMinX, compareMinY = node.leaf ? this.compareMinY : compareNodeMinY, xMargin = this._allDistMargin(node, m, M, compareMinX), yMargin = this._allDistMargin(node, m, M, compareMinY); // if total distributions margin value is minimal for x, sort by minX, // otherwise it's already sorted by minY if (xMargin < yMargin) node.children.sort(compareMinX); }, // total margin of all possible split distributions where each node is at least m full _allDistMargin: function (node, m, M, compare) { node.children.sort(compare); var toBBox = this.toBBox, leftBBox = distBBox(node, 0, m, toBBox), rightBBox = distBBox(node, M - m, M, toBBox), margin = bboxMargin(leftBBox) + bboxMargin(rightBBox), i, child; for (i = m; i < M - m; i++) { child = node.children[i]; extend(leftBBox, node.leaf ? toBBox(child) : child); margin += bboxMargin(leftBBox); } for (i = M - m - 1; i >= m; i--) { child = node.children[i]; extend(rightBBox, node.leaf ? toBBox(child) : child); margin += bboxMargin(rightBBox); } return margin; }, _adjustParentBBoxes: function (bbox, path, level) { // adjust bboxes along the given tree path for (var i = level; i >= 0; i--) { extend(path[i], bbox); } }, _condense: function (path) { // go through the path, removing empty nodes and updating bboxes for (var i = path.length - 1, siblings; i >= 0; i--) { if (path[i].children.length === 0) { if (i > 0) { siblings = path[i - 1].children; siblings.splice(siblings.indexOf(path[i]), 1); } else this.clear(); } else calcBBox(path[i], this.toBBox); } }, compareMinX: function (a, b) { return a.left - b.left; }, compareMinY: function (a, b) { return a.top - b.top; }, toBBox: function (a) { return { minX: a.left, minY: a.top, maxX: a.right, maxY: a.bottom }; } }; function findItem (item, items, equalsFn) { if (!equalsFn) return items.indexOf(item); for (var i = 0; i < items.length; i++) { if (equalsFn(item, items[i])) return i; } return -1; } // calculate node's bbox from bboxes of its children function calcBBox (node, toBBox) { distBBox(node, 0, node.children.length, toBBox, node); } // min bounding rectangle of node children from k to p-1 function distBBox (node, k, p, toBBox, destNode) { if (!destNode) destNode = createNode(null); destNode.minX = Infinity; destNode.minY = Infinity; destNode.maxX = -Infinity; destNode.maxY = -Infinity; for (var i = k, child; i < p; i++) { child = node.children[i]; extend(destNode, node.leaf ? toBBox(child) : child); } return destNode; } function extend (a, b) { a.minX = Math.min(a.minX, b.minX); a.minY = Math.min(a.minY, b.minY); a.maxX = Math.max(a.maxX, b.maxX); a.maxY = Math.max(a.maxY, b.maxY); return a; } function compareNodeMinX (a, b) { return a.minX - b.minX; } function compareNodeMinY (a, b) { return a.minY - b.minY; } function bboxArea (a) { return (a.maxX - a.minX) * (a.maxY - a.minY); } function bboxMargin (a) { return (a.maxX - a.minX) + (a.maxY - a.minY); } function enlargedArea (a, b) { return (Math.max(b.maxX, a.maxX) - Math.min(b.minX, a.minX)) * (Math.max(b.maxY, a.maxY) - Math.min(b.minY, a.minY)); } function intersectionArea (a, b) { var minX = Math.max(a.minX, b.minX), minY = Math.max(a.minY, b.minY), maxX = Math.min(a.maxX, b.maxX), maxY = Math.min(a.maxY, b.maxY); return Math.max(0, maxX - minX) * Math.max(0, maxY - minY); } function contains (a, b) { return a.minX <= b.minX && a.minY <= b.minY && b.maxX <= a.maxX && b.maxY <= a.maxY; } function intersects (a, b) { return b.minX <= a.maxX && b.minY <= a.maxY && b.maxX >= a.minX && b.maxY >= a.minY; } function createNode (children) { return { children: children, height: 1, leaf: true, minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity }; } // sort an array so that items come in groups of n unsorted items, with groups sorted between each other; // combines selection algorithm with binary divide & conquer approach function multiSelect (arr, left, right, n, compare) { var stack = [left, right], mid; while (stack.length) { right = stack.pop(); left = stack.pop(); if (right - left <= n) continue; mid = left + Math.ceil((right - left) / n / 2) * n; quickselect(arr, mid, left, right, compare); stack.push(left, mid, mid, right); } } module.exports = rbush;