/** * @author Richard Davey * @copyright 2016 Photon Storm Ltd. * @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License} */ /** * Standard Image and Sprite Shader. * * @class Phaser.Renderer.WebGL.Batch.Image * @constructor * @param {Phaser.Renderer.WebGL} renderer - The WebGL Renderer. */ Phaser.Renderer.WebGL.Batch.Image = function (manager, batchSize) { // Vertex Data Size is calculated by adding together: // // Position (vec2) = 4 * 2 = 8 bytes // UV (vec2) = 4 * 2 = 8 bytes // Texture Index (float) = 4 bytes // Tint Color (float) = 4 bytes // BG Color (float) = 4 bytes // // Total: 28 bytes (per vert) * 4 (4 verts per quad) (= 112 bytes) * maxBatchSize (usually 2000) = 224 kilobytes sent to the GPU every frame var vertSize = (4 * 2) + (4 * 2) + (4) + (4) + (4); Phaser.Renderer.WebGL.Batch.Base.call(this, manager, batchSize, vertSize); // View on the vertices as a Float32Array this.positions = new Float32Array(this.vertices); // View on the vertices as a Uint32Array this.colors = new Uint32Array(this.vertices); // Attributes and Uniforms specific to this Batch Shader // @type {GLint} this.aVertexPosition; // @type {GLint} this.aTextureCoord; // @type {GLint} this.aTextureIndex; // @type {GLint} this.aTintColor; // @type {GLint} this.aBgColor; // @type {WebGLUniformLocation} this.uSampler; // @type {WebGLUniformLocation} this.projectionVector; // @type {WebGLUniformLocation} this.offsetVector; }; Phaser.Renderer.WebGL.Batch.Image.prototype = Object.create(Phaser.Renderer.WebGL.Batch.Base.prototype); Phaser.Renderer.WebGL.Batch.Image.prototype.constructor = Phaser.Renderer.WebGL.Batch.Image; Phaser.Renderer.WebGL.Batch.Image.prototype = { init: function () { this.gl = this.renderer.gl; this.vertexSrc = [ 'attribute vec2 aVertexPosition;', 'attribute vec2 aTextureCoord;', 'attribute float aTextureIndex;', 'attribute vec4 aTintColor;', 'attribute vec4 aBgColor;', 'uniform vec2 projectionVector;', 'uniform vec2 offsetVector;', 'varying vec2 vTextureCoord;', 'varying vec4 vTintColor;', 'varying vec4 vBgColor;', 'varying float vTextureIndex;', 'const vec2 center = vec2(-1.0, 1.0);', 'void main(void) {', ' if (aTextureIndex > 0.0) gl_Position = vec4(0.0);', ' gl_Position = vec4(((aVertexPosition + offsetVector) / projectionVector) + center, 0.0, 1.0);', ' vTextureCoord = aTextureCoord;', // pass the texture coordinate to the fragment shader, the GPU will interpolate the points ' vTintColor = vec4(aTintColor.rgb * aTintColor.a, aTintColor.a);', ' vBgColor = aBgColor;', ' vTextureIndex = aTextureIndex;', '}' ]; this.fragmentSrc = [ 'precision lowp float;', 'varying vec2 vTextureCoord;', // the texture coords passed in from the vertex shader 'varying vec4 vTintColor;', // the color value passed in from the vertex shader (texture color + alpha + tint) 'varying vec4 vBgColor;', // the bg color value passed in from the vertex shader 'varying float vTextureIndex;', 'uniform sampler2D uSampler;', // our texture 'void main(void) {', ' vec4 pixel = texture2D(uSampler, vTextureCoord) * vTintColor;', // get the color from the texture // ' if (pixel.a == 0.0) pixel = vBgColor;', // if texture alpha is zero, use the bg color ' gl_FragColor = pixel;', '}' ]; // Compile the Shader this.program = this.renderer.compileProgram(this.vertexSrc, this.fragmentSrc); // Our static index buffer, calculated once at the start of our game // This contains the indices data for the quads. // // A quad is made up of 2 triangles (A and B in the image below) // // 0 = Top Left // 1 = Top Right // 2 = Bottom Right // 3 = Bottom Left // // 0----1 // |\ A| // | \ | // | \ | // | B \| // | \ // 3----2 // // Because triangles A and B share 2 points (0 and 2) the vertex buffer only stores // 4 sets of data (top-left, top-right, bottom-left and bottom-right), which is why // the indices offsets uses the j += 4 iteration. Indices array has to contain 3 // entries for every triangle (so 6 for every quad), but our vertex data compacts // that down, as we don't want to fill it with loads of DUPLICATE data, so the // indices array is a look-up table, telling WebGL where in the vertex buffer to look // for that triangles indice data. // batchSize * vertSize = 2000 * 6 (because we store 6 pieces of vertex data per triangle) // and up to a maximum of 2000 entries in the batch for (var i = 0, j = 0; i < (this.maxBatchSize * this.vertSize); i += 6, j += 4) { // Triangle 1 this.indices[i + 0] = j + 0; // Top Left this.indices[i + 1] = j + 1; // Top Right this.indices[i + 2] = j + 2; // Bottom Right // Triangle 2 this.indices[i + 3] = j + 0; // Top Left this.indices[i + 4] = j + 2; // Bottom Right this.indices[i + 5] = j + 3; // Bottom Left } var gl = this.gl; // Create indices buffer this.indexBuffer = gl.createBuffer(); // Bind it gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.indexBuffer); // Set the source of the buffer data (this.indices array) gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, this.indices, gl.STATIC_DRAW); // Create Vertex Data buffer this.vertexBuffer = gl.createBuffer(); // Bind it gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer); // Set the source of the buffer data (this.vertices array) gl.bufferData(gl.ARRAY_BUFFER, this.vertices, gl.DYNAMIC_DRAW); }, bindShader: function () { var gl = this.gl; var program = this.program; var vertSize = this.vertSize; // Set Shader gl.useProgram(program); gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.indexBuffer); // Get and store the attributes // vertex position this.aVertexPosition = gl.getAttribLocation(program, 'aVertexPosition'); gl.enableVertexAttribArray(this.aVertexPosition); // texture coordinate this.aTextureCoord = gl.getAttribLocation(program, 'aTextureCoord'); gl.enableVertexAttribArray(this.aTextureCoord); // texture index this.aTextureIndex = gl.getAttribLocation(program, 'aTextureIndex'); gl.enableVertexAttribArray(this.aTextureIndex); // tint / pixel color this.aTintColor = gl.getAttribLocation(program, 'aTintColor'); gl.enableVertexAttribArray(this.aTintColor); // background pixel color this.aBgColor = gl.getAttribLocation(program, 'aBgColor'); gl.enableVertexAttribArray(this.aBgColor); // The projection vector (middle of the game world) this.projectionVector = gl.getUniformLocation(program, 'projectionVector'); // The offset vector (camera shake) this.offsetVector = gl.getUniformLocation(program, 'offsetVector'); // The Texture Sampler this.uSampler = gl.getUniformLocation(this.program, 'uSampler'); // Set the projection vector. Defaults to the middle of the Game World, on negative y. // I.e. if the world is 800x600 then the projection vector is 400 x -300 gl.uniform2f(this.projectionVector, this.renderer.projection.x, this.renderer.projection.y); // Set the offset vector. gl.uniform2f(this.offsetVector, this.renderer.offset.x, this.renderer.offset.y); // The Vertex Position (x/y) // 2 FLOATS, 2 * 4 = 8 bytes. Index pos: 0 to 7 // final argument = the offset within the vertex input gl.vertexAttribPointer(this.aVertexPosition, 2, gl.FLOAT, false, vertSize, 0); // The Texture Coordinate (uvx/uvy) // 2 FLOATS, 2 * 4 = 8 bytes. Index pos: 8 to 15 gl.vertexAttribPointer(this.aTextureCoord, 2, gl.FLOAT, false, vertSize, 8); // Texture Index // 1 FLOAT, 4 bytes. Index pos: 16 to 19 gl.vertexAttribPointer(this.aTextureIndex, 1, gl.FLOAT, false, vertSize, 16); // Tint color // 4 UNSIGNED BYTES, 4 bytes. Index pos: 20 to 23 // Attributes will be interpreted as unsigned bytes and normalized gl.vertexAttribPointer(this.aTintColor, 4, gl.UNSIGNED_BYTE, true, vertSize, 20); // Background Color // 4 UNSIGNED BYTES, 4 bytes. Index pos: 24 to 27 // Attributes will be interpreted as unsigned bytes and normalized gl.vertexAttribPointer(this.aBgColor, 4, gl.UNSIGNED_BYTE, true, vertSize, 24); }, add: function (gameObject, verts, uvs, textureIndex, alpha, tintColors, bgColors) { // console.log('addToBatch', gameObject.frame.name); // Check Batch Size and flush if needed if (this.currentBatchSize >= this.maxBatchSize) { this.flush(); } var source = gameObject.frame.source; source.glLastUsed = this.renderer.startTime; // Does this Game Objects texture need updating? if (source.glDirty) { this.renderer.updateTexture(source); } // Does the batch need to activate a new texture? if (this.renderer.textureArray[source.glTextureIndex] !== source) { this.setCurrentTexture(source); } // These are TypedArray Views into the vertices ArrayBuffer var colors = this.colors; var positions = this.positions; var i = this._i; // Top Left vert (xy, uv, color) positions[i++] = verts.x0; positions[i++] = verts.y0; positions[i++] = uvs.x0; positions[i++] = uvs.y0; positions[i++] = textureIndex; colors[i++] = tintColors.topLeft + alpha; colors[i++] = bgColors.topLeft; // Top Right vert (xy, uv, color) positions[i++] = verts.x1; positions[i++] = verts.y1; positions[i++] = uvs.x1; positions[i++] = uvs.y1; positions[i++] = textureIndex; colors[i++] = tintColors.topRight + alpha; colors[i++] = bgColors.topRight; // Bottom Right vert (xy, uv, color) positions[i++] = verts.x2; positions[i++] = verts.y2; positions[i++] = uvs.x2; positions[i++] = uvs.y2; positions[i++] = textureIndex; colors[i++] = tintColors.bottomRight + alpha; colors[i++] = bgColors.bottomRight; // Bottom Left vert (xy, uv, color) positions[i++] = verts.x3; positions[i++] = verts.y3; positions[i++] = uvs.x3; positions[i++] = uvs.y3; positions[i++] = textureIndex; colors[i++] = tintColors.bottomLeft + alpha; colors[i++] = bgColors.bottomLeft; this._i = i; this.list[this.currentBatchSize++] = gameObject; }, flush: function () { if (this.currentBatchSize > 0) { var gl = this.gl; gl.drawElements(gl.TRIANGLES, this.currentBatchSize * 6, gl.UNSIGNED_SHORT, 0); this.renderer.drawCount++; } // Reset the batch this.currentBatchSize = 0; this._i = 0; }, destroy: function () { this.vertices = null; this.indices = null; this.gl.deleteBuffer(this.vertexBuffer); this.gl.deleteBuffer(this.indexBuffer); this.renderer.deleteProgram(this.program); this.renderer = null; this.gl = null; this.manager = null; } };