///
///
/**
* Phaser - QuadTree
*
* A fairly generic quad tree structure for rapid overlap checks. QuadTree is also configured for single or dual list operation.
* You can add items either to its A list or its B list. When you do an overlap check, you can compare the A list to itself,
* or the A list against the B list. Handy for different things!
*/
module Phaser {
export class QuadTree extends Rectangle {
/**
* Instantiate a new Quad Tree node.
*
* @param X The X-coordinate of the point in space.
* @param Y The Y-coordinate of the point in space.
* @param Width Desired width of this node.
* @param Height Desired height of this node.
* @param Parent The parent branch or node. Pass null to create a root.
*/
constructor(X: number, Y: number, Width: number, Height: number, Parent: QuadTree = null) {
super(X, Y, Width, Height);
//console.log('-------- QuadTree',X,Y,Width,Height);
this._headA = this._tailA = new LinkedList();
this._headB = this._tailB = new LinkedList();
//Copy the parent's children (if there are any)
if (Parent != null)
{
//console.log('Parent not null');
var iterator: LinkedList;
var ot: LinkedList;
if (Parent._headA.object != null)
{
iterator = Parent._headA;
//console.log('iterator set to parent headA');
while (iterator != null)
{
if (this._tailA.object != null)
{
ot = this._tailA;
this._tailA = new LinkedList();
ot.next = this._tailA;
}
this._tailA.object = iterator.object;
iterator = iterator.next;
}
}
if (Parent._headB.object != null)
{
iterator = Parent._headB;
//console.log('iterator set to parent headB');
while (iterator != null)
{
if (this._tailB.object != null)
{
ot = this._tailB;
this._tailB = new LinkedList();
ot.next = this._tailB;
}
this._tailB.object = iterator.object;
iterator = iterator.next;
}
}
}
else
{
QuadTree._min = (this.width + this.height) / (2 * QuadTree.divisions);
}
this._canSubdivide = (this.width > QuadTree._min) || (this.height > QuadTree._min);
//console.log('canSubdivided', this._canSubdivide);
//Set up comparison/sort helpers
this._northWestTree = null;
this._northEastTree = null;
this._southEastTree = null;
this._southWestTree = null;
this._leftEdge = this.x;
this._rightEdge = this.x + this.width;
this._halfWidth = this.width / 2;
this._midpointX = this._leftEdge + this._halfWidth;
this._topEdge = this.y;
this._bottomEdge = this.y + this.height;
this._halfHeight = this.height / 2;
this._midpointY = this._topEdge + this._halfHeight;
}
/**
* Flag for specifying that you want to add an object to the A list.
*/
public static A_LIST: number = 0;
/**
* Flag for specifying that you want to add an object to the B list.
*/
public static B_LIST: number = 1;
/**
* Controls the granularity of the quad tree. Default is 6 (decent performance on large and small worlds).
*/
public static divisions: number;
/**
* Whether this branch of the tree can be subdivided or not.
*/
private _canSubdivide: bool;
/**
* Refers to the internal A and B linked lists,
* which are used to store objects in the leaves.
*/
private _headA: LinkedList;
/**
* Refers to the internal A and B linked lists,
* which are used to store objects in the leaves.
*/
private _tailA: LinkedList;
/**
* Refers to the internal A and B linked lists,
* which are used to store objects in the leaves.
*/
private _headB: LinkedList;
/**
* Refers to the internal A and B linked lists,
* which are used to store objects in the leaves.
*/
private _tailB: LinkedList;
/**
* Internal, governs and assists with the formation of the tree.
*/
private static _min: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _northWestTree: QuadTree;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _northEastTree: QuadTree;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _southEastTree: QuadTree;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _southWestTree: QuadTree;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _leftEdge: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _rightEdge: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _topEdge: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _bottomEdge: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _halfWidth: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _halfHeight: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _midpointX: number;
/**
* Internal, governs and assists with the formation of the tree.
*/
private _midpointY: number;
/**
* Internal, used to reduce recursive method parameters during object placement and tree formation.
*/
private static _object;
/**
* Internal, used to reduce recursive method parameters during object placement and tree formation.
*/
private static _objectLeftEdge: number;
/**
* Internal, used to reduce recursive method parameters during object placement and tree formation.
*/
private static _objectTopEdge: number;
/**
* Internal, used to reduce recursive method parameters during object placement and tree formation.
*/
private static _objectRightEdge: number;
/**
* Internal, used to reduce recursive method parameters during object placement and tree formation.
*/
private static _objectBottomEdge: number;
/**
* Internal, used during tree processing and overlap checks.
*/
private static _list: number;
/**
* Internal, used during tree processing and overlap checks.
*/
private static _useBothLists: bool;
/**
* Internal, used during tree processing and overlap checks.
*/
private static _processingCallback;
/**
* Internal, used during tree processing and overlap checks.
*/
private static _notifyCallback;
/**
* Internal, used during tree processing and overlap checks.
*/
private static _iterator: LinkedList;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _objectHullX: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _objectHullY: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _objectHullWidth: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _objectHullHeight: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _checkObjectHullX: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _checkObjectHullY: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _checkObjectHullWidth: number;
/**
* Internal, helpers for comparing actual object-to-object overlap - see overlapNode()
.
*/
private static _checkObjectHullHeight: number;
/**
* Clean up memory.
*/
public destroy() {
this._tailA.destroy();
this._tailB.destroy();
this._headA.destroy();
this._headB.destroy();
this._tailA = null;
this._tailB = null;
this._headA = null;
this._headB = null;
if (this._northWestTree != null)
{
this._northWestTree.destroy();
}
if (this._northEastTree != null)
{
this._northEastTree.destroy();
}
if (this._southEastTree != null)
{
this._southEastTree.destroy();
}
if (this._southWestTree != null)
{
this._southWestTree.destroy();
}
this._northWestTree = null;
this._northEastTree = null;
this._southEastTree = null;
this._southWestTree = null;
QuadTree._object = null;
QuadTree._processingCallback = null;
QuadTree._notifyCallback = null;
}
/**
* Load objects and/or groups into the quad tree, and register notify and processing callbacks.
*
* @param ObjectOrGroup1 Any object that is or extends GameObject or Group.
* @param ObjectOrGroup2 Any object that is or extends GameObject or Group. If null, the first parameter will be checked against itself.
* @param NotifyCallback A function with the form myFunction(Object1:GameObject,Object2:GameObject)
that is called whenever two objects are found to overlap in world space, and either no ProcessCallback is specified, or the ProcessCallback returns true.
* @param ProcessCallback A function with the form myFunction(Object1:GameObject,Object2:GameObject):bool
that is called whenever two objects are found to overlap in world space. The NotifyCallback is only called if this function returns true. See GameObject.separate().
*/
public load(ObjectOrGroup1: Basic, ObjectOrGroup2: Basic = null, NotifyCallback = null, ProcessCallback = null) {
//console.log('quadtree load', QuadTree.divisions, ObjectOrGroup1, ObjectOrGroup2);
this.add(ObjectOrGroup1, QuadTree.A_LIST);
if (ObjectOrGroup2 != null)
{
this.add(ObjectOrGroup2, QuadTree.B_LIST);
QuadTree._useBothLists = true;
}
else
{
QuadTree._useBothLists = false;
}
QuadTree._notifyCallback = NotifyCallback;
QuadTree._processingCallback = ProcessCallback;
//console.log('use both', QuadTree._useBothLists);
//console.log('------------ end of load');
}
/**
* Call this function to add an object to the root of the tree.
* This function will recursively add all group members, but
* not the groups themselves.
*
* @param ObjectOrGroup GameObjects are just added, Groups are recursed and their applicable members added accordingly.
* @param List A uint
flag indicating the list to which you want to add the objects. Options are QuadTree.A_LIST
and QuadTree.B_LIST
.
*/
public add(ObjectOrGroup: Basic, List: number) {
QuadTree._list = List;
if (ObjectOrGroup.isGroup == true)
{
var i: number = 0;
var basic: Basic;
var members = ObjectOrGroup['members'];
var l: number = ObjectOrGroup['length'];
while (i < l)
{
basic = members[i++];
if ((basic != null) && basic.exists)
{
if (basic.isGroup)
{
this.add(basic, List);
}
else
{
QuadTree._object = basic;
if (QuadTree._object.exists && QuadTree._object.allowCollisions)
{
QuadTree._objectLeftEdge = QuadTree._object.x;
QuadTree._objectTopEdge = QuadTree._object.y;
QuadTree._objectRightEdge = QuadTree._object.x + QuadTree._object.width;
QuadTree._objectBottomEdge = QuadTree._object.y + QuadTree._object.height;
this.addObject();
}
}
}
}
}
else
{
QuadTree._object = ObjectOrGroup;
//console.log('add - not group:', ObjectOrGroup.name);
if (QuadTree._object.exists && QuadTree._object.allowCollisions)
{
QuadTree._objectLeftEdge = QuadTree._object.x;
QuadTree._objectTopEdge = QuadTree._object.y;
QuadTree._objectRightEdge = QuadTree._object.x + QuadTree._object.width;
QuadTree._objectBottomEdge = QuadTree._object.y + QuadTree._object.height;
//console.log('object properties', QuadTree._objectLeftEdge, QuadTree._objectTopEdge, QuadTree._objectRightEdge, QuadTree._objectBottomEdge);
this.addObject();
}
}
}
/**
* Internal function for recursively navigating and creating the tree
* while adding objects to the appropriate nodes.
*/
private addObject() {
//console.log('addObject');
//If this quad (not its children) lies entirely inside this object, add it here
if (!this._canSubdivide || ((this._leftEdge >= QuadTree._objectLeftEdge) && (this._rightEdge <= QuadTree._objectRightEdge) && (this._topEdge >= QuadTree._objectTopEdge) && (this._bottomEdge <= QuadTree._objectBottomEdge)))
{
//console.log('add To List');
this.addToList();
return;
}
//See if the selected object fits completely inside any of the quadrants
if ((QuadTree._objectLeftEdge > this._leftEdge) && (QuadTree._objectRightEdge < this._midpointX))
{
if ((QuadTree._objectTopEdge > this._topEdge) && (QuadTree._objectBottomEdge < this._midpointY))
{
//console.log('Adding NW tree');
if (this._northWestTree == null)
{
this._northWestTree = new QuadTree(this._leftEdge, this._topEdge, this._halfWidth, this._halfHeight, this);
}
this._northWestTree.addObject();
return;
}
if ((QuadTree._objectTopEdge > this._midpointY) && (QuadTree._objectBottomEdge < this._bottomEdge))
{
//console.log('Adding SW tree');
if (this._southWestTree == null)
{
this._southWestTree = new QuadTree(this._leftEdge, this._midpointY, this._halfWidth, this._halfHeight, this);
}
this._southWestTree.addObject();
return;
}
}
if ((QuadTree._objectLeftEdge > this._midpointX) && (QuadTree._objectRightEdge < this._rightEdge))
{
if ((QuadTree._objectTopEdge > this._topEdge) && (QuadTree._objectBottomEdge < this._midpointY))
{
//console.log('Adding NE tree');
if (this._northEastTree == null)
{
this._northEastTree = new QuadTree(this._midpointX, this._topEdge, this._halfWidth, this._halfHeight, this);
}
this._northEastTree.addObject();
return;
}
if ((QuadTree._objectTopEdge > this._midpointY) && (QuadTree._objectBottomEdge < this._bottomEdge))
{
//console.log('Adding SE tree');
if (this._southEastTree == null)
{
this._southEastTree = new QuadTree(this._midpointX, this._midpointY, this._halfWidth, this._halfHeight, this);
}
this._southEastTree.addObject();
return;
}
}
//If it wasn't completely contained we have to check out the partial overlaps
if ((QuadTree._objectRightEdge > this._leftEdge) && (QuadTree._objectLeftEdge < this._midpointX) && (QuadTree._objectBottomEdge > this._topEdge) && (QuadTree._objectTopEdge < this._midpointY))
{
if (this._northWestTree == null)
{
this._northWestTree = new QuadTree(this._leftEdge, this._topEdge, this._halfWidth, this._halfHeight, this);
}
//console.log('added to north west partial tree');
this._northWestTree.addObject();
}
if ((QuadTree._objectRightEdge > this._midpointX) && (QuadTree._objectLeftEdge < this._rightEdge) && (QuadTree._objectBottomEdge > this._topEdge) && (QuadTree._objectTopEdge < this._midpointY))
{
if (this._northEastTree == null)
{
this._northEastTree = new QuadTree(this._midpointX, this._topEdge, this._halfWidth, this._halfHeight, this);
}
//console.log('added to north east partial tree');
this._northEastTree.addObject();
}
if ((QuadTree._objectRightEdge > this._midpointX) && (QuadTree._objectLeftEdge < this._rightEdge) && (QuadTree._objectBottomEdge > this._midpointY) && (QuadTree._objectTopEdge < this._bottomEdge))
{
if (this._southEastTree == null)
{
this._southEastTree = new QuadTree(this._midpointX, this._midpointY, this._halfWidth, this._halfHeight, this);
}
//console.log('added to south east partial tree');
this._southEastTree.addObject();
}
if ((QuadTree._objectRightEdge > this._leftEdge) && (QuadTree._objectLeftEdge < this._midpointX) && (QuadTree._objectBottomEdge > this._midpointY) && (QuadTree._objectTopEdge < this._bottomEdge))
{
if (this._southWestTree == null)
{
this._southWestTree = new QuadTree(this._leftEdge, this._midpointY, this._halfWidth, this._halfHeight, this);
}
//console.log('added to south west partial tree');
this._southWestTree.addObject();
}
}
/**
* Internal function for recursively adding objects to leaf lists.
*/
private addToList() {
//console.log('Adding to List');
var ot: LinkedList;
if (QuadTree._list == QuadTree.A_LIST)
{
//console.log('A LIST');
if (this._tailA.object != null)
{
ot = this._tailA;
this._tailA = new LinkedList();
ot.next = this._tailA;
}
this._tailA.object = QuadTree._object;
}
else
{
//console.log('B LIST');
if (this._tailB.object != null)
{
ot = this._tailB;
this._tailB = new LinkedList();
ot.next = this._tailB;
}
this._tailB.object = QuadTree._object;
}
if (!this._canSubdivide)
{
return;
}
if (this._northWestTree != null)
{
this._northWestTree.addToList();
}
if (this._northEastTree != null)
{
this._northEastTree.addToList();
}
if (this._southEastTree != null)
{
this._southEastTree.addToList();
}
if (this._southWestTree != null)
{
this._southWestTree.addToList();
}
}
/**
* QuadTree
's other main function. Call this after adding objects
* using QuadTree.load()
to compare the objects that you loaded.
*
* @return Whether or not any overlaps were found.
*/
public execute(): bool {
//console.log('quadtree execute');
var overlapProcessed: bool = false;
var iterator: LinkedList;
if (this._headA.object != null)
{
//console.log('---------------------------------------------------');
//console.log('headA iterator');
iterator = this._headA;
while (iterator != null)
{
QuadTree._object = iterator.object;
if (QuadTree._useBothLists)
{
QuadTree._iterator = this._headB;
}
else
{
QuadTree._iterator = iterator.next;
}
if (QuadTree._object.exists && (QuadTree._object.allowCollisions > 0) && (QuadTree._iterator != null) && (QuadTree._iterator.object != null) && QuadTree._iterator.object.exists && this.overlapNode())
{
//console.log('headA iterator overlapped true');
overlapProcessed = true;
}
iterator = iterator.next;
}
}
//Advance through the tree by calling overlap on each child
if ((this._northWestTree != null) && this._northWestTree.execute())
{
//console.log('NW quadtree execute');
overlapProcessed = true;
}
if ((this._northEastTree != null) && this._northEastTree.execute())
{
//console.log('NE quadtree execute');
overlapProcessed = true;
}
if ((this._southEastTree != null) && this._southEastTree.execute())
{
//console.log('SE quadtree execute');
overlapProcessed = true;
}
if ((this._southWestTree != null) && this._southWestTree.execute())
{
//console.log('SW quadtree execute');
overlapProcessed = true;
}
return overlapProcessed;
}
/**
* An private for comparing an object against the contents of a node.
*
* @return Whether or not any overlaps were found.
*/
private overlapNode(): bool {
//console.log('overlapNode');
//Walk the list and check for overlaps
var overlapProcessed: bool = false;
var checkObject;
while (QuadTree._iterator != null)
{
if (!QuadTree._object.exists || (QuadTree._object.allowCollisions <= 0))
{
//console.log('break 1');
break;
}
checkObject = QuadTree._iterator.object;
if ((QuadTree._object === checkObject) || !checkObject.exists || (checkObject.allowCollisions <= 0))
{
//console.log('break 2');
QuadTree._iterator = QuadTree._iterator.next;
continue;
}
//calculate bulk hull for QuadTree._object
QuadTree._objectHullX = (QuadTree._object.x < QuadTree._object.last.x) ? QuadTree._object.x : QuadTree._object.last.x;
QuadTree._objectHullY = (QuadTree._object.y < QuadTree._object.last.y) ? QuadTree._object.y : QuadTree._object.last.y;
QuadTree._objectHullWidth = QuadTree._object.x - QuadTree._object.last.x;
QuadTree._objectHullWidth = QuadTree._object.width + ((QuadTree._objectHullWidth > 0) ? QuadTree._objectHullWidth : -QuadTree._objectHullWidth);
QuadTree._objectHullHeight = QuadTree._object.y - QuadTree._object.last.y;
QuadTree._objectHullHeight = QuadTree._object.height + ((QuadTree._objectHullHeight > 0) ? QuadTree._objectHullHeight : -QuadTree._objectHullHeight);
//calculate bulk hull for checkObject
QuadTree._checkObjectHullX = (checkObject.x < checkObject.last.x) ? checkObject.x : checkObject.last.x;
QuadTree._checkObjectHullY = (checkObject.y < checkObject.last.y) ? checkObject.y : checkObject.last.y;
QuadTree._checkObjectHullWidth = checkObject.x - checkObject.last.x;
QuadTree._checkObjectHullWidth = checkObject.width + ((QuadTree._checkObjectHullWidth > 0) ? QuadTree._checkObjectHullWidth : -QuadTree._checkObjectHullWidth);
QuadTree._checkObjectHullHeight = checkObject.y - checkObject.last.y;
QuadTree._checkObjectHullHeight = checkObject.height + ((QuadTree._checkObjectHullHeight > 0) ? QuadTree._checkObjectHullHeight : -QuadTree._checkObjectHullHeight);
//check for intersection of the two hulls
if ((QuadTree._objectHullX + QuadTree._objectHullWidth > QuadTree._checkObjectHullX) && (QuadTree._objectHullX < QuadTree._checkObjectHullX + QuadTree._checkObjectHullWidth) && (QuadTree._objectHullY + QuadTree._objectHullHeight > QuadTree._checkObjectHullY) && (QuadTree._objectHullY < QuadTree._checkObjectHullY + QuadTree._checkObjectHullHeight))
{
//console.log('intersection!');
//Execute callback functions if they exist
if ((QuadTree._processingCallback == null) || QuadTree._processingCallback(QuadTree._object, checkObject))
{
overlapProcessed = true;
}
if (overlapProcessed && (QuadTree._notifyCallback != null))
{
QuadTree._notifyCallback(QuadTree._object, checkObject);
}
}
QuadTree._iterator = QuadTree._iterator.next;
}
return overlapProcessed;
}
}
}