/** * @author Richard Davey <rich@photonstorm.com> * @copyright 2014 Photon Storm Ltd. * @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License} */ /** * A collection of mathematical methods. * * @class Phaser.Math */ Phaser.Math = { /** * = 2 π * @method Phaser.Math#PI2 */ PI2: Math.PI * 2, /** * Two number are fuzzyEqual if their difference is less than ε. * @method Phaser.Math#fuzzyEqual * @param {number} a * @param {number} b * @param {number} epsilon * @return {boolean} True if |a-b|<ε */ fuzzyEqual: function (a, b, epsilon) { if (typeof epsilon === "undefined") { epsilon = 0.0001; } return Math.abs(a - b) < epsilon; }, /** * a is fuzzyLessThan b if it is less than b + ε. * @method Phaser.Math#fuzzyLessThan * @param {number} a * @param {number} b * @param {number} epsilon * @return {boolean} True if a<b+ε */ fuzzyLessThan: function (a, b, epsilon) { if (typeof epsilon === "undefined") { epsilon = 0.0001; } return a < b + epsilon; }, /** * a is fuzzyGreaterThan b if it is more than b - ε. * @method Phaser.Math#fuzzyGreaterThan * @param {number} a * @param {number} b * @param {number} epsilon * @return {boolean} True if a>b+ε */ fuzzyGreaterThan: function (a, b, epsilon) { if (typeof epsilon === "undefined") { epsilon = 0.0001; } return a > b - epsilon; }, /** * @method Phaser.Math#fuzzyCeil * @param {number} val * @param {number} epsilon * @return {boolean} ceiling(val-ε) */ fuzzyCeil: function (val, epsilon) { if (typeof epsilon === "undefined") { epsilon = 0.0001; } return Math.ceil(val - epsilon); }, /** * @method Phaser.Math#fuzzyFloor * @param {number} val * @param {number} epsilon * @return {boolean} floor(val-ε) */ fuzzyFloor: function (val, epsilon) { if (typeof epsilon === "undefined") { epsilon = 0.0001; } return Math.floor(val + epsilon); }, /** * Averages all values passed to the function and returns the result. You can pass as many parameters as you like. * @method Phaser.Math#average * @return {number} The average of all given values. */ average: function () { var args = []; for (var _i = 0; _i < (arguments.length - 0); _i++) { args[_i] = arguments[_i + 0]; } var avg = 0; for (var i = 0; i < args.length; i++) { avg += args[i]; } return avg / args.length; }, /** * @method Phaser.Math#truncate * @param {number} n * @return {number} */ truncate: function (n) { return (n > 0) ? Math.floor(n) : Math.ceil(n); }, /** * @method Phaser.Math#shear * @param {number} n * @return {number} n mod 1 */ shear: function (n) { return n % 1; }, /** * Snap a value to nearest grid slice, using rounding. * * Example: if you have an interval gap of 5 and a position of 12... you will snap to 10 whereas 14 will snap to 15. * * @method Phaser.Math#snapTo * @param {number} input - The value to snap. * @param {number} gap - The interval gap of the grid. * @param {number} [start] - Optional starting offset for gap. * @return {number} */ snapTo: function (input, gap, start) { if (typeof start === "undefined") { start = 0; } if (gap === 0) { return input; } input -= start; input = gap * Math.round(input / gap); return start + input; }, /** * Snap a value to nearest grid slice, using floor. * * Example: if you have an interval gap of 5 and a position of 12... you will snap to 10. As will 14 snap to 10... but 16 will snap to 15 * * @method Phaser.Math#snapToFloor * @param {number} input - The value to snap. * @param {number} gap - The interval gap of the grid. * @param {number} [start] - Optional starting offset for gap. * @return {number} */ snapToFloor: function (input, gap, start) { if (typeof start === "undefined") { start = 0; } if (gap === 0) { return input; } input -= start; input = gap * Math.floor(input / gap); return start + input; }, /** * Snap a value to nearest grid slice, using ceil. * * Example: if you have an interval gap of 5 and a position of 12... you will snap to 15. As will 14 will snap to 15... but 16 will snap to 20. * * @method Phaser.Math#snapToCeil * @param {number} input - The value to snap. * @param {number} gap - The interval gap of the grid. * @param {number} [start] - Optional starting offset for gap. * @return {number} */ snapToCeil: function (input, gap, start) { if (typeof start === "undefined") { start = 0; } if (gap === 0) { return input; } input -= start; input = gap * Math.ceil(input / gap); return start + input; }, /** * Snaps a value to the nearest value in an array. * @method Phaser.Math#snapToInArray * @param {number} input * @param {array} arr * @param {boolean} sort - True if the array needs to be sorted. * @return {number} */ snapToInArray: function (input, arr, sort) { if (typeof sort === "undefined") { sort = true; } if (sort) { arr.sort(); } if (input < arr[0]) { return arr[0]; } var i = 1; while (arr[i] < input) { i++; } var low = arr[i - 1]; var high = (i < arr.length) ? arr[i] : Number.POSITIVE_INFINITY; return ((high - input) <= (input - low)) ? high : low; }, /** * Round to some place comparative to a 'base', default is 10 for decimal place. * * 'place' is represented by the power applied to 'base' to get that place * e.g. * 2000/7 ~= 285.714285714285714285714 ~= (bin)100011101.1011011011011011 * * roundTo(2000/7,3) === 0 * roundTo(2000/7,2) == 300 * roundTo(2000/7,1) == 290 * roundTo(2000/7,0) == 286 * roundTo(2000/7,-1) == 285.7 * roundTo(2000/7,-2) == 285.71 * roundTo(2000/7,-3) == 285.714 * roundTo(2000/7,-4) == 285.7143 * roundTo(2000/7,-5) == 285.71429 * * roundTo(2000/7,3,2) == 288 -- 100100000 * roundTo(2000/7,2,2) == 284 -- 100011100 * roundTo(2000/7,1,2) == 286 -- 100011110 * roundTo(2000/7,0,2) == 286 -- 100011110 * roundTo(2000/7,-1,2) == 285.5 -- 100011101.1 * roundTo(2000/7,-2,2) == 285.75 -- 100011101.11 * roundTo(2000/7,-3,2) == 285.75 -- 100011101.11 * roundTo(2000/7,-4,2) == 285.6875 -- 100011101.1011 * roundTo(2000/7,-5,2) == 285.71875 -- 100011101.10111 * * Note what occurs when we round to the 3rd space (8ths place), 100100000, this is to be assumed * because we are rounding 100011.1011011011011011 which rounds up. * * @method Phaser.Math#roundTo * @param {number} value - The value to round. * @param {number} place - The place to round to. * @param {number} base - The base to round in... default is 10 for decimal. * @return {number} */ roundTo: function (value, place, base) { if (typeof place === "undefined") { place = 0; } if (typeof base === "undefined") { base = 10; } var p = Math.pow(base, -place); return Math.round(value * p) / p; }, /** * @method Phaser.Math#floorTo * @param {number} value - The value to round. * @param {number} place - The place to round to. * @param {number} base - The base to round in... default is 10 for decimal. * @return {number} */ floorTo: function (value, place, base) { if (typeof place === "undefined") { place = 0; } if (typeof base === "undefined") { base = 10; } var p = Math.pow(base, -place); return Math.floor(value * p) / p; }, /** * @method Phaser.Math#ceilTo * @param {number} value - The value to round. * @param {number} place - The place to round to. * @param {number} base - The base to round in... default is 10 for decimal. * @return {number} */ ceilTo: function (value, place, base) { if (typeof place === "undefined") { place = 0; } if (typeof base === "undefined") { base = 10; } var p = Math.pow(base, -place); return Math.ceil(value * p) / p; }, /** * A one dimensional linear interpolation of a value. * @method Phaser.Math#interpolateFloat * @param {number} a * @param {number} b * @param {number} weight * @return {number} */ interpolateFloat: function (a, b, weight) { return (b - a) * weight + a; }, /** * Find the angle of a segment from (x1, y1) -> (x2, y2). * @method Phaser.Math#angleBetween * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} */ angleBetween: function (x1, y1, x2, y2) { return Math.atan2(y2 - y1, x2 - x1); }, /** * Find the angle of a segment from (point1.x, point1.y) -> (point2.x, point2.y). * @method Phaser.Math#angleBetweenPoints * @param {Phaser.Point} point1 * @param {Phaser.Point} point2 * @return {number} */ angleBetweenPoints: function (point1, point2) { return Math.atan2(point2.y - point1.y, point2.x - point1.x); }, /** * Reverses an angle. * @method Phaser.Math#reverseAngle * @param {number} angleRad - The angle to reverse, in radians. * @return {number} Returns the reverse angle, in radians. */ reverseAngle: function (angleRad) { return this.normalizeAngle(angleRad + Math.PI, true); }, /** * Normalizes an angle to the [0,2pi) range. * @method Phaser.Math#normalizeAngle * @param {number} angleRad - The angle to normalize, in radians. * @return {number} Returns the angle, fit within the [0,2pi] range, in radians. */ normalizeAngle: function (angleRad) { angleRad = angleRad % (2 * Math.PI); return angleRad >= 0 ? angleRad : angleRad + 2 * Math.PI; }, /** * Normalizes a latitude to the [-90,90] range. Latitudes above 90 or below -90 are capped, not wrapped. * @method Phaser.Math#normalizeLatitude * @param {number} lat - The latitude to normalize, in degrees. * @return {number} Returns the latitude, fit within the [-90,90] range. */ normalizeLatitude: function (lat) { return Math.max(-90, Math.min(90, lat)); }, /** * Normalizes a longitude to the [-180,180] range. Longitudes above 180 or below -180 are wrapped. * @method Phaser.Math#normalizeLongitude * @param {number} lng - The longitude to normalize, in degrees. * @return {number} Returns the longitude, fit within the [-180,180] range. */ normalizeLongitude: function (lng) { if (lng % 360 == 180) { return 180; } lng = lng % 360; return lng < -180 ? lng + 360 : lng > 180 ? lng - 360 : lng; }, /** * Closest angle between two angles from a1 to a2 absolute value the return for exact angle * @method Phaser.Math#nearestAngleBetween * @param {number} a1 * @param {number} a2 * @param {boolean} radians - True if angle sizes are expressed in radians. * @return {number} nearestAngleBetween: function (a1, a2, radians) { if (typeof radians === "undefined") { radians = true; } var rd = (radians) ? Math.PI : 180; a1 = this.normalizeAngle(a1, radians); a2 = this.normalizeAngle(a2, radians); if (a1 < -rd / 2 && a2 > rd / 2) { a1 += rd * 2; } if (a2 < -rd / 2 && a1 > rd / 2) { a2 += rd * 2; } return a2 - a1; }, */ /** * Interpolate across the shortest arc between two angles. * @method Phaser.Math#interpolateAngles * @param {number} a1 - Description. * @param {number} a2 - Description. * @param {number} weight - Description. * @param {boolean} radians - True if angle sizes are expressed in radians. * @param {Description} ease - Description. * @return {number} interpolateAngles: function (a1, a2, weight, radians, ease) { if (typeof radians === "undefined") { radians = true; } if (typeof ease === "undefined") { ease = null; } a1 = this.normalizeAngle(a1, radians); a2 = this.normalizeAngleToAnother(a2, a1, radians); return (typeof ease === 'function') ? ease(weight, a1, a2 - a1, 1) : this.interpolateFloat(a1, a2, weight); }, */ /** * Generate a random bool result based on the chance value. * <p> * Returns true or false based on the chance value (default 50%). For example if you wanted a player to have a 30% chance * of getting a bonus, call chanceRoll(30) - true means the chance passed, false means it failed. * </p> * @method Phaser.Math#chanceRoll * @param {number} chance - The chance of receiving the value. A number between 0 and 100 (effectively 0% to 100%). * @return {boolean} True if the roll passed, or false otherwise. */ chanceRoll: function (chance) { if (typeof chance === "undefined") { chance = 50; } if (chance <= 0) { return false; } else if (chance >= 100) { return true; } else { if (Math.random() * 100 >= chance) { return false; } else { return true; } } }, /** * Returns an Array containing the numbers from min to max (inclusive). * * @method Phaser.Math#numberArray * @param {number} min - The minimum value the array starts with. * @param {number} max - The maximum value the array contains. * @return {array} The array of number values. */ numberArray: function (min, max) { var result = []; for (var i = min; i <= max; i++) { result.push(i); } return result; }, /** * Adds the given amount to the value, but never lets the value go over the specified maximum. * * @method Phaser.Math#maxAdd * @param {number} value - The value to add the amount to. * @param {number} amount - The amount to add to the value. * @param {number} max- The maximum the value is allowed to be. * @return {number} */ maxAdd: function (value, amount, max) { value += amount; if (value > max) { value = max; } return value; }, /** * Subtracts the given amount from the value, but never lets the value go below the specified minimum. * * @method Phaser.Math#minSub * @param {number} value - The base value. * @param {number} amount - The amount to subtract from the base value. * @param {number} min - The minimum the value is allowed to be. * @return {number} The new value. */ minSub: function (value, amount, min) { value -= amount; if (value < min) { value = min; } return value; }, /** * Ensures that the value always stays between min and max, by wrapping the value around. * max should be larger than min, or the function will return 0. * * @method Phaser.Math#wrap * @param {number} value - The value to wrap. * @param {number} min - The minimum the value is allowed to be. * @param {number} max - The maximum the value is allowed to be. * @return {number} The wrapped value. */ wrap: function (value, min, max) { var range = max - min; if (range <= 0) { return 0; } var result = (value - min) % range; if (result < 0) { result += range; } return result + min; }, /** * Adds value to amount and ensures that the result always stays between 0 and max, by wrapping the value around. * Values must be positive integers, and are passed through Math.abs. * * @method Phaser.Math#wrapValue * @param {number} value - The value to add the amount to. * @param {number} amount - The amount to add to the value. * @param {number} max - The maximum the value is allowed to be. * @return {number} The wrapped value. */ wrapValue: function (value, amount, max) { var diff; value = Math.abs(value); amount = Math.abs(amount); max = Math.abs(max); diff = (value + amount) % max; return diff; }, /** * Ensures the given value is between min and max inclusive. * * @method Phaser.Math#limitValue * @param {number} value - The value to limit. * @param {number} min - The minimum the value can be. * @param {number} max - The maximum the value can be. * @return {number} The limited value. */ limitValue: function(value, min, max) { return value < min ? min : value > max ? max : value; }, /** * Randomly returns either a 1 or -1. * * @method Phaser.Math#randomSign * @return {number} 1 or -1 */ randomSign: function () { return (Math.random() > 0.5) ? 1 : -1; }, /** * Returns true if the number given is odd. * * @method Phaser.Math#isOdd * @param {number} n - The number to check. * @return {boolean} True if the given number is odd. False if the given number is even. */ isOdd: function (n) { return (n & 1); }, /** * Returns true if the number given is even. * * @method Phaser.Math#isEven * @param {number} n - The number to check. * @return {boolean} True if the given number is even. False if the given number is odd. */ isEven: function (n) { if (n & 1) { return false; } else { return true; } }, /** * Updated version of Math.min that can be passed either an array of numbers or the numbers as parameters. * See http://jsperf.com/math-s-min-max-vs-homemade/5 * * @method Phaser.Math#min * @return {number} The lowest value from those given. */ min: function () { if (arguments.length === 1 && typeof arguments[0] === 'object') { var data = arguments[0]; } else { var data = arguments; } for (var i = 1, min = 0, len = data.length; i < len; i++) { if (data[i] < data[min]) { min = i; } } return data[min]; }, /** * Updated version of Math.max that can be passed either an array of numbers or the numbers as parameters. * * @method Phaser.Math#max * @return {number} The largest value from those given. */ max: function () { if (arguments.length === 1 && typeof arguments[0] === 'object') { var data = arguments[0]; } else { var data = arguments; } for (var i = 1, max = 0, len = data.length; i < len; i++) { if (data[i] > data[max]) { max = i; } } return data[max]; }, /** * Updated version of Math.min that can be passed a property and either an array of objects or the objects as parameters. * It will find the lowest matching property value from the given objects. * * @method Phaser.Math#minProperty * @return {number} The lowest value from those given. */ minProperty: function (property) { if (arguments.length === 2 && typeof arguments[1] === 'object') { var data = arguments[1]; } else { var data = arguments.slice(1); } for (var i = 1, min = 0, len = data.length; i < len; i++) { if (data[i][property] < data[min][property]) { min = i; } } return data[min][property]; }, /** * Updated version of Math.max that can be passed a property and either an array of objects or the objects as parameters. * It will find the largest matching property value from the given objects. * * @method Phaser.Math#maxProperty * @return {number} The largest value from those given. */ maxProperty: function (property) { if (arguments.length === 2 && typeof arguments[1] === 'object') { var data = arguments[1]; } else { var data = arguments.slice(1); } for (var i = 1, max = 0, len = data.length; i < len; i++) { if (data[i][property] > data[max][property]) { max = i; } } return data[max][property]; }, /** * Keeps an angle value between -180 and +180. * * @method Phaser.Math#wrapAngle * @param {number} angle - The angle value to check * @param {boolean} radians - True if angle is given in radians. * @return {number} The new angle value, returns the same as the input angle if it was within bounds. */ wrapAngle: function (angle, radians) { var radianFactor = (radians) ? Math.PI / 180 : 1; return this.wrap(angle, -180 * radianFactor, 180 * radianFactor); }, /** * Keeps an angle value between the given min and max values. * * @method Phaser.Math#angleLimit * @param {number} angle - The angle value to check. Must be between -180 and +180. * @param {number} min - The minimum angle that is allowed (must be -180 or greater). * @param {number} max - The maximum angle that is allowed (must be 180 or less). * @return {number} The new angle value, returns the same as the input angle if it was within bounds */ angleLimit: function (angle, min, max) { var result = angle; if (angle > max) { result = max; } else if (angle < min) { result = min; } return result; }, /** * A Linear Interpolation Method, mostly used by Phaser.Tween. * @method Phaser.Math#linearInterpolation * @param {number} v * @param {number} k * @return {number} */ linearInterpolation: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); if (k < 0) { return this.linear(v[0], v[1], f); } if (k > 1) { return this.linear(v[m], v[m - 1], m - f); } return this.linear(v[i], v[i + 1 > m ? m : i + 1], f - i); }, /** * A Bezier Interpolation Method, mostly used by Phaser.Tween. * @method Phaser.Math#bezierInterpolation * @param {number} v * @param {number} k * @return {number} */ bezierInterpolation: function (v, k) { var b = 0; var n = v.length - 1; for (var i = 0; i <= n; i++) { b += Math.pow(1 - k, n - i) * Math.pow(k, i) * v[i] * this.bernstein(n, i); } return b; }, /** * A Catmull Rom Interpolation Method, mostly used by Phaser.Tween. * @method Phaser.Math#catmullRomInterpolation * @param {number} v * @param {number} k * @return {number} */ catmullRomInterpolation: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); if (v[0] === v[m]) { if (k < 0) { i = Math.floor(f = m * (1 + k)); } return this.catmullRom(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i); } else { if (k < 0) { return v[0] - (this.catmullRom(v[0], v[0], v[1], v[1], -f) - v[0]); } if (k > 1) { return v[m] - (this.catmullRom(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]); } return this.catmullRom(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i); } }, /** * Description. * @method Phaser.Math#Linear * @param {number} p0 * @param {number} p1 * @param {number} t * @return {number} */ linear: function (p0, p1, t) { return (p1 - p0) * t + p0; }, /** * @method Phaser.Math#bernstein * @param {number} n * @param {number} i * @return {number} */ bernstein: function (n, i) { return this.factorial(n) / this.factorial(i) / this.factorial(n - i); }, /** * Description. * @method Phaser.Math#catmullRom * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @return {number} */ catmullRom: function (p0, p1, p2, p3, t) { var v0 = (p2 - p0) * 0.5, v1 = (p3 - p1) * 0.5, t2 = t * t, t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; }, /** * @method Phaser.Math#difference * @param {number} a * @param {number} b * @return {number} */ difference: function (a, b) { return Math.abs(a - b); }, /** * Fetch a random entry from the given array. * Will return null if random selection is missing, or array has no entries. * * @method Phaser.Math#getRandom * @param {array} objects - An array of objects. * @param {number} startIndex - Optional offset off the front of the array. Default value is 0, or the beginning of the array. * @param {number} length - Optional restriction on the number of values you want to randomly select from. * @return {object} The random object that was selected. */ getRandom: function (objects, startIndex, length) { if (typeof startIndex === "undefined") { startIndex = 0; } if (typeof length === "undefined") { length = 0; } if (objects != null) { var l = length; if ((l === 0) || (l > objects.length - startIndex)) { l = objects.length - startIndex; } if (l > 0) { return objects[startIndex + Math.floor(Math.random() * l)]; } } return null; }, /** * Removes a random object from the given array and returns it. * Will return null if random selection is missing, or array has no entries. * * @method Phaser.Math#removeRandom * @param {array} objects - An array of objects. * @param {number} startIndex - Optional offset off the front of the array. Default value is 0, or the beginning of the array. * @param {number} length - Optional restriction on the number of values you want to randomly select from. * @return {object} The random object that was removed. */ removeRandom: function (objects, startIndex, length) { if (typeof startIndex === "undefined") { startIndex = 0; } if (typeof length === "undefined") { length = 0; } if (objects != null) { var l = length; if ((l === 0) || (l > objects.length - startIndex)) { l = objects.length - startIndex; } if (l > 0) { var idx = startIndex + Math.floor(Math.random() * l); var removed = objects.splice(idx, 1); return removed[0]; } } return null; }, /** * Round down to the next whole number. E.g. floor(1.7) == 1, and floor(-2.7) == -2. * * @method Phaser.Math#floor * @param {number} Value Any number. * @return {number} The rounded value of that number. */ floor: function (value) { var n = value | 0; return (value > 0) ? (n) : ((n != value) ? (n - 1) : (n)); }, /** * Round up to the next whole number. E.g. ceil(1.3) == 2, and ceil(-2.3) == -3. * * @method Phaser.Math#ceil * @param {number} value - Any number. * @return {number} The rounded value of that number. */ ceil: function (value) { var n = value | 0; return (value > 0) ? ((n != value) ? (n + 1) : (n)) : (n); }, /** * Generate a sine and cosine table simultaneously and extremely quickly. Based on research by Franky of scene.at * <p> * The parameters allow you to specify the length, amplitude and frequency of the wave. Once you have called this function * you should get the results via getSinTable() and getCosTable(). This generator is fast enough to be used in real-time. * </p> * @method Phaser.Math#sinCosGenerator * @param {number} length - The length of the wave * @param {number} sinAmplitude - The amplitude to apply to the sine table (default 1.0) if you need values between say -+ 125 then give 125 as the value * @param {number} cosAmplitude - The amplitude to apply to the cosine table (default 1.0) if you need values between say -+ 125 then give 125 as the value * @param {number} frequency - The frequency of the sine and cosine table data * @return {Array} Returns the sine table */ sinCosGenerator: function (length, sinAmplitude, cosAmplitude, frequency) { if (typeof sinAmplitude === "undefined") { sinAmplitude = 1.0; } if (typeof cosAmplitude === "undefined") { cosAmplitude = 1.0; } if (typeof frequency === "undefined") { frequency = 1.0; } var sin = sinAmplitude; var cos = cosAmplitude; var frq = frequency * Math.PI / length; var cosTable = []; var sinTable = []; for (var c = 0; c < length; c++) { cos -= sin * frq; sin += cos * frq; cosTable[c] = cos; sinTable[c] = sin; } return { sin: sinTable, cos: cosTable, length: length }; }, /** * Removes the top element from the stack and re-inserts it onto the bottom, then returns it. * The original stack is modified in the process. This effectively moves the position of the data from the start to the end of the table. * * @method Phaser.Math#shift * @param {array} stack - The array to shift. * @return {any} The shifted value. */ shift: function (stack) { var s = stack.shift(); stack.push(s); return s; }, /** * Shuffles the data in the given array into a new order * @method Phaser.Math#shuffleArray * @param {array} array - The array to shuffle * @return {array} The array */ shuffleArray: function (array) { for (var i = array.length - 1; i > 0; i--) { var j = Math.floor(Math.random() * (i + 1)); var temp = array[i]; array[i] = array[j]; array[j] = temp; } return array; }, /** * Returns the distance between the two given set of coordinates. * * @method Phaser.Math#distance * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} The distance between the two sets of coordinates. */ distance: function (x1, y1, x2, y2) { var dx = x1 - x2; var dy = y1 - y2; return Math.sqrt(dx * dx + dy * dy); }, /** * Returns the distance between the two given set of coordinates at the power given. * * @method Phaser.Math#distancePow * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @param {number} [pow=2] * @return {number} The distance between the two sets of coordinates. */ distancePow: function (x1, y1, x2, y2, pow) { if (typeof pow === 'undefined') { pow = 2; } return Math.sqrt(Math.pow(x2 - x1, pow) + Math.pow(y2 - y1, pow)); }, /** * Returns the rounded distance between the two given set of coordinates. * * @method Phaser.Math#distanceRounded * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} The distance between this Point object and the destination Point object. */ distanceRounded: function (x1, y1, x2, y2) { return Math.round(Phaser.Math.distance(x1, y1, x2, y2)); }, /** * Force a value within the boundaries of two values. * Clamp value to range <a, b> * * @method Phaser.Math#clamp * @param {number} x * @param {number} a * @param {number} b * @return {number} */ clamp: function ( x, a, b ) { return ( x < a ) ? a : ( ( x > b ) ? b : x ); }, /** * Clamp value to range <a, inf). * * @method Phaser.Math#clampBottom * @param {number} x * @param {number} a * @return {number} */ clampBottom: function ( x, a ) { return x < a ? a : x; }, /** * Checks if two values are within the given tolerance of each other. * * @method Phaser.Math#within * @param {number} a - The first number to check * @param {number} b - The second number to check * @param {number} tolerance - The tolerance. Anything equal to or less than this is considered within the range. * @return {boolean} True if a is <= tolerance of b. */ within: function ( a, b, tolerance ) { return (Math.abs(a - b) <= tolerance); }, /** * Linear mapping from range <a1, a2> to range <b1, b2> * * @method Phaser.Math#mapLinear * @param {number} x the value to map * @param {number} a1 first endpoint of the range <a1, a2> * @param {number} a2 final endpoint of the range <a1, a2> * @param {number} b1 first endpoint of the range <b1, b2> * @param {number} b2 final endpoint of the range <b1, b2> * @return {number} */ mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, /** * Smoothstep function as detailed at http://en.wikipedia.org/wiki/Smoothstep * * @method Phaser.Math#smoothstep * @param {number} x * @param {number} min * @param {number} max * @return {number} */ smoothstep: function ( x, min, max ) { x = Math.max(0, Math.min(1, (x - min) / (max - min))); return x * x * (3 - 2 * x); }, /** * Smootherstep function as detailed at http://en.wikipedia.org/wiki/Smoothstep * * @method Phaser.Math#smootherstep * @param {number} x * @param {number} min * @param {number} max * @return {number} */ smootherstep: function ( x, min, max ) { x = Math.max(0, Math.min(1, (x - min) / (max - min))); return x * x * x * (x * (x * 6 - 15) + 10); }, /** * A value representing the sign of the value. * -1 for negative, +1 for positive, 0 if value is 0 * * @method Phaser.Math#sign * @param {number} x * @return {number} */ sign: function ( x ) { return ( x < 0 ) ? -1 : ( ( x > 0 ) ? 1 : 0 ); }, /** * Work out what percentage value a is of value b using the given base. * * @method Phaser.Math#percent * @param {number} a - The value to work out the percentage for. * @param {number} b - The value you wish to get the percentage of. * @param {number} [base=0] - The base value. * @return {number} The percentage a is of b, between 0 and 1. */ percent: function (a, b, base) { if (typeof base === 'undefined') { base = 0; } if (a > b || base > b) { return 1; } else if (a < base || base > a) { return 0; } else { return (a - base) / b; } }, /** * Convert degrees to radians. * * @method Phaser.Math#degToRad * @return {function} */ degToRad: (function() { var degreeToRadiansFactor = Math.PI / 180; return function ( degrees ) { return degrees * degreeToRadiansFactor; }; }()), /** * Convert degrees to radians. * * @method Phaser.Math#radToDeg * @return {function} */ radToDeg: (function() { var radianToDegreesFactor = 180 / Math.PI; return function ( radians ) { return radians * radianToDegreesFactor; }; }()) };