var Phaser; (function (Phaser) { (function (Physics) { /// /** * Phaser - Physics - Projection */ (function (Projection) { var Circle22Deg = (function () { function Circle22Deg() { } Circle22Deg.CollideS = function (x, y, oH, oV, obj, t) { //if the object is in a cell pointed at by signy, no collision will ever occur //otherwise, // //if we're colliding diagonally: // -collide vs. the appropriate vertex //if obj is in this tile: collide vs slope or vertex //if obj is horiz neighb in direction of slope: collide vs. slope or vertex //if obj is horiz neighb against the slope: // if(distance in y from circle to 90deg corner of tile < 1/2 tileheight, collide vs. face) // else(collide vs. corner of slope) (vert collision with a non-grid-aligned vert) //if obj is vert neighb against direction of slope: collide vs. face var signx = t.signx; var signy = t.signy; if (0 < (signy * oV)) { //object will never collide vs tile, it can't reach that far return Phaser.Physics.Circle.COL_NONE; } else if (oH == 0) { if (oV == 0) { //colliding with current tile //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var r = obj.radius; var ox = obj.pos.x - (t.pos.x - (signx * t.xw)); var oy = obj.pos.y - t.pos.y; //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the normal or axially. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox * -sy) + (oy * sx); if (0 < (perp * signx * signy)) { //collide vs. vertex var len = Math.sqrt(ox * ox + oy * oy); var pen = r - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Circle.COL_OTHER; } } else { //collide vs. slope or vs axis ox -= r * sx; oy -= r * sy; //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox * sx) + (oy * sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp; sy *= -dp; var lenN = Math.sqrt(sx * sx + sy * sy); var lenP; if (x < y) { //penetration in x is smaller lenP = x; y = 0; if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; if ((obj.pos.y - t.pos.y) < 0) { y *= -1; } } if (lenP < lenN) { obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t); return Phaser.Physics.Circle.COL_OTHER; } } } } else { //colliding vertically; we can assume that (signy*oV) < 0 //due to the first conditional far above obj.reportCollisionVsWorld(0, y * oV, 0, oV, t); return Phaser.Physics.Circle.COL_AXIS; } } else if (oV == 0) { if ((signx * oH) < 0) { //colliding with face/edge OR with corner of wedge, depending on our position vertically //collide vs. vertex //get diag vertex position var vx = t.pos.x - (signx * t.xw); var vy = t.pos.y; var dx = obj.pos.x - vx; var dy = obj.pos.y - vy; if ((dy * signy) < 0) { //colliding vs face obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Circle.COL_AXIS; } else { //colliding vs. vertex var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { if (len == 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Circle.COL_OTHER; } } } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide var sx = t.sx; var sy = t.sy; var ox = obj.pos.x - (t.pos.x + (oH * t.xw)); var oy = obj.pos.y - (t.pos.y - (signy * t.yw)); //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the normal, otherwise by the vertex. //(NOTE: this is the opposite logic of the vertical case; // for vertical, if the perp prod and the slope's slope agree, it's outside. // for horizontal, if the perp prod and the slope's slope agree, circle is inside. // ..but this is only a property of flahs' coord system (i.e the rules might swap // in righthanded systems)) //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox * -sy) + (oy * sx); if ((perp * signx * signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox * ox + oy * oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox * sx) + (oy * sy); var pen = obj.radius - Math.abs(dp); if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t); return Phaser.Physics.Circle.COL_OTHER; } } } } else { //colliding diagonally; due to the first conditional above, //obj is vertically offset against slope, and offset in either direction horizontally //collide vs. vertex //get diag vertex position var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx; var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { if (len == 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Circle.COL_OTHER; } } return Phaser.Physics.Circle.COL_NONE; }; Circle22Deg.CollideB = function (x, y, oH, oV, obj, t) { //if we're colliding diagonally: // -if we're in the cell pointed at by the normal, collide vs slope, else // collide vs. the appropriate corner/vertex // //if obj is in this tile: collide as with aabb // //if obj is horiz or vertical neighbor AGAINST the slope: collide with edge // //if obj is horiz neighb in direction of slope: collide vs. slope or vertex or edge // //if obj is vert neighb in direction of slope: collide vs. slope or vertex var signx = t.signx; var signy = t.signy; var sx; var sy; if (oH == 0) { if (oV == 0) { //colliding with current cell sx = t.sx; sy = t.sy; var r = obj.radius; var ox = (obj.pos.x - (sx * r)) - (t.pos.x - (signx * t.xw)); var oy = (obj.pos.y - (sy * r)) - (t.pos.y + (signy * t.yw)); //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox * sx) + (oy * sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object sx *= -dp; sy *= -dp; var lenN = Math.sqrt(sx * sx + sy * sy); var lenP; if (x < y) { //penetration in x is smaller lenP = x; y = 0; if ((obj.pos.x - t.pos.x) < 0) { x *= -1; } } else { //penetration in y is smaller lenP = y; x = 0; if ((obj.pos.y - t.pos.y) < 0) { y *= -1; } } if (lenP < lenN) { obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t); return Phaser.Physics.Circle.COL_AXIS; } else { obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t); return Phaser.Physics.Circle.COL_OTHER; } } } else { if ((signy * oV) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(0, y * oV, 0, oV, t); return Phaser.Physics.Circle.COL_AXIS; } else { //we could only be colliding vs the slope OR a vertex //look at the vector form the closest vert to the circle to decide sx = t.sx; sy = t.sy; var ox = obj.pos.x - (t.pos.x - (signx * t.xw)); var oy = obj.pos.y - (t.pos.y + (signy * t.yw)); //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the vertex, otherwise by the normal. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox * -sy) + (oy * sx); if (0 < (perp * signx * signy)) { //collide vs. vertex var len = Math.sqrt(ox * ox + oy * oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox * sx) + (oy * sy); var pen = obj.radius - Math.abs(dp); if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t); return Phaser.Physics.Circle.COL_OTHER; } } } } } else if (oV == 0) { if ((signx * oH) < 0) { //colliding with face/edge obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Circle.COL_AXIS; } else { //colliding with edge, slope, or vertex var ox = obj.pos.x - (t.pos.x + (signx * t.xw)); var oy = obj.pos.y - t.pos.y; if ((oy * signy) < 0) { //we're colliding with the halfface obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t); return Phaser.Physics.Circle.COL_AXIS; } else { //colliding with the vertex or slope sx = t.sx; sy = t.sy; //if the component of (ox,oy) parallel to the normal's righthand normal //has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy) //then we project by the slope, otherwise by the vertex. //note that this is simply a VERY tricky/weird method of determining //if the circle is in side the slope/face's voronio region, or that of the vertex. var perp = (ox * -sy) + (oy * sx); if ((perp * signx * signy) < 0) { //collide vs. vertex var len = Math.sqrt(ox * ox + oy * oy); var pen = obj.radius - len; if (0 < pen) { //note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0 ox /= len; oy /= len; obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t); return Phaser.Physics.Circle.COL_OTHER; } } else { //collide vs. slope //if the component of (ox,oy) parallel to the normal is less than the circle radius, we're //penetrating the slope. note that this method of penetration calculation doesn't hold //in general (i.e it won't work if the circle is in the slope), but works in this case //because we know the circle is in a neighboring cell var dp = (ox * sx) + (oy * sy); var pen = obj.radius - Math.abs(dp); if (0 < pen) { //collision; circle out along normal by penetration amount obj.reportCollisionVsWorld(sx * pen, sy * pen, t.sx, t.sy, t); return Phaser.Physics.Circle.COL_OTHER; } } } } } else { if (0 < ((signx * oH) + (signy * oV))) { //the dotprod of slope normal and cell offset is strictly positive, //therefore obj is in the diagonal neighb pointed at by the normal. //collide vs slope //we should really precalc this at compile time, but for now, fuck it var slen = Math.sqrt(2 * 2 + 1 * 1); sx = (signx * 1) / slen; sy = (signy * 2) / slen; var r = obj.radius; var ox = (obj.pos.x - (sx * r)) - (t.pos.x - (signx * t.xw)); var oy = (obj.pos.y - (sy * r)) - (t.pos.y + (signy * t.yw)); //if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope //and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy) var dp = (ox * sx) + (oy * sy); if (dp < 0) { //collision; project delta onto slope and use this to displace the object //(sx,sy)*-dp is the projection vector obj.reportCollisionVsWorld(-sx * dp, -sy * dp, t.sx, t.sy, t); return Phaser.Physics.Circle.COL_OTHER; } return Phaser.Physics.Circle.COL_NONE; } else { //collide vs the appropriate vertex var vx = t.pos.x + (oH * t.xw); var vy = t.pos.y + (oV * t.yw); var dx = obj.pos.x - vx; var dy = obj.pos.y - vy; var len = Math.sqrt(dx * dx + dy * dy); var pen = obj.radius - len; if (0 < pen) { if (len == 0) { //project out by 45deg dx = oH / Math.SQRT2; dy = oV / Math.SQRT2; } else { dx /= len; dy /= len; } obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t); return Phaser.Physics.Circle.COL_OTHER; } } } return Phaser.Physics.Circle.COL_NONE; }; return Circle22Deg; })(); Projection.Circle22Deg = Circle22Deg; })(Physics.Projection || (Physics.Projection = {})); var Projection = Physics.Projection; })(Phaser.Physics || (Phaser.Physics = {})); var Physics = Phaser.Physics; })(Phaser || (Phaser = {}));