/** * @author Richard Davey <rich@photonstorm.com> * @copyright 2016 Photon Storm Ltd. * @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License} */ /** * A collection of useful mathematical functions. * * These are normally accessed through `game.math`. * * @class Phaser.Math * @static * @see {@link Phaser.Utils} * @see {@link Phaser.ArrayUtils} */ Phaser.Math = { /** * Twice PI. * @property {number} Phaser.Math#PI2 * @default ~6.283 */ PI2: Math.PI * 2, /** * Two number are fuzzyEqual if their difference is less than epsilon. * * @method Phaser.Math#fuzzyEqual * @param {number} a - The first number to compare. * @param {number} b - The second number to compare. * @param {number} [epsilon=0.0001] - The epsilon (a small value used in the calculation) * @return {boolean} True if |a-b|<epsilon */ fuzzyEqual: function (a, b, epsilon) { if (epsilon === undefined) { epsilon = 0.0001; } return Math.abs(a - b) < epsilon; }, /** * `a` is fuzzyLessThan `b` if it is less than b + epsilon. * * @method Phaser.Math#fuzzyLessThan * @param {number} a - The first number to compare. * @param {number} b - The second number to compare. * @param {number} [epsilon=0.0001] - The epsilon (a small value used in the calculation) * @return {boolean} True if a<b+epsilon */ fuzzyLessThan: function (a, b, epsilon) { if (epsilon === undefined) { epsilon = 0.0001; } return a < b + epsilon; }, /** * `a` is fuzzyGreaterThan `b` if it is more than b - epsilon. * * @method Phaser.Math#fuzzyGreaterThan * @param {number} a - The first number to compare. * @param {number} b - The second number to compare. * @param {number} [epsilon=0.0001] - The epsilon (a small value used in the calculation) * @return {boolean} True if a>b+epsilon */ fuzzyGreaterThan: function (a, b, epsilon) { if (epsilon === undefined) { epsilon = 0.0001; } return a > b - epsilon; }, /** * Applies a fuzzy ceil to the given value. * * @method Phaser.Math#fuzzyCeil * @param {number} val - The value to ceil. * @param {number} [epsilon=0.0001] - The epsilon (a small value used in the calculation) * @return {number} ceiling(val-epsilon) */ fuzzyCeil: function (val, epsilon) { if (epsilon === undefined) { epsilon = 0.0001; } return Math.ceil(val - epsilon); }, /** * Applies a fuzzy floor to the given value. * * @method Phaser.Math#fuzzyFloor * @param {number} val - The value to floor. * @param {number} [epsilon=0.0001] - The epsilon (a small value used in the calculation) * @return {number} floor(val+epsilon) */ fuzzyFloor: function (val, epsilon) { if (epsilon === undefined) { epsilon = 0.0001; } return Math.floor(val + epsilon); }, /** * Averages all values passed to the function and returns the result. * * @method Phaser.Math#average * @params {...number} The numbers to average * @return {number} The average of all given values. */ average: function () { var sum = 0; var len = arguments.length; for (var i = 0; i < len; i++) { sum += (+arguments[i]); } return sum / len; }, /** * @method Phaser.Math#shear * @param {number} n * @return {number} n mod 1 */ shear: function (n) { return n % 1; }, /** * Snap a value to nearest grid slice, using rounding. * * Example: if you have an interval gap of 5 and a position of 12... you will snap to 10 whereas 14 will snap to 15. * * @method Phaser.Math#snapTo * @param {number} input - The value to snap. * @param {number} gap - The interval gap of the grid. * @param {number} [start] - Optional starting offset for gap. * @return {number} */ snapTo: function (input, gap, start) { if (start === undefined) { start = 0; } if (gap === 0) { return input; } input -= start; input = gap * Math.round(input / gap); return start + input; }, /** * Snap a value to nearest grid slice, using floor. * * Example: if you have an interval gap of 5 and a position of 12... you will snap to 10. * As will 14 snap to 10... but 16 will snap to 15. * * @method Phaser.Math#snapToFloor * @param {number} input - The value to snap. * @param {number} gap - The interval gap of the grid. * @param {number} [start] - Optional starting offset for gap. * @return {number} */ snapToFloor: function (input, gap, start) { if (start === undefined) { start = 0; } if (gap === 0) { return input; } input -= start; input = gap * Math.floor(input / gap); return start + input; }, /** * Snap a value to nearest grid slice, using ceil. * * Example: if you have an interval gap of 5 and a position of 12... you will snap to 15. * As will 14 will snap to 15... but 16 will snap to 20. * * @method Phaser.Math#snapToCeil * @param {number} input - The value to snap. * @param {number} gap - The interval gap of the grid. * @param {number} [start] - Optional starting offset for gap. * @return {number} */ snapToCeil: function (input, gap, start) { if (start === undefined) { start = 0; } if (gap === 0) { return input; } input -= start; input = gap * Math.ceil(input / gap); return start + input; }, /** * Round to some place comparative to a `base`, default is 10 for decimal place. * The `place` is represented by the power applied to `base` to get that place. * * e.g. 2000/7 ~= 285.714285714285714285714 ~= (bin)100011101.1011011011011011 * * roundTo(2000/7,3) === 0 * roundTo(2000/7,2) == 300 * roundTo(2000/7,1) == 290 * roundTo(2000/7,0) == 286 * roundTo(2000/7,-1) == 285.7 * roundTo(2000/7,-2) == 285.71 * roundTo(2000/7,-3) == 285.714 * roundTo(2000/7,-4) == 285.7143 * roundTo(2000/7,-5) == 285.71429 * * roundTo(2000/7,3,2) == 288 -- 100100000 * roundTo(2000/7,2,2) == 284 -- 100011100 * roundTo(2000/7,1,2) == 286 -- 100011110 * roundTo(2000/7,0,2) == 286 -- 100011110 * roundTo(2000/7,-1,2) == 285.5 -- 100011101.1 * roundTo(2000/7,-2,2) == 285.75 -- 100011101.11 * roundTo(2000/7,-3,2) == 285.75 -- 100011101.11 * roundTo(2000/7,-4,2) == 285.6875 -- 100011101.1011 * roundTo(2000/7,-5,2) == 285.71875 -- 100011101.10111 * * Note what occurs when we round to the 3rd space (8ths place), 100100000, this is to be assumed * because we are rounding 100011.1011011011011011 which rounds up. * * @method Phaser.Math#roundTo * @param {number} value - The value to round. * @param {number} place - The place to round to. * @param {number} base - The base to round in... default is 10 for decimal. * @return {number} */ roundTo: function (value, place, base) { if (place === undefined) { place = 0; } if (base === undefined) { base = 10; } var p = Math.pow(base, -place); return Math.round(value * p) / p; }, /** * @method Phaser.Math#floorTo * @param {number} value - The value to round. * @param {number} place - The place to round to. * @param {number} base - The base to round in... default is 10 for decimal. * @return {number} */ floorTo: function (value, place, base) { if (place === undefined) { place = 0; } if (base === undefined) { base = 10; } var p = Math.pow(base, -place); return Math.floor(value * p) / p; }, /** * @method Phaser.Math#ceilTo * @param {number} value - The value to round. * @param {number} place - The place to round to. * @param {number} base - The base to round in... default is 10 for decimal. * @return {number} */ ceilTo: function (value, place, base) { if (place === undefined) { place = 0; } if (base === undefined) { base = 10; } var p = Math.pow(base, -place); return Math.ceil(value * p) / p; }, /** * Find the angle of a segment from (x1, y1) -> (x2, y2). * @method Phaser.Math#angleBetween * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} The angle, in radians. */ angleBetween: function (x1, y1, x2, y2) { return Math.atan2(y2 - y1, x2 - x1); }, /** * Find the angle of a segment from (x1, y1) -> (x2, y2). * Note that the difference between this method and Math.angleBetween is that this assumes the y coordinate travels * down the screen. * * @method Phaser.Math#angleBetweenY * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} The angle, in radians. */ angleBetweenY: function (x1, y1, x2, y2) { return Math.atan2(x2 - x1, y2 - y1); }, /** * Find the angle of a segment from (point1.x, point1.y) -> (point2.x, point2.y). * @method Phaser.Math#angleBetweenPoints * @param {Phaser.Point} point1 * @param {Phaser.Point} point2 * @return {number} The angle, in radians. */ angleBetweenPoints: function (point1, point2) { return Math.atan2(point2.y - point1.y, point2.x - point1.x); }, /** * Find the angle of a segment from (point1.x, point1.y) -> (point2.x, point2.y). * @method Phaser.Math#angleBetweenPointsY * @param {Phaser.Point} point1 * @param {Phaser.Point} point2 * @return {number} The angle, in radians. */ angleBetweenPointsY: function (point1, point2) { return Math.atan2(point2.x - point1.x, point2.y - point1.y); }, /** * Reverses an angle. * @method Phaser.Math#reverseAngle * @param {number} angleRad - The angle to reverse, in radians. * @return {number} Returns the reverse angle, in radians. */ reverseAngle: function (angleRad) { return this.normalizeAngle(angleRad + Math.PI, true); }, /** * Normalizes an angle to the [0,2pi) range. * @method Phaser.Math#normalizeAngle * @param {number} angleRad - The angle to normalize, in radians. * @return {number} Returns the angle, fit within the [0,2pi] range, in radians. */ normalizeAngle: function (angleRad) { angleRad = angleRad % (2 * Math.PI); return angleRad >= 0 ? angleRad : angleRad + 2 * Math.PI; }, /** * Adds the given amount to the value, but never lets the value go over the specified maximum. * * @method Phaser.Math#maxAdd * @param {number} value - The value to add the amount to. * @param {number} amount - The amount to add to the value. * @param {number} max - The maximum the value is allowed to be. * @return {number} */ maxAdd: function (value, amount, max) { return Math.min(value + amount, max); }, /** * Subtracts the given amount from the value, but never lets the value go below the specified minimum. * * @method Phaser.Math#minSub * @param {number} value - The base value. * @param {number} amount - The amount to subtract from the base value. * @param {number} min - The minimum the value is allowed to be. * @return {number} The new value. */ minSub: function (value, amount, min) { return Math.max(value - amount, min); }, /** * Ensures that the value always stays between min and max, by wrapping the value around. * * If `max` is not larger than `min` the result is 0. * * @method Phaser.Math#wrap * @param {number} value - The value to wrap. * @param {number} min - The minimum the value is allowed to be. * @param {number} max - The maximum the value is allowed to be, should be larger than `min`. * @return {number} The wrapped value. */ wrap: function (value, min, max) { var range = max - min; if (range <= 0) { return 0; } var result = (value - min) % range; if (result < 0) { result += range; } return result + min; }, /** * Adds value to amount and ensures that the result always stays between 0 and max, by wrapping the value around. * * Values _must_ be positive integers, and are passed through Math.abs. See {@link Phaser.Math#wrap} for an alternative. * * @method Phaser.Math#wrapValue * @param {number} value - The value to add the amount to. * @param {number} amount - The amount to add to the value. * @param {number} max - The maximum the value is allowed to be. * @return {number} The wrapped value. */ wrapValue: function (value, amount, max) { var diff; value = Math.abs(value); amount = Math.abs(amount); max = Math.abs(max); diff = (value + amount) % max; return diff; }, /** * Returns true if the number given is odd. * * @method Phaser.Math#isOdd * @param {integer} n - The number to check. * @return {boolean} True if the given number is odd. False if the given number is even. */ isOdd: function (n) { // Does not work with extremely large values return !!(n & 1); }, /** * Returns true if the number given is even. * * @method Phaser.Math#isEven * @param {integer} n - The number to check. * @return {boolean} True if the given number is even. False if the given number is odd. */ isEven: function (n) { // Does not work with extremely large values return !(n & 1); }, /** * Variation of Math.min that can be passed either an array of numbers or the numbers as parameters. * * Prefer the standard `Math.min` function when appropriate. * * @method Phaser.Math#min * @return {number} The lowest value from those given. * @see {@link http://jsperf.com/math-s-min-max-vs-homemade} */ min: function () { if (arguments.length === 1 && typeof arguments[0] === 'object') { var data = arguments[0]; } else { var data = arguments; } for (var i = 1, min = 0, len = data.length; i < len; i++) { if (data[i] < data[min]) { min = i; } } return data[min]; }, /** * Variation of Math.max that can be passed either an array of numbers or the numbers as parameters. * * Prefer the standard `Math.max` function when appropriate. * * @method Phaser.Math#max * @return {number} The largest value from those given. * @see {@link http://jsperf.com/math-s-min-max-vs-homemade} */ max: function () { if (arguments.length === 1 && typeof arguments[0] === 'object') { var data = arguments[0]; } else { var data = arguments; } for (var i = 1, max = 0, len = data.length; i < len; i++) { if (data[i] > data[max]) { max = i; } } return data[max]; }, /** * Variation of Math.min that can be passed a property and either an array of objects or the objects as parameters. * It will find the lowest matching property value from the given objects. * * @method Phaser.Math#minProperty * @return {number} The lowest value from those given. */ minProperty: function (property) { if (arguments.length === 2 && typeof arguments[1] === 'object') { var data = arguments[1]; } else { var data = arguments.slice(1); } for (var i = 1, min = 0, len = data.length; i < len; i++) { if (data[i][property] < data[min][property]) { min = i; } } return data[min][property]; }, /** * Variation of Math.max that can be passed a property and either an array of objects or the objects as parameters. * It will find the largest matching property value from the given objects. * * @method Phaser.Math#maxProperty * @return {number} The largest value from those given. */ maxProperty: function (property) { if (arguments.length === 2 && typeof arguments[1] === 'object') { var data = arguments[1]; } else { var data = arguments.slice(1); } for (var i = 1, max = 0, len = data.length; i < len; i++) { if (data[i][property] > data[max][property]) { max = i; } } return data[max][property]; }, /** * Keeps an angle value between -180 and +180; or -PI and PI if radians. * * @method Phaser.Math#wrapAngle * @param {number} angle - The angle value to wrap * @param {boolean} [radians=false] - Set to `true` if the angle is given in radians, otherwise degrees is expected. * @return {number} The new angle value; will be the same as the input angle if it was within bounds. */ wrapAngle: function (angle, radians) { return radians ? this.wrap(angle, -Math.PI, Math.PI) : this.wrap(angle, -180, 180); }, /** * A Linear Interpolation Method, mostly used by Phaser.Tween. * * @method Phaser.Math#linearInterpolation * @param {Array} v - The input array of values to interpolate between. * @param {number} k - The percentage of interpolation, between 0 and 1. * @return {number} The interpolated value */ linearInterpolation: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); if (k < 0) { return this.linear(v[0], v[1], f); } if (k > 1) { return this.linear(v[m], v[m - 1], m - f); } return this.linear(v[i], v[i + 1 > m ? m : i + 1], f - i); }, /** * A Bezier Interpolation Method, mostly used by Phaser.Tween. * * @method Phaser.Math#bezierInterpolation * @param {Array} v - The input array of values to interpolate between. * @param {number} k - The percentage of interpolation, between 0 and 1. * @return {number} The interpolated value */ bezierInterpolation: function (v, k) { var b = 0; var n = v.length - 1; for (var i = 0; i <= n; i++) { b += Math.pow(1 - k, n - i) * Math.pow(k, i) * v[i] * this.bernstein(n, i); } return b; }, /** * A Catmull Rom Interpolation Method, mostly used by Phaser.Tween. * * @method Phaser.Math#catmullRomInterpolation * @param {Array} v - The input array of values to interpolate between. * @param {number} k - The percentage of interpolation, between 0 and 1. * @return {number} The interpolated value */ catmullRomInterpolation: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); if (v[0] === v[m]) { if (k < 0) { i = Math.floor(f = m * (1 + k)); } return this.catmullRom(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i); } else { if (k < 0) { return v[0] - (this.catmullRom(v[0], v[0], v[1], v[1], -f) - v[0]); } if (k > 1) { return v[m] - (this.catmullRom(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]); } return this.catmullRom(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i); } }, /** * Calculates a linear (interpolation) value over t. * * @method Phaser.Math#linear * @param {number} p0 * @param {number} p1 * @param {number} t * @return {number} */ linear: function (p0, p1, t) { return (p1 - p0) * t + p0; }, /** * @method Phaser.Math#bernstein * @protected * @param {number} n * @param {number} i * @return {number} */ bernstein: function (n, i) { return this.factorial(n) / this.factorial(i) / this.factorial(n - i); }, /** * @method Phaser.Math#factorial * @param {number} value - the number you want to evaluate * @return {number} */ factorial : function( value ){ if (value === 0) { return 1; } var res = value; while(--value) { res *= value; } return res; }, /** * Calculates a catmum rom value. * * @method Phaser.Math#catmullRom * @protected * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @return {number} */ catmullRom: function (p0, p1, p2, p3, t) { var v0 = (p2 - p0) * 0.5, v1 = (p3 - p1) * 0.5, t2 = t * t, t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; }, /** * The (absolute) difference between two values. * * @method Phaser.Math#difference * @param {number} a * @param {number} b * @return {number} */ difference: function (a, b) { return Math.abs(a - b); }, /** * Round to the next whole number _away_ from zero. * * @method Phaser.Math#roundAwayFromZero * @param {number} value - Any number. * @return {integer} The rounded value of that number. */ roundAwayFromZero: function (value) { // "Opposite" of truncate. return (value > 0) ? Math.ceil(value) : Math.floor(value); }, /** * Generate a sine and cosine table simultaneously and extremely quickly. * The parameters allow you to specify the length, amplitude and frequency of the wave. * This generator is fast enough to be used in real-time. * Code based on research by Franky of scene.at * * @method Phaser.Math#sinCosGenerator * @param {number} length - The length of the wave * @param {number} sinAmplitude - The amplitude to apply to the sine table (default 1.0) if you need values between say -+ 125 then give 125 as the value * @param {number} cosAmplitude - The amplitude to apply to the cosine table (default 1.0) if you need values between say -+ 125 then give 125 as the value * @param {number} frequency - The frequency of the sine and cosine table data * @return {{sin:number[], cos:number[]}} Returns the table data. */ sinCosGenerator: function (length, sinAmplitude, cosAmplitude, frequency) { if (sinAmplitude === undefined) { sinAmplitude = 1.0; } if (cosAmplitude === undefined) { cosAmplitude = 1.0; } if (frequency === undefined) { frequency = 1.0; } var sin = sinAmplitude; var cos = cosAmplitude; var frq = frequency * Math.PI / length; var cosTable = []; var sinTable = []; for (var c = 0; c < length; c++) { cos -= sin * frq; sin += cos * frq; cosTable[c] = cos; sinTable[c] = sin; } return { sin: sinTable, cos: cosTable, length: length }; }, /** * Returns the euclidian distance between the two given set of coordinates. * * @method Phaser.Math#distance * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} The distance between the two sets of coordinates. */ distance: function (x1, y1, x2, y2) { var dx = x1 - x2; var dy = y1 - y2; return Math.sqrt(dx * dx + dy * dy); }, /** * Returns the euclidean distance squared between the two given set of * coordinates (cuts out a square root operation before returning). * * @method Phaser.Math#distanceSq * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @return {number} The distance squared between the two sets of coordinates. */ distanceSq: function (x1, y1, x2, y2) { var dx = x1 - x2; var dy = y1 - y2; return dx * dx + dy * dy; }, /** * Returns the distance between the two given set of coordinates at the power given. * * @method Phaser.Math#distancePow * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @param {number} [pow=2] * @return {number} The distance between the two sets of coordinates. */ distancePow: function (x1, y1, x2, y2, pow) { if (pow === undefined) { pow = 2; } return Math.sqrt(Math.pow(x2 - x1, pow) + Math.pow(y2 - y1, pow)); }, /** * Force a value within the boundaries by clamping it to the range `min`, `max`. * * @method Phaser.Math#clamp * @param {float} v - The value to be clamped. * @param {float} min - The minimum bounds. * @param {float} max - The maximum bounds. * @return {number} The clamped value. */ clamp: function (v, min, max) { if (v < min) { return min; } else if (max < v) { return max; } else { return v; } }, /** * Clamp `x` to the range `[a, Infinity)`. * Roughly the same as `Math.max(x, a)`, except for NaN handling. * * @method Phaser.Math#clampBottom * @param {number} x * @param {number} a * @return {number} */ clampBottom: function (x, a) { return x < a ? a : x; }, /** * Checks if two values are within the given tolerance of each other. * * @method Phaser.Math#within * @param {number} a - The first number to check * @param {number} b - The second number to check * @param {number} tolerance - The tolerance. Anything equal to or less than this is considered within the range. * @return {boolean} True if a is <= tolerance of b. * @see {@link Phaser.Math.fuzzyEqual} */ within: function (a, b, tolerance) { return (Math.abs(a - b) <= tolerance); }, /** * Linear mapping from range <a1, a2> to range <b1, b2> * * @method Phaser.Math#mapLinear * @param {number} x the value to map * @param {number} a1 first endpoint of the range <a1, a2> * @param {number} a2 final endpoint of the range <a1, a2> * @param {number} b1 first endpoint of the range <b1, b2> * @param {number} b2 final endpoint of the range <b1, b2> * @return {number} */ mapLinear: function (x, a1, a2, b1, b2) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, /** * Smoothstep function as detailed at http://en.wikipedia.org/wiki/Smoothstep * * @method Phaser.Math#smoothstep * @param {float} x - The input value. * @param {float} min - The left edge. Should be smaller than the right edge. * @param {float} max - The right edge. * @return {float} A value between 0 and 1. */ smoothstep: function (x, min, max) { // Scale, bias and saturate x to 0..1 range x = Math.max(0, Math.min(1, (x - min) / (max - min))); // Evaluate polynomial return x * x * (3 - 2 * x); }, /** * Smootherstep function as detailed at http://en.wikipedia.org/wiki/Smoothstep * * @method Phaser.Math#smootherstep * @param {float} x - The input value. * @param {float} min - The left edge. Should be smaller than the right edge. * @param {float} max - The right edge. * @return {float} A value between 0 and 1. */ smootherstep: function (x, min, max) { x = Math.max(0, Math.min(1, (x - min) / (max - min))); return x * x * x * (x * (x * 6 - 15) + 10); }, /** * A value representing the sign of the value: -1 for negative, +1 for positive, 0 if value is 0. * * This works differently from `Math.sign` for values of NaN and -0, etc. * * @method Phaser.Math#sign * @param {number} x * @return {integer} An integer in {-1, 0, 1} */ sign: function (x) { return ( x < 0 ) ? -1 : ( ( x > 0 ) ? 1 : 0 ); }, /** * Work out what percentage value `a` is of value `b` using the given base. * * @method Phaser.Math#percent * @param {number} a - The value to work out the percentage for. * @param {number} b - The value you wish to get the percentage of. * @param {number} [base=0] - The base value. * @return {number} The percentage a is of b, between 0 and 1. */ percent: function (a, b, base) { if (base === undefined) { base = 0; } if (a > b || base > b) { return 1; } else if (a < base || base > a) { return 0; } else { return (a - base) / b; } } }; var degreeToRadiansFactor = Math.PI / 180; var radianToDegreesFactor = 180 / Math.PI; /** * Convert degrees to radians. * * @method Phaser.Math#degToRad * @param {number} degrees - Angle in degrees. * @return {number} Angle in radians. */ Phaser.Math.degToRad = function degToRad (degrees) { return degrees * degreeToRadiansFactor; }; /** * Convert radians to degrees. * * @method Phaser.Math#radToDeg * @param {number} radians - Angle in radians. * @return {number} Angle in degrees */ Phaser.Math.radToDeg = function radToDeg (radians) { return radians * radianToDegreesFactor; };