browserify/requirejs error with SAT module fixed

This commit is contained in:
Luiz Bills 2014-02-06 10:07:23 -02:00
parent 16fa37081f
commit b7bb52696f

View file

@ -6,33 +6,7 @@
// polygons using the Separating Axis Theorem.
/** @preserve SAT.js - Version 0.2 - Copyright 2013 - Jim Riecken <jimr@jimr.ca> - released under the MIT License. https://github.com/jriecken/sat-js */
/*global define: false, module: false*/
/*jshint shadow:true, sub:true, forin:true, noarg:true, noempty:true,
eqeqeq:true, bitwise:true, strict:true, undef:true,
curly:true, browser:true */
// Create a UMD wrapper for SAT. Works in:
//
// - Plain browser via global SAT variable
// - AMD loader (like require.js)
// - Node.js
//
// The quoted properties all over the place are used so that the Closure Compiler
// does not mangle the exposed API in advanced mode.
/**
* @param {*} root - The global scope
* @param {Function} factory - Factory that creates SAT module
*/
(function (root, factory) {
"use strict";
if (typeof define === 'function' && define['amd']) {
define(factory);
} else if (typeof exports === 'object') {
module['exports'] = factory();
} else {
root['SAT'] = factory();
}
}(this, function () {
var SAT = (function () {
"use strict";
var SAT = {};
@ -45,7 +19,7 @@
// Create a new Vector, optionally passing in the `x` and `y` coordinates. If
// a coordinate is not specified, it will be set to `0`
/**
/**
* @param {?number=} x The x position.
* @param {?number=} y The y position.
* @constructor
@ -118,7 +92,7 @@
this['y'] = -this['y'];
return this;
};
// Normalize this vector. (make it have length of `1`)
/**
@ -132,7 +106,7 @@
}
return this;
};
// Add another vector to this one.
/**
* @param {Vector} other The other Vector.
@ -143,7 +117,7 @@
this['y'] += other['y'];
return this;
};
// Subtract another vector from this one.
/**
* @param {Vector} other The other Vector.
@ -154,7 +128,7 @@
this['y'] -= other['y'];
return this;
};
// Scale this vector. An independant scaling factor can be provided
// for each axis, or a single scaling factor that will scale both `x` and `y`.
/**
@ -166,9 +140,9 @@
Vector.prototype['scale'] = Vector.prototype.scale = function(x,y) {
this['x'] *= x;
this['y'] *= y || x;
return this;
return this;
};
// Project this vector on to another vector.
/**
* @param {Vector} other The vector to project onto.
@ -180,7 +154,7 @@
this['y'] = amt * other['y'];
return this;
};
// Project this vector onto a vector of unit length. This is slightly more efficient
// than `project` when dealing with unit vectors.
/**
@ -193,7 +167,7 @@
this['y'] = amt * other['y'];
return this;
};
// Reflect this vector on an arbitrary axis.
/**
* @param {Vector} axis The vector representing the axis.
@ -207,7 +181,7 @@
this['y'] -= y;
return this;
};
// Reflect this vector on an arbitrary axis (represented by a unit vector). This is
// slightly more efficient than `reflect` when dealing with an axis that is a unit vector.
/**
@ -222,7 +196,7 @@
this['y'] -= y;
return this;
};
// Get the dot product of this vector and another.
/**
* @param {Vector} other The vector to dot this one against.
@ -231,7 +205,7 @@
Vector.prototype['dot'] = Vector.prototype.dot = function(other) {
return this['x'] * other['x'] + this['y'] * other['y'];
};
// Get the squared length of this vector.
/**
* @return {number} The length^2 of this vector.
@ -239,7 +213,7 @@
Vector.prototype['len2'] = Vector.prototype.len2 = function() {
return this.dot(this);
};
// Get the length of this vector.
/**
* @return {number} The length of this vector.
@ -247,7 +221,7 @@
Vector.prototype['len'] = Vector.prototype.len = function() {
return Math.sqrt(this.len2());
};
// ## Circle
//
// Represents a circle with a position and a radius.
@ -290,7 +264,7 @@
this.recalc();
}
SAT['Polygon'] = Polygon;
// Recalculates the edges and normals of the polygon. This **must** be called
// if the `points` array is modified at all and the edges or normals are to be
// accessed.
@ -309,7 +283,7 @@
var points = this['points'];
var len = points.length;
for (var i = 0; i < len; i++) {
var p1 = points[i];
var p1 = points[i];
var p2 = i < len - 1 ? points[i + 1] : points[0];
var e = new Vector().copy(p2).sub(p1);
var n = new Vector().copy(e).perp().normalize();
@ -418,11 +392,11 @@
var w = this['w'];
var h = this['h'];
return new Polygon(new Vector(pos['x'], pos['y']), [
new Vector(), new Vector(w, 0),
new Vector(), new Vector(w, 0),
new Vector(w,h), new Vector(0,h)
]);
};
// ## Response
//
// An object representing the result of an intersection. Contains:
@ -433,7 +407,7 @@
// - Whether the first object is entirely inside the second, and vice versa.
/**
* @constructor
*/
*/
function Response() {
this['a'] = null;
this['b'] = null;
@ -465,7 +439,7 @@
*/
var T_VECTORS = [];
for (var i = 0; i < 10; i++) { T_VECTORS.push(new Vector()); }
// A pool of arrays of numbers used in calculations to avoid allocating
// memory.
/**
@ -498,7 +472,7 @@
}
result[0] = min; result[1] = max;
}
// Check whether two convex polygons are separated by the specified
// axis (must be a unit vector).
/**
@ -528,8 +502,8 @@
rangeB[1] += projectedOffset;
// Check if there is a gap. If there is, this is a separating axis and we can stop
if (rangeA[0] > rangeB[1] || rangeB[0] > rangeA[1]) {
T_VECTORS.push(offsetV);
T_ARRAYS.push(rangeA);
T_VECTORS.push(offsetV);
T_ARRAYS.push(rangeA);
T_ARRAYS.push(rangeB);
return true;
}
@ -540,7 +514,7 @@
if (rangeA[0] < rangeB[0]) {
response['aInB'] = false;
// A ends before B does. We have to pull A out of B
if (rangeA[1] < rangeB[1]) {
if (rangeA[1] < rangeB[1]) {
overlap = rangeA[1] - rangeB[0];
response['bInA'] = false;
// B is fully inside A. Pick the shortest way out.
@ -553,7 +527,7 @@
} else {
response['bInA'] = false;
// B ends before A ends. We have to push A out of B
if (rangeA[1] > rangeB[1]) {
if (rangeA[1] > rangeB[1]) {
overlap = rangeA[0] - rangeB[1];
response['aInB'] = false;
// A is fully inside B. Pick the shortest way out.
@ -571,14 +545,14 @@
if (overlap < 0) {
response['overlapN'].reverse();
}
}
}
}
T_VECTORS.push(offsetV);
T_ARRAYS.push(rangeA);
T_VECTORS.push(offsetV);
T_ARRAYS.push(rangeA);
T_ARRAYS.push(rangeB);
return false;
}
// Calculates which Vornoi region a point is on a line segment.
// It is assumed that both the line and the point are relative to `(0,0)`
//
@ -588,8 +562,8 @@
/**
* @param {Vector} line The line segment.
* @param {Vector} point The point.
* @return {number} LEFT_VORNOI_REGION (-1) if it is the left region,
* MIDDLE_VORNOI_REGION (0) if it is the middle region,
* @return {number} LEFT_VORNOI_REGION (-1) if it is the left region,
* MIDDLE_VORNOI_REGION (0) if it is the middle region,
* RIGHT_VORNOI_REGION (1) if it is the right region.
*/
function vornoiRegion(line, point) {
@ -617,7 +591,7 @@
* @const
*/
var RIGHT_VORNOI_REGION = 1;
// ## Collision Tests
// Check if two circles collide.
@ -626,7 +600,7 @@
* @param {Circle} b The second circle.
* @param {Response=} response Response object (optional) that will be populated if
* the circles intersect.
* @return {boolean} true if the circles intersect, false if they don't.
* @return {boolean} true if the circles intersect, false if they don't.
*/
function testCircleCircle(a, b, response) {
// Check if the distance between the centers of the two
@ -641,7 +615,7 @@
return false;
}
// They intersect. If we're calculating a response, calculate the overlap.
if (response) {
if (response) {
var dist = Math.sqrt(distanceSq);
response['a'] = a;
response['b'] = b;
@ -655,7 +629,7 @@
return true;
}
SAT['testCircleCircle'] = testCircleCircle;
// Check if a polygon and a circle collide.
/**
* @param {Polygon} polygon The polygon.
@ -673,30 +647,30 @@
var len = points.length;
var edge = T_VECTORS.pop();
var point = T_VECTORS.pop();
// For each edge in the polygon:
for (var i = 0; i < len; i++) {
var next = i === len - 1 ? 0 : i + 1;
var prev = i === 0 ? len - 1 : i - 1;
var overlap = 0;
var overlapN = null;
// Get the edge.
edge.copy(polygon['edges'][i]);
// Calculate the center of the circle relative to the starting point of the edge.
point.copy(circlePos).sub(points[i]);
// If the distance between the center of the circle and the point
// is bigger than the radius, the polygon is definitely not fully in
// the circle.
if (response && point.len2() > radius2) {
response['aInB'] = false;
}
// Calculate which Vornoi region the center of the circle is in.
var region = vornoiRegion(edge, point);
// If it's the left region:
if (region === LEFT_VORNOI_REGION) {
if (region === LEFT_VORNOI_REGION) {
// We need to make sure we're in the RIGHT_VORNOI_REGION of the previous edge.
edge.copy(polygon['edges'][prev]);
// Calculate the center of the circle relative the starting point of the previous edge
@ -707,9 +681,9 @@
var dist = point.len();
if (dist > radius) {
// No intersection
T_VECTORS.push(circlePos);
T_VECTORS.push(circlePos);
T_VECTORS.push(edge);
T_VECTORS.push(point);
T_VECTORS.push(point);
T_VECTORS.push(point2);
return false;
} else if (response) {
@ -732,10 +706,10 @@
var dist = point.len();
if (dist > radius) {
// No intersection
T_VECTORS.push(circlePos);
T_VECTORS.push(edge);
T_VECTORS.push(circlePos);
T_VECTORS.push(edge);
T_VECTORS.push(point);
return false;
return false;
} else if (response) {
// It intersects, calculate the overlap.
response['bInA'] = false;
@ -748,15 +722,15 @@
// Need to check if the circle is intersecting the edge,
// Change the edge into its "edge normal".
var normal = edge.perp().normalize();
// Find the perpendicular distance between the center of the
// Find the perpendicular distance between the center of the
// circle and the edge.
var dist = point.dot(normal);
var distAbs = Math.abs(dist);
// If the circle is on the outside of the edge, there is no intersection.
if (dist > 0 && distAbs > radius) {
// No intersection
T_VECTORS.push(circlePos);
T_VECTORS.push(normal);
T_VECTORS.push(circlePos);
T_VECTORS.push(normal);
T_VECTORS.push(point);
return false;
} else if (response) {
@ -770,28 +744,28 @@
}
}
}
// If this is the smallest overlap we've seen, keep it.
// If this is the smallest overlap we've seen, keep it.
// (overlapN may be null if the circle was in the wrong Vornoi region).
if (overlapN && response && Math.abs(overlap) < Math.abs(response['overlap'])) {
response['overlap'] = overlap;
response['overlapN'].copy(overlapN);
}
}
// Calculate the final overlap vector - based on the smallest overlap.
if (response) {
response['a'] = polygon;
response['b'] = circle;
response['overlapV'].copy(response['overlapN']).scale(response['overlap']);
}
T_VECTORS.push(circlePos);
T_VECTORS.push(edge);
T_VECTORS.push(circlePos);
T_VECTORS.push(edge);
T_VECTORS.push(point);
return true;
}
SAT['testPolygonCircle'] = testPolygonCircle;
// Check if a circle and a polygon collide.
//
// **NOTE:** This is slightly less efficient than polygonCircle as it just
@ -820,7 +794,7 @@
return result;
}
SAT['testCirclePolygon'] = testCirclePolygon;
// Checks whether polygons collide.
/**
* @param {Polygon} a The first polygon.
@ -859,4 +833,4 @@
SAT['testPolygonPolygon'] = testPolygonPolygon;
return SAT;
}));
})();