mirror of
https://github.com/photonstorm/phaser
synced 2024-11-27 15:12:18 +00:00
browserify/requirejs error with SAT module fixed
This commit is contained in:
parent
16fa37081f
commit
b7bb52696f
1 changed files with 57 additions and 83 deletions
|
@ -6,33 +6,7 @@
|
|||
// polygons using the Separating Axis Theorem.
|
||||
/** @preserve SAT.js - Version 0.2 - Copyright 2013 - Jim Riecken <jimr@jimr.ca> - released under the MIT License. https://github.com/jriecken/sat-js */
|
||||
|
||||
/*global define: false, module: false*/
|
||||
/*jshint shadow:true, sub:true, forin:true, noarg:true, noempty:true,
|
||||
eqeqeq:true, bitwise:true, strict:true, undef:true,
|
||||
curly:true, browser:true */
|
||||
|
||||
// Create a UMD wrapper for SAT. Works in:
|
||||
//
|
||||
// - Plain browser via global SAT variable
|
||||
// - AMD loader (like require.js)
|
||||
// - Node.js
|
||||
//
|
||||
// The quoted properties all over the place are used so that the Closure Compiler
|
||||
// does not mangle the exposed API in advanced mode.
|
||||
/**
|
||||
* @param {*} root - The global scope
|
||||
* @param {Function} factory - Factory that creates SAT module
|
||||
*/
|
||||
(function (root, factory) {
|
||||
"use strict";
|
||||
if (typeof define === 'function' && define['amd']) {
|
||||
define(factory);
|
||||
} else if (typeof exports === 'object') {
|
||||
module['exports'] = factory();
|
||||
} else {
|
||||
root['SAT'] = factory();
|
||||
}
|
||||
}(this, function () {
|
||||
var SAT = (function () {
|
||||
"use strict";
|
||||
|
||||
var SAT = {};
|
||||
|
@ -45,7 +19,7 @@
|
|||
|
||||
// Create a new Vector, optionally passing in the `x` and `y` coordinates. If
|
||||
// a coordinate is not specified, it will be set to `0`
|
||||
/**
|
||||
/**
|
||||
* @param {?number=} x The x position.
|
||||
* @param {?number=} y The y position.
|
||||
* @constructor
|
||||
|
@ -118,7 +92,7 @@
|
|||
this['y'] = -this['y'];
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// Normalize this vector. (make it have length of `1`)
|
||||
/**
|
||||
|
@ -132,7 +106,7 @@
|
|||
}
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Add another vector to this one.
|
||||
/**
|
||||
* @param {Vector} other The other Vector.
|
||||
|
@ -143,7 +117,7 @@
|
|||
this['y'] += other['y'];
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Subtract another vector from this one.
|
||||
/**
|
||||
* @param {Vector} other The other Vector.
|
||||
|
@ -154,7 +128,7 @@
|
|||
this['y'] -= other['y'];
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Scale this vector. An independant scaling factor can be provided
|
||||
// for each axis, or a single scaling factor that will scale both `x` and `y`.
|
||||
/**
|
||||
|
@ -166,9 +140,9 @@
|
|||
Vector.prototype['scale'] = Vector.prototype.scale = function(x,y) {
|
||||
this['x'] *= x;
|
||||
this['y'] *= y || x;
|
||||
return this;
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Project this vector on to another vector.
|
||||
/**
|
||||
* @param {Vector} other The vector to project onto.
|
||||
|
@ -180,7 +154,7 @@
|
|||
this['y'] = amt * other['y'];
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Project this vector onto a vector of unit length. This is slightly more efficient
|
||||
// than `project` when dealing with unit vectors.
|
||||
/**
|
||||
|
@ -193,7 +167,7 @@
|
|||
this['y'] = amt * other['y'];
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Reflect this vector on an arbitrary axis.
|
||||
/**
|
||||
* @param {Vector} axis The vector representing the axis.
|
||||
|
@ -207,7 +181,7 @@
|
|||
this['y'] -= y;
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Reflect this vector on an arbitrary axis (represented by a unit vector). This is
|
||||
// slightly more efficient than `reflect` when dealing with an axis that is a unit vector.
|
||||
/**
|
||||
|
@ -222,7 +196,7 @@
|
|||
this['y'] -= y;
|
||||
return this;
|
||||
};
|
||||
|
||||
|
||||
// Get the dot product of this vector and another.
|
||||
/**
|
||||
* @param {Vector} other The vector to dot this one against.
|
||||
|
@ -231,7 +205,7 @@
|
|||
Vector.prototype['dot'] = Vector.prototype.dot = function(other) {
|
||||
return this['x'] * other['x'] + this['y'] * other['y'];
|
||||
};
|
||||
|
||||
|
||||
// Get the squared length of this vector.
|
||||
/**
|
||||
* @return {number} The length^2 of this vector.
|
||||
|
@ -239,7 +213,7 @@
|
|||
Vector.prototype['len2'] = Vector.prototype.len2 = function() {
|
||||
return this.dot(this);
|
||||
};
|
||||
|
||||
|
||||
// Get the length of this vector.
|
||||
/**
|
||||
* @return {number} The length of this vector.
|
||||
|
@ -247,7 +221,7 @@
|
|||
Vector.prototype['len'] = Vector.prototype.len = function() {
|
||||
return Math.sqrt(this.len2());
|
||||
};
|
||||
|
||||
|
||||
// ## Circle
|
||||
//
|
||||
// Represents a circle with a position and a radius.
|
||||
|
@ -290,7 +264,7 @@
|
|||
this.recalc();
|
||||
}
|
||||
SAT['Polygon'] = Polygon;
|
||||
|
||||
|
||||
// Recalculates the edges and normals of the polygon. This **must** be called
|
||||
// if the `points` array is modified at all and the edges or normals are to be
|
||||
// accessed.
|
||||
|
@ -309,7 +283,7 @@
|
|||
var points = this['points'];
|
||||
var len = points.length;
|
||||
for (var i = 0; i < len; i++) {
|
||||
var p1 = points[i];
|
||||
var p1 = points[i];
|
||||
var p2 = i < len - 1 ? points[i + 1] : points[0];
|
||||
var e = new Vector().copy(p2).sub(p1);
|
||||
var n = new Vector().copy(e).perp().normalize();
|
||||
|
@ -418,11 +392,11 @@
|
|||
var w = this['w'];
|
||||
var h = this['h'];
|
||||
return new Polygon(new Vector(pos['x'], pos['y']), [
|
||||
new Vector(), new Vector(w, 0),
|
||||
new Vector(), new Vector(w, 0),
|
||||
new Vector(w,h), new Vector(0,h)
|
||||
]);
|
||||
};
|
||||
|
||||
|
||||
// ## Response
|
||||
//
|
||||
// An object representing the result of an intersection. Contains:
|
||||
|
@ -433,7 +407,7 @@
|
|||
// - Whether the first object is entirely inside the second, and vice versa.
|
||||
/**
|
||||
* @constructor
|
||||
*/
|
||||
*/
|
||||
function Response() {
|
||||
this['a'] = null;
|
||||
this['b'] = null;
|
||||
|
@ -465,7 +439,7 @@
|
|||
*/
|
||||
var T_VECTORS = [];
|
||||
for (var i = 0; i < 10; i++) { T_VECTORS.push(new Vector()); }
|
||||
|
||||
|
||||
// A pool of arrays of numbers used in calculations to avoid allocating
|
||||
// memory.
|
||||
/**
|
||||
|
@ -498,7 +472,7 @@
|
|||
}
|
||||
result[0] = min; result[1] = max;
|
||||
}
|
||||
|
||||
|
||||
// Check whether two convex polygons are separated by the specified
|
||||
// axis (must be a unit vector).
|
||||
/**
|
||||
|
@ -528,8 +502,8 @@
|
|||
rangeB[1] += projectedOffset;
|
||||
// Check if there is a gap. If there is, this is a separating axis and we can stop
|
||||
if (rangeA[0] > rangeB[1] || rangeB[0] > rangeA[1]) {
|
||||
T_VECTORS.push(offsetV);
|
||||
T_ARRAYS.push(rangeA);
|
||||
T_VECTORS.push(offsetV);
|
||||
T_ARRAYS.push(rangeA);
|
||||
T_ARRAYS.push(rangeB);
|
||||
return true;
|
||||
}
|
||||
|
@ -540,7 +514,7 @@
|
|||
if (rangeA[0] < rangeB[0]) {
|
||||
response['aInB'] = false;
|
||||
// A ends before B does. We have to pull A out of B
|
||||
if (rangeA[1] < rangeB[1]) {
|
||||
if (rangeA[1] < rangeB[1]) {
|
||||
overlap = rangeA[1] - rangeB[0];
|
||||
response['bInA'] = false;
|
||||
// B is fully inside A. Pick the shortest way out.
|
||||
|
@ -553,7 +527,7 @@
|
|||
} else {
|
||||
response['bInA'] = false;
|
||||
// B ends before A ends. We have to push A out of B
|
||||
if (rangeA[1] > rangeB[1]) {
|
||||
if (rangeA[1] > rangeB[1]) {
|
||||
overlap = rangeA[0] - rangeB[1];
|
||||
response['aInB'] = false;
|
||||
// A is fully inside B. Pick the shortest way out.
|
||||
|
@ -571,14 +545,14 @@
|
|||
if (overlap < 0) {
|
||||
response['overlapN'].reverse();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
T_VECTORS.push(offsetV);
|
||||
T_ARRAYS.push(rangeA);
|
||||
T_VECTORS.push(offsetV);
|
||||
T_ARRAYS.push(rangeA);
|
||||
T_ARRAYS.push(rangeB);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Calculates which Vornoi region a point is on a line segment.
|
||||
// It is assumed that both the line and the point are relative to `(0,0)`
|
||||
//
|
||||
|
@ -588,8 +562,8 @@
|
|||
/**
|
||||
* @param {Vector} line The line segment.
|
||||
* @param {Vector} point The point.
|
||||
* @return {number} LEFT_VORNOI_REGION (-1) if it is the left region,
|
||||
* MIDDLE_VORNOI_REGION (0) if it is the middle region,
|
||||
* @return {number} LEFT_VORNOI_REGION (-1) if it is the left region,
|
||||
* MIDDLE_VORNOI_REGION (0) if it is the middle region,
|
||||
* RIGHT_VORNOI_REGION (1) if it is the right region.
|
||||
*/
|
||||
function vornoiRegion(line, point) {
|
||||
|
@ -617,7 +591,7 @@
|
|||
* @const
|
||||
*/
|
||||
var RIGHT_VORNOI_REGION = 1;
|
||||
|
||||
|
||||
// ## Collision Tests
|
||||
|
||||
// Check if two circles collide.
|
||||
|
@ -626,7 +600,7 @@
|
|||
* @param {Circle} b The second circle.
|
||||
* @param {Response=} response Response object (optional) that will be populated if
|
||||
* the circles intersect.
|
||||
* @return {boolean} true if the circles intersect, false if they don't.
|
||||
* @return {boolean} true if the circles intersect, false if they don't.
|
||||
*/
|
||||
function testCircleCircle(a, b, response) {
|
||||
// Check if the distance between the centers of the two
|
||||
|
@ -641,7 +615,7 @@
|
|||
return false;
|
||||
}
|
||||
// They intersect. If we're calculating a response, calculate the overlap.
|
||||
if (response) {
|
||||
if (response) {
|
||||
var dist = Math.sqrt(distanceSq);
|
||||
response['a'] = a;
|
||||
response['b'] = b;
|
||||
|
@ -655,7 +629,7 @@
|
|||
return true;
|
||||
}
|
||||
SAT['testCircleCircle'] = testCircleCircle;
|
||||
|
||||
|
||||
// Check if a polygon and a circle collide.
|
||||
/**
|
||||
* @param {Polygon} polygon The polygon.
|
||||
|
@ -673,30 +647,30 @@
|
|||
var len = points.length;
|
||||
var edge = T_VECTORS.pop();
|
||||
var point = T_VECTORS.pop();
|
||||
|
||||
|
||||
// For each edge in the polygon:
|
||||
for (var i = 0; i < len; i++) {
|
||||
var next = i === len - 1 ? 0 : i + 1;
|
||||
var prev = i === 0 ? len - 1 : i - 1;
|
||||
var overlap = 0;
|
||||
var overlapN = null;
|
||||
|
||||
|
||||
// Get the edge.
|
||||
edge.copy(polygon['edges'][i]);
|
||||
// Calculate the center of the circle relative to the starting point of the edge.
|
||||
point.copy(circlePos).sub(points[i]);
|
||||
|
||||
|
||||
// If the distance between the center of the circle and the point
|
||||
// is bigger than the radius, the polygon is definitely not fully in
|
||||
// the circle.
|
||||
if (response && point.len2() > radius2) {
|
||||
response['aInB'] = false;
|
||||
}
|
||||
|
||||
|
||||
// Calculate which Vornoi region the center of the circle is in.
|
||||
var region = vornoiRegion(edge, point);
|
||||
// If it's the left region:
|
||||
if (region === LEFT_VORNOI_REGION) {
|
||||
if (region === LEFT_VORNOI_REGION) {
|
||||
// We need to make sure we're in the RIGHT_VORNOI_REGION of the previous edge.
|
||||
edge.copy(polygon['edges'][prev]);
|
||||
// Calculate the center of the circle relative the starting point of the previous edge
|
||||
|
@ -707,9 +681,9 @@
|
|||
var dist = point.len();
|
||||
if (dist > radius) {
|
||||
// No intersection
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(edge);
|
||||
T_VECTORS.push(point);
|
||||
T_VECTORS.push(point);
|
||||
T_VECTORS.push(point2);
|
||||
return false;
|
||||
} else if (response) {
|
||||
|
@ -732,10 +706,10 @@
|
|||
var dist = point.len();
|
||||
if (dist > radius) {
|
||||
// No intersection
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(edge);
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(edge);
|
||||
T_VECTORS.push(point);
|
||||
return false;
|
||||
return false;
|
||||
} else if (response) {
|
||||
// It intersects, calculate the overlap.
|
||||
response['bInA'] = false;
|
||||
|
@ -748,15 +722,15 @@
|
|||
// Need to check if the circle is intersecting the edge,
|
||||
// Change the edge into its "edge normal".
|
||||
var normal = edge.perp().normalize();
|
||||
// Find the perpendicular distance between the center of the
|
||||
// Find the perpendicular distance between the center of the
|
||||
// circle and the edge.
|
||||
var dist = point.dot(normal);
|
||||
var distAbs = Math.abs(dist);
|
||||
// If the circle is on the outside of the edge, there is no intersection.
|
||||
if (dist > 0 && distAbs > radius) {
|
||||
// No intersection
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(normal);
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(normal);
|
||||
T_VECTORS.push(point);
|
||||
return false;
|
||||
} else if (response) {
|
||||
|
@ -770,28 +744,28 @@
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If this is the smallest overlap we've seen, keep it.
|
||||
|
||||
// If this is the smallest overlap we've seen, keep it.
|
||||
// (overlapN may be null if the circle was in the wrong Vornoi region).
|
||||
if (overlapN && response && Math.abs(overlap) < Math.abs(response['overlap'])) {
|
||||
response['overlap'] = overlap;
|
||||
response['overlapN'].copy(overlapN);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Calculate the final overlap vector - based on the smallest overlap.
|
||||
if (response) {
|
||||
response['a'] = polygon;
|
||||
response['b'] = circle;
|
||||
response['overlapV'].copy(response['overlapN']).scale(response['overlap']);
|
||||
}
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(edge);
|
||||
T_VECTORS.push(circlePos);
|
||||
T_VECTORS.push(edge);
|
||||
T_VECTORS.push(point);
|
||||
return true;
|
||||
}
|
||||
SAT['testPolygonCircle'] = testPolygonCircle;
|
||||
|
||||
|
||||
// Check if a circle and a polygon collide.
|
||||
//
|
||||
// **NOTE:** This is slightly less efficient than polygonCircle as it just
|
||||
|
@ -820,7 +794,7 @@
|
|||
return result;
|
||||
}
|
||||
SAT['testCirclePolygon'] = testCirclePolygon;
|
||||
|
||||
|
||||
// Checks whether polygons collide.
|
||||
/**
|
||||
* @param {Polygon} a The first polygon.
|
||||
|
@ -859,4 +833,4 @@
|
|||
SAT['testPolygonPolygon'] = testPolygonPolygon;
|
||||
|
||||
return SAT;
|
||||
}));
|
||||
})();
|
||||
|
|
Loading…
Reference in a new issue