2017-01-04 23:53:27 +00:00
|
|
|
/**
|
2017-10-13 13:11:54 +00:00
|
|
|
* Using Bresenham's line algorithm this will return an array of all coordinates on this line.
|
|
|
|
* The start and end points are rounded before this runs as the algorithm works on integers.
|
|
|
|
*
|
2017-10-26 15:38:22 +00:00
|
|
|
* @function Phaser.Geom.Line.BresenhamPoints
|
2017-10-13 13:11:54 +00:00
|
|
|
* @since 3.0.0
|
|
|
|
*
|
|
|
|
* @param {Phaser.Geom.Line} line - [description]
|
|
|
|
* @param {integer} [stepRate=1] - [description]
|
|
|
|
* @param {array} [results] - [description]
|
|
|
|
*
|
|
|
|
* @return {array} [description]
|
|
|
|
*/
|
2017-10-26 15:38:22 +00:00
|
|
|
var BresenhamPoints = function (line, stepRate, results)
|
2017-01-04 23:53:27 +00:00
|
|
|
{
|
|
|
|
if (stepRate === undefined) { stepRate = 1; }
|
|
|
|
if (results === undefined) { results = []; }
|
|
|
|
|
|
|
|
var x1 = Math.round(line.x1);
|
|
|
|
var y1 = Math.round(line.y1);
|
|
|
|
var x2 = Math.round(line.x2);
|
|
|
|
var y2 = Math.round(line.y2);
|
|
|
|
|
|
|
|
var dx = Math.abs(x2 - x1);
|
|
|
|
var dy = Math.abs(y2 - y1);
|
|
|
|
var sx = (x1 < x2) ? 1 : -1;
|
|
|
|
var sy = (y1 < y2) ? 1 : -1;
|
|
|
|
var err = dx - dy;
|
|
|
|
|
2018-01-18 01:03:15 +00:00
|
|
|
results.push({ x: x1, y: y1 });
|
2017-01-04 23:53:27 +00:00
|
|
|
|
|
|
|
var i = 1;
|
|
|
|
|
|
|
|
while (!((x1 === x2) && (y1 === y2)))
|
|
|
|
{
|
|
|
|
var e2 = err << 1;
|
|
|
|
|
|
|
|
if (e2 > -dy)
|
|
|
|
{
|
|
|
|
err -= dy;
|
|
|
|
x1 += sx;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (e2 < dx)
|
|
|
|
{
|
|
|
|
err += dx;
|
|
|
|
y1 += sy;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i % stepRate === 0)
|
|
|
|
{
|
2018-01-18 01:03:15 +00:00
|
|
|
results.push({ x: x1, y: y1 });
|
2017-01-04 23:53:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return results;
|
|
|
|
};
|
|
|
|
|
2017-10-26 15:38:22 +00:00
|
|
|
module.exports = BresenhamPoints;
|