phaser/src/math/Quaternion.js

767 lines
18 KiB
JavaScript
Raw Normal View History

2018-02-12 16:01:20 +00:00
/**
* @author Richard Davey <rich@photonstorm.com>
2019-01-15 16:20:22 +00:00
* @copyright 2019 Photon Storm Ltd.
2018-02-12 16:01:20 +00:00
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
*/
2018-03-20 15:06:30 +00:00
// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
var Class = require('../utils/Class');
var Vector3 = require('./Vector3');
var Matrix3 = require('./Matrix3');
var EPSILON = 0.000001;
// Some shared 'private' arrays
var siNext = new Int8Array([ 1, 2, 0 ]);
var tmp = new Float32Array([ 0, 0, 0 ]);
var xUnitVec3 = new Vector3(1, 0, 0);
var yUnitVec3 = new Vector3(0, 1, 0);
var tmpvec = new Vector3();
var tmpMat3 = new Matrix3();
2018-02-07 15:27:21 +00:00
/**
* @classdesc
* A quaternion.
2018-02-07 15:27:21 +00:00
*
* @class Quaternion
2018-10-10 09:49:13 +00:00
* @memberof Phaser.Math
2018-02-07 15:27:21 +00:00
* @constructor
* @since 3.0.0
*
* @param {number} [x] - The x component.
* @param {number} [y] - The y component.
* @param {number} [z] - The z component.
* @param {number} [w] - The w component.
2018-02-07 15:27:21 +00:00
*/
var Quaternion = new Class({
initialize:
function Quaternion (x, y, z, w)
{
2018-02-07 15:27:21 +00:00
/**
* The x component of this Quaternion.
*
* @name Phaser.Math.Quaternion#x
* @type {number}
* @default 0
* @since 3.0.0
*/
/**
* The y component of this Quaternion.
*
* @name Phaser.Math.Quaternion#y
* @type {number}
* @default 0
* @since 3.0.0
*/
/**
* The z component of this Quaternion.
*
* @name Phaser.Math.Quaternion#z
* @type {number}
* @default 0
* @since 3.0.0
*/
/**
* The w component of this Quaternion.
*
* @name Phaser.Math.Quaternion#w
* @type {number}
* @default 0
* @since 3.0.0
*/
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
this.w = x.w || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = w || 0;
}
},
2018-01-26 06:19:27 +00:00
/**
* Copy the components of a given Quaternion or Vector into this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#copy
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} src - The Quaternion or Vector to copy the components from.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
copy: function (src)
{
this.x = src.x;
this.y = src.y;
this.z = src.z;
this.w = src.w;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Set the components of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#set
* @since 3.0.0
*
* @param {(number|object)} [x=0] - The x component, or an object containing x, y, z, and w components.
* @param {number} [y=0] - The y component.
* @param {number} [z=0] - The z component.
* @param {number} [w=0] - The w component.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
set: function (x, y, z, w)
{
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
this.w = x.w || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = w || 0;
}
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Add a given Quaternion or Vector to this Quaternion. Addition is component-wise.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#add
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to add to this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
add: function (v)
{
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Subtract a given Quaternion or Vector from this Quaternion. Subtraction is component-wise.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#subtract
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to subtract from this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
subtract: function (v)
{
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Scale this Quaternion by the given value.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#scale
* @since 3.0.0
*
* @param {number} scale - The value to scale this Quaternion by.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
scale: function (scale)
{
this.x *= scale;
this.y *= scale;
this.z *= scale;
this.w *= scale;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Calculate the length of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#length
* @since 3.0.0
*
* @return {number} The length of this Quaternion.
2018-01-26 06:19:27 +00:00
*/
length: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
return Math.sqrt(x * x + y * y + z * z + w * w);
},
2018-01-26 06:19:27 +00:00
/**
* Calculate the length of this Quaternion squared.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#lengthSq
* @since 3.0.0
*
* @return {number} The length of this Quaternion, squared.
2018-01-26 06:19:27 +00:00
*/
lengthSq: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
return x * x + y * y + z * z + w * w;
},
2018-01-26 06:19:27 +00:00
/**
* Normalize this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#normalize
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
normalize: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var w = this.w;
var len = x * x + y * y + z * z + w * w;
if (len > 0)
{
len = 1 / Math.sqrt(len);
this.x = x * len;
this.y = y * len;
this.z = z * len;
this.w = w * len;
}
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Calculate the dot product of this Quaternion and the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#dot
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to dot product with this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @return {number} The dot product of this Quaternion and the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*/
dot: function (v)
{
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
2018-01-26 06:19:27 +00:00
/**
* Linearly interpolate this Quaternion towards the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#lerp
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} v - The Quaternion or Vector to interpolate towards.
* @param {number} [t=0] - The percentage of interpolation.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
lerp: function (v, t)
{
if (t === undefined) { t = 0; }
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
this.x = ax + t * (v.x - ax);
this.y = ay + t * (v.y - ay);
this.z = az + t * (v.z - az);
this.w = aw + t * (v.w - aw);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* [description]
*
* @method Phaser.Math.Quaternion#rotationTo
* @since 3.0.0
*
2018-03-19 11:25:46 +00:00
* @param {Phaser.Math.Vector3} a - [description]
* @param {Phaser.Math.Vector3} b - [description]
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotationTo: function (a, b)
{
var dot = a.x * b.x + a.y * b.y + a.z * b.z;
if (dot < -0.999999)
{
if (tmpvec.copy(xUnitVec3).cross(a).length() < EPSILON)
{
tmpvec.copy(yUnitVec3).cross(a);
}
2018-03-20 15:06:30 +00:00
tmpvec.normalize();
return this.setAxisAngle(tmpvec, Math.PI);
}
else if (dot > 0.999999)
{
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 1;
return this;
}
else
{
tmpvec.copy(a).cross(b);
this.x = tmpvec.x;
this.y = tmpvec.y;
this.z = tmpvec.z;
this.w = 1 + dot;
return this.normalize();
}
},
2018-01-26 06:19:27 +00:00
/**
* Set the axes of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#setAxes
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} view - The view axis.
* @param {Phaser.Math.Vector3} right - The right axis.
* @param {Phaser.Math.Vector3} up - The upwards axis.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
setAxes: function (view, right, up)
{
var m = tmpMat3.val;
m[0] = right.x;
m[3] = right.y;
m[6] = right.z;
m[1] = up.x;
m[4] = up.y;
m[7] = up.z;
m[2] = -view.x;
m[5] = -view.y;
m[8] = -view.z;
return this.fromMat3(tmpMat3).normalize();
},
2018-01-26 06:19:27 +00:00
/**
* Reset this Matrix to an identity (default) Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#identity
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
identity: function ()
{
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 1;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Set the axis angle of this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#setAxisAngle
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} axis - The axis.
* @param {number} rad - The angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
setAxisAngle: function (axis, rad)
{
rad = rad * 0.5;
var s = Math.sin(rad);
this.x = s * axis.x;
this.y = s * axis.y;
this.z = s * axis.z;
this.w = Math.cos(rad);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Multiply this Quaternion by the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#multiply
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} b - The Quaternion or Vector to multiply this Quaternion by.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
multiply: function (b)
{
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bx = b.x;
var by = b.y;
var bz = b.z;
var bw = b.w;
this.x = ax * bw + aw * bx + ay * bz - az * by;
this.y = ay * bw + aw * by + az * bx - ax * bz;
this.z = az * bw + aw * bz + ax * by - ay * bx;
this.w = aw * bw - ax * bx - ay * by - az * bz;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Smoothly linearly interpolate this Quaternion towards the given Quaternion or Vector.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#slerp
* @since 3.0.0
*
* @param {(Phaser.Math.Quaternion|Phaser.Math.Vector4)} b - The Quaternion or Vector to interpolate towards.
* @param {number} t - The percentage of interpolation.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
slerp: function (b, t)
{
// benchmarks: http://jsperf.com/quaternion-slerp-implementations
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bx = b.x;
var by = b.y;
var bz = b.z;
var bw = b.w;
// calc cosine
var cosom = ax * bx + ay * by + az * bz + aw * bw;
// adjust signs (if necessary)
if (cosom < 0)
{
cosom = -cosom;
bx = - bx;
by = - by;
bz = - bz;
bw = - bw;
}
2018-03-20 15:06:30 +00:00
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
var scale0 = 1 - t;
var scale1 = t;
// calculate coefficients
if ((1 - cosom) > EPSILON)
{
// standard case (slerp)
var omega = Math.acos(cosom);
var sinom = Math.sin(omega);
scale0 = Math.sin((1.0 - t) * omega) / sinom;
scale1 = Math.sin(t * omega) / sinom;
}
// calculate final values
this.x = scale0 * ax + scale1 * bx;
this.y = scale0 * ay + scale1 * by;
this.z = scale0 * az + scale1 * bz;
this.w = scale0 * aw + scale1 * bw;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Invert this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#invert
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
invert: function ()
{
var a0 = this.x;
var a1 = this.y;
var a2 = this.z;
var a3 = this.w;
var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
var invDot = (dot) ? 1 / dot : 0;
2018-03-20 15:06:30 +00:00
// TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
this.x = -a0 * invDot;
this.y = -a1 * invDot;
this.z = -a2 * invDot;
this.w = a3 * invDot;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Convert this Quaternion into its conjugate.
2018-01-26 06:19:27 +00:00
*
* Sets the x, y and z components.
*
2018-01-26 06:19:27 +00:00
* @method Phaser.Math.Quaternion#conjugate
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
conjugate: function ()
{
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Rotate this Quaternion on the X axis.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotateX
* @since 3.0.0
*
* @param {number} rad - The rotation angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotateX: function (rad)
{
rad *= 0.5;
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bx = Math.sin(rad);
var bw = Math.cos(rad);
this.x = ax * bw + aw * bx;
this.y = ay * bw + az * bx;
this.z = az * bw - ay * bx;
this.w = aw * bw - ax * bx;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Rotate this Quaternion on the Y axis.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotateY
* @since 3.0.0
*
* @param {number} rad - The rotation angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotateY: function (rad)
{
rad *= 0.5;
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var by = Math.sin(rad);
var bw = Math.cos(rad);
this.x = ax * bw - az * by;
this.y = ay * bw + aw * by;
this.z = az * bw + ax * by;
this.w = aw * bw - ay * by;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Rotate this Quaternion on the Z axis.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#rotateZ
* @since 3.0.0
*
* @param {number} rad - The rotation angle in radians.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
rotateZ: function (rad)
{
rad *= 0.5;
var ax = this.x;
var ay = this.y;
var az = this.z;
var aw = this.w;
var bz = Math.sin(rad);
var bw = Math.cos(rad);
this.x = ax * bw + ay * bz;
this.y = ay * bw - ax * bz;
this.z = az * bw + aw * bz;
this.w = aw * bw - az * bz;
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Create a unit (or rotation) Quaternion from its x, y, and z components.
*
* Sets the w component.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#calculateW
* @since 3.0.0
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
calculateW: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
this.w = -Math.sqrt(1.0 - x * x - y * y - z * z);
return this;
},
2018-01-26 06:19:27 +00:00
/**
* Convert the given Matrix into this Quaternion.
2018-01-26 06:19:27 +00:00
*
* @method Phaser.Math.Quaternion#fromMat3
* @since 3.0.0
*
* @param {Phaser.Math.Matrix3} mat - The Matrix to convert from.
2018-01-26 06:19:27 +00:00
*
* @return {Phaser.Math.Quaternion} This Quaternion.
2018-01-26 06:19:27 +00:00
*/
fromMat3: function (mat)
{
// benchmarks:
// http://jsperf.com/typed-array-access-speed
// http://jsperf.com/conversion-of-3x3-matrix-to-quaternion
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "Quaternion Calculus and Fast Animation".
var m = mat.val;
var fTrace = m[0] + m[4] + m[8];
var fRoot;
if (fTrace > 0)
{
// |w| > 1/2, may as well choose w > 1/2
fRoot = Math.sqrt(fTrace + 1.0); // 2w
this.w = 0.5 * fRoot;
fRoot = 0.5 / fRoot; // 1/(4w)
this.x = (m[7] - m[5]) * fRoot;
this.y = (m[2] - m[6]) * fRoot;
this.z = (m[3] - m[1]) * fRoot;
}
else
{
// |w| <= 1/2
var i = 0;
if (m[4] > m[0])
{
i = 1;
}
if (m[8] > m[i * 3 + i])
{
i = 2;
}
var j = siNext[i];
var k = siNext[j];
2018-03-20 15:06:30 +00:00
// This isn't quite as clean without array access
fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1);
tmp[i] = 0.5 * fRoot;
fRoot = 0.5 / fRoot;
tmp[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
tmp[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
this.x = tmp[0];
this.y = tmp[1];
this.z = tmp[2];
this.w = (m[k * 3 + j] - m[j * 3 + k]) * fRoot;
}
2018-03-20 15:06:30 +00:00
return this;
}
});
module.exports = Quaternion;