phaser/todo/verlet/VerletManager.js

272 lines
13 KiB
JavaScript
Raw Normal View History

2013-05-25 03:21:24 +00:00
var Phaser;
(function (Phaser) {
/// <reference path="Game.ts" />
/// <reference path="geom/Vector2.ts" />
/// <reference path="verlet/Composite.ts" />
/// <reference path="verlet/Particle.ts" />
/// <reference path="verlet/DistanceConstraint.ts" />
/// <reference path="verlet/PinConstraint.ts" />
/// <reference path="verlet/AngleConstraint.ts" />
/**
* Phaser - Verlet
*
* Based on verlet-js by Sub Protocol released under MIT
*/
(function (Verlet) {
var VerletManager = (function () {
/**
* Creates a new Vector2 object.
* @class Vector2
* @constructor
* @param {Number} x The x coordinate of vector2
* @param {Number} y The y coordinate of vector2
* @return {Vector2} This object
**/
function VerletManager(game, width, height) {
this._v = new Phaser.Vector2();
this.composites = [];
this.step = 16;
this.selectionRadius = 20;
this.draggedEntity = null;
this.highlightColor = '#4f545c';
this.hideNearestEntityCircle = false;
this._game = game;
this.width = width;
this.height = height;
this.gravity = new Phaser.Vector2(0, 0.2);
this.friction = 0.99;
this.groundFriction = 0.8;
this.canvas = game.stage.canvas;
this.context = game.stage.context;
this._game.input.onDown.add(this.mouseDownHandler, this);
this._game.input.onUp.add(this.mouseUpHandler, this);
}
VerletManager.prototype.intersectionTime = /**
* Computes time of intersection of a particle with a wall
*
* @param {Vec2} line walls root position
* @param {Vec2} p particle position
* @param {Vec2} dir walls direction
* @param {Vec2} v particles velocity
*/
function (wall, p, dir, v) {
if(dir.x != 0) {
var denominator = v.y - dir.y * v.x / dir.x;
if(denominator == 0) {
return undefined;
}// Movement is parallel to wall
var numerator = wall.y + dir.y * (p.x - wall.x) / dir.x - p.y;
return numerator / denominator;
} else {
if(v.x == 0) {
return undefined;
}// parallel again
var denominator = v.x;
var numerator = wall.x - p.x;
return numerator / denominator;
}
};
VerletManager.prototype.intersectionPoint = function (wall, p, dir, v) {
var t = this.intersectionTime(wall, p, dir, v);
return new Phaser.Vector2(p.x + v.x * t, p.y + v.y * t);
};
VerletManager.prototype.bounds = function (particle) {
this._v.mutableSet(particle.pos);
this._v.mutableSub(particle.lastPos);
if(particle.pos.y > this.height - 1) {
particle.pos.mutableSet(this.intersectionPoint(new Phaser.Vector2(0, this.height - 1), particle.lastPos, new Phaser.Vector2(1, 0), this._v));
}
if(particle.pos.x < 0) {
particle.pos.mutableSet(this.intersectionPoint(new Phaser.Vector2(0, 0), particle.pos, new Phaser.Vector2(0, 1), this._v));
}
if(particle.pos.x > this.width - 1) {
particle.pos.mutableSet(this.intersectionPoint(new Phaser.Vector2(this.width - 1, 0), particle.pos, new Phaser.Vector2(0, 1), this._v));
}
};
VerletManager.prototype.createPoint = function (pos) {
var composite = new Phaser.Verlet.Composite(this._game);
composite.particles.push(new Phaser.Verlet.Particle(pos));
this.composites.push(composite);
return composite;
};
VerletManager.prototype.createLineSegments = function (vertices, stiffness) {
var composite = new Phaser.Verlet.Composite(this._game);
var i;
for(i in vertices) {
composite.particles.push(new Phaser.Verlet.Particle(vertices[i]));
if(i > 0) {
composite.constraints.push(new Phaser.Verlet.DistanceConstraint(composite.particles[i], composite.particles[i - 1], stiffness));
}
}
this.composites.push(composite);
return composite;
};
VerletManager.prototype.createCloth = function (origin, width, height, segments, pinMod, stiffness) {
var composite = new Phaser.Verlet.Composite(this._game);
var xStride = width / segments;
var yStride = height / segments;
var x;
var y;
for(y = 0; y < segments; ++y) {
for(x = 0; x < segments; ++x) {
var px = origin.x + x * xStride - width / 2 + xStride / 2;
var py = origin.y + y * yStride - height / 2 + yStride / 2;
composite.particles.push(new Phaser.Verlet.Particle(new Phaser.Vector2(px, py)));
if(x > 0) {
composite.constraints.push(new Phaser.Verlet.DistanceConstraint(composite.particles[y * segments + x], composite.particles[y * segments + x - 1], stiffness));
}
if(y > 0) {
composite.constraints.push(new Phaser.Verlet.DistanceConstraint(composite.particles[y * segments + x], composite.particles[(y - 1) * segments + x], stiffness));
}
}
}
for(x = 0; x < segments; ++x) {
if(x % pinMod == 0) {
composite.pin(x);
}
}
this.composites.push(composite);
return composite;
};
VerletManager.prototype.createTire = function (origin, radius, segments, spokeStiffness, treadStiffness) {
var stride = (2 * Math.PI) / segments;
var i;
var composite = new Phaser.Verlet.Composite(this._game);
// particles
for(i = 0; i < segments; ++i) {
var theta = i * stride;
composite.particles.push(new Verlet.Particle(new Phaser.Vector2(origin.x + Math.cos(theta) * radius, origin.y + Math.sin(theta) * radius)));
}
var center = new Verlet.Particle(origin);
composite.particles.push(center);
// constraints
for(i = 0; i < segments; ++i) {
composite.constraints.push(new Verlet.DistanceConstraint(composite.particles[i], composite.particles[(i + 1) % segments], treadStiffness));
composite.constraints.push(new Verlet.DistanceConstraint(composite.particles[i], center, spokeStiffness));
composite.constraints.push(new Verlet.DistanceConstraint(composite.particles[i], composite.particles[(i + 5) % segments], treadStiffness));
}
this.composites.push(composite);
return composite;
};
VerletManager.prototype.update = function () {
if(this.composites.length == 0) {
return;
}
var i, j, c;
for(c in this.composites) {
for(i in this.composites[c].particles) {
var particles = this.composites[c].particles;
// calculate velocity
var velocity = particles[i].pos.sub(particles[i].lastPos).scale(this.friction);
// ground friction
if(particles[i].pos.y >= this.height - 1 && velocity.length2() > 0.000001) {
var m = velocity.length();
velocity.x /= m;
velocity.y /= m;
velocity.mutableScale(m * this.groundFriction);
}
// save last good state
particles[i].lastPos.mutableSet(particles[i].pos);
// gravity
particles[i].pos.mutableAdd(this.gravity);
// inertia
particles[i].pos.mutableAdd(velocity);
}
}
// handle dragging of entities
if(this.draggedEntity) {
this.draggedEntity.pos.mutableSet(this._game.input.position);
}
// relax
var stepCoef = 1 / this.step;
for(c in this.composites) {
var constraints = this.composites[c].constraints;
for(i = 0; i < this.step; ++i) {
for(j in constraints) {
constraints[j].relax(stepCoef);
}
}
}
// bounds checking
for(c in this.composites) {
var particles = this.composites[c].particles;
for(i in particles) {
this.bounds(particles[i]);
}
}
};
VerletManager.prototype.mouseDownHandler = function () {
var nearest = this.nearestEntity();
if(nearest) {
this.draggedEntity = nearest;
}
};
VerletManager.prototype.mouseUpHandler = function () {
this.draggedEntity = null;
};
VerletManager.prototype.nearestEntity = function () {
var c, i;
var d2Nearest = 0;
var entity = null;
var constraintsNearest = null;
// find nearest point
for(c in this.composites) {
var particles = this.composites[c].particles;
for(i in particles) {
var d2 = particles[i].pos.distance2(this._game.input.position);
if(d2 <= this.selectionRadius * this.selectionRadius && (entity == null || d2 < d2Nearest)) {
entity = particles[i];
constraintsNearest = this.composites[c].constraints;
d2Nearest = d2;
}
}
}
// search for pinned constraints for this entity
for(i in constraintsNearest) {
if(constraintsNearest[i] instanceof Verlet.PinConstraint && constraintsNearest[i].a == entity) {
entity = constraintsNearest[i];
}
}
return entity;
};
VerletManager.prototype.render = function () {
var i, c;
for(c in this.composites) {
// draw constraints
if(this.composites[c].drawConstraints) {
this.composites[c].drawConstraints(this.context, this.composites[c]);
} else {
var constraints = this.composites[c].constraints;
for(i in constraints) {
constraints[i].render(this.context);
}
}
// draw particles
if(this.composites[c].drawParticles) {
this.composites[c].drawParticles(this.context, this.composites[c]);
} else {
var particles = this.composites[c].particles;
for(i in particles) {
particles[i].render(this.context);
}
}
}
// highlight nearest / dragged entity
var nearest = this.draggedEntity || this.nearestEntity();
if(nearest && this.hideNearestEntityCircle == false) {
this.context.beginPath();
this.context.arc(nearest.pos.x, nearest.pos.y, 8, 0, 2 * Math.PI);
this.context.strokeStyle = this.highlightColor;
this.context.stroke();
this.context.closePath();
}
};
return VerletManager;
})();
Verlet.VerletManager = VerletManager;
})(Phaser.Verlet || (Phaser.Verlet = {}));
var Verlet = Phaser.Verlet;
})(Phaser || (Phaser = {}));