phaser/todo/TS Source/physics/circle/ProjCircle22Deg.js

441 lines
28 KiB
JavaScript
Raw Normal View History

var Phaser;
(function (Phaser) {
(function (Physics) {
/// <reference path="../../_definitions.ts" />
/**
* Phaser - Physics - Projection
*/
(function (Projection) {
var Circle22Deg = (function () {
function Circle22Deg() { }
Circle22Deg.CollideS = function CollideS(x, y, oH, oV, obj, t) {
//if the object is in a cell pointed at by signy, no collision will ever occur
//otherwise,
//
//if we're colliding diagonally:
// -collide vs. the appropriate vertex
//if obj is in this tile: collide vs slope or vertex
//if obj is horiz neighb in direction of slope: collide vs. slope or vertex
//if obj is horiz neighb against the slope:
// if(distance in y from circle to 90deg corner of tile < 1/2 tileheight, collide vs. face)
// else(collide vs. corner of slope) (vert collision with a non-grid-aligned vert)
//if obj is vert neighb against direction of slope: collide vs. face
var signx = t.signx;
var signy = t.signy;
if(0 < (signy * oV)) {
//object will never collide vs tile, it can't reach that far
return Phaser.Physics.Circle.COL_NONE;
} else if(oH == 0) {
if(oV == 0) {
//colliding with current tile
//we could only be colliding vs the slope OR a vertex
//look at the vector form the closest vert to the circle to decide
var sx = t.sx;
var sy = t.sy;
var r = obj.radius;
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//this gives is the coordinates of the innermost
var oy = obj.pos.y - t.pos.y;//point on the circle, relative to the tile corner
//if the component of (ox,oy) parallel to the normal's righthand normal
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
//then we project by the vertex, otherwise by the normal or axially.
//note that this is simply a VERY tricky/weird method of determining
//if the circle is in side the slope/face's voronio region, or that of the vertex.
var perp = (ox * -sy) + (oy * sx);
if(0 < (perp * signx * signy)) {
//collide vs. vertex
var len = Math.sqrt(ox * ox + oy * oy);
var pen = r - len;
if(0 < pen) {
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
ox /= len;
oy /= len;
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
} else {
//collide vs. slope or vs axis
ox -= r * sx//this gives us the vector from
;
oy -= r * sy//a point on the slope to the innermost point on the circle
;
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
var dp = (ox * sx) + (oy * sy);
if(dp < 0) {
//collision; project delta onto slope and use this to displace the object
sx *= -dp//(sx,sy) is now the projection vector
;
sy *= -dp;
var lenN = Math.sqrt(sx * sx + sy * sy);
var lenP;
//find the smallest axial projection vector
if(x < y) {
//penetration in x is smaller
lenP = x;
y = 0;
//get sign for projection along x-axis
if((obj.pos.x - t.pos.x) < 0) {
x *= -1;
}
} else {
//penetration in y is smaller
lenP = y;
x = 0;
//get sign for projection along y-axis
if((obj.pos.y - t.pos.y) < 0) {
y *= -1;
}
}
if(lenP < lenN) {
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
} else {
//colliding vertically; we can assume that (signy*oV) < 0
//due to the first conditional far above
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
return Phaser.Physics.Circle.COL_AXIS;
}
} else if(oV == 0) {
//colliding horizontally
if((signx * oH) < 0) {
//colliding with face/edge OR with corner of wedge, depending on our position vertically
//collide vs. vertex
//get diag vertex position
var vx = t.pos.x - (signx * t.xw);
var vy = t.pos.y;
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
if((dy * signy) < 0) {
//colliding vs face
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//colliding vs. vertex
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if(0 < pen) {
//vertex is in the circle; project outward
if(len == 0) {
//project out by 45deg
dx = oH / Math.SQRT2;
dy = oV / Math.SQRT2;
} else {
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
} else {
//we could only be colliding vs the slope OR a vertex
//look at the vector form the closest vert to the circle to decide
var sx = t.sx;
var sy = t.sy;
var ox = obj.pos.x - (t.pos.x + (oH * t.xw));//this gives is the coordinates of the innermost
var oy = obj.pos.y - (t.pos.y - (signy * t.yw));//point on the circle, relative to the closest tile vert
//if the component of (ox,oy) parallel to the normal's righthand normal
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
//then we project by the normal, otherwise by the vertex.
//(NOTE: this is the opposite logic of the vertical case;
// for vertical, if the perp prod and the slope's slope agree, it's outside.
// for horizontal, if the perp prod and the slope's slope agree, circle is inside.
// ..but this is only a property of flahs' coord system (i.e the rules might swap
// in righthanded systems))
//note that this is simply a VERY tricky/weird method of determining
//if the circle is in side the slope/face's voronio region, or that of the vertex.
var perp = (ox * -sy) + (oy * sx);
if((perp * signx * signy) < 0) {
//collide vs. vertex
var len = Math.sqrt(ox * ox + oy * oy);
var pen = obj.radius - len;
if(0 < pen) {
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
ox /= len;
oy /= len;
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
} else {
//collide vs. slope
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
//penetrating the slope. note that this method of penetration calculation doesn't hold
//in general (i.e it won't work if the circle is in the slope), but works in this case
//because we know the circle is in a neighboring cell
var dp = (ox * sx) + (oy * sy);
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
if(0 < pen) {
//collision; circle out along normal by penetration amount
obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
} else {
//colliding diagonally; due to the first conditional above,
//obj is vertically offset against slope, and offset in either direction horizontally
//collide vs. vertex
//get diag vertex position
var vx = t.pos.x + (oH * t.xw);
var vy = t.pos.y + (oV * t.yw);
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if(0 < pen) {
//vertex is in the circle; project outward
if(len == 0) {
//project out by 45deg
dx = oH / Math.SQRT2;
dy = oV / Math.SQRT2;
} else {
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
return Phaser.Physics.Circle.COL_NONE;
};
Circle22Deg.CollideB = function CollideB(x, y, oH, oV, obj, t) {
//if we're colliding diagonally:
// -if we're in the cell pointed at by the normal, collide vs slope, else
// collide vs. the appropriate corner/vertex
//
//if obj is in this tile: collide as with aabb
//
//if obj is horiz or vertical neighbor AGAINST the slope: collide with edge
//
//if obj is horiz neighb in direction of slope: collide vs. slope or vertex or edge
//
//if obj is vert neighb in direction of slope: collide vs. slope or vertex
var signx = t.signx;
var signy = t.signy;
var sx;
var sy;
if(oH == 0) {
if(oV == 0) {
//colliding with current cell
sx = t.sx;
sy = t.sy;
var r = obj.radius;
var ox = (obj.pos.x - (sx * r)) - (t.pos.x - (signx * t.xw));//this gives is the coordinates of the innermost
var oy = (obj.pos.y - (sy * r)) - (t.pos.y + (signy * t.yw));//point on the AABB, relative to a point on the slope
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
var dp = (ox * sx) + (oy * sy);
if(dp < 0) {
//collision; project delta onto slope and use this to displace the object
sx *= -dp//(sx,sy) is now the projection vector
;
sy *= -dp;
var lenN = Math.sqrt(sx * sx + sy * sy);
var lenP;
//find the smallest axial projection vector
if(x < y) {
//penetration in x is smaller
lenP = x;
y = 0;
//get sign for projection along x-axis
if((obj.pos.x - t.pos.x) < 0) {
x *= -1;
}
} else {
//penetration in y is smaller
lenP = y;
x = 0;
//get sign for projection along y-axis
if((obj.pos.y - t.pos.y) < 0) {
y *= -1;
}
}
if(lenP < lenN) {
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
obj.reportCollisionVsWorld(sx, sy, t.sx, t.sy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
} else {
//colliding vertically
if((signy * oV) < 0) {
//colliding with face/edge
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//we could only be colliding vs the slope OR a vertex
//look at the vector form the closest vert to the circle to decide
sx = t.sx;
sy = t.sy;
var ox = obj.pos.x - (t.pos.x - (signx * t.xw));//this gives is the coordinates of the innermost
var oy = obj.pos.y - (t.pos.y + (signy * t.yw));//point on the circle, relative to the closest tile vert
//if the component of (ox,oy) parallel to the normal's righthand normal
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
//then we project by the vertex, otherwise by the normal.
//note that this is simply a VERY tricky/weird method of determining
//if the circle is in side the slope/face's voronio region, or that of the vertex.
var perp = (ox * -sy) + (oy * sx);
if(0 < (perp * signx * signy)) {
//collide vs. vertex
var len = Math.sqrt(ox * ox + oy * oy);
var pen = obj.radius - len;
if(0 < pen) {
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
ox /= len;
oy /= len;
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
} else {
//collide vs. slope
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
//penetrating the slope. note that this method of penetration calculation doesn't hold
//in general (i.e it won't work if the circle is in the slope), but works in this case
//because we know the circle is in a neighboring cell
var dp = (ox * sx) + (oy * sy);
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
if(0 < pen) {
//collision; circle out along normal by penetration amount
obj.reportCollisionVsWorld(sx * pen, sy * pen, sx, sy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
}
} else if(oV == 0) {
//colliding horizontally
if((signx * oH) < 0) {
//colliding with face/edge
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//colliding with edge, slope, or vertex
var ox = obj.pos.x - (t.pos.x + (signx * t.xw));//this gives is the coordinates of the innermost
var oy = obj.pos.y - t.pos.y;//point on the circle, relative to the closest tile vert
if((oy * signy) < 0) {
//we're colliding with the halfface
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//colliding with the vertex or slope
sx = t.sx;
sy = t.sy;
//if the component of (ox,oy) parallel to the normal's righthand normal
//has the same sign as the slope of the slope (the sign of the slope's slope is signx*signy)
//then we project by the slope, otherwise by the vertex.
//note that this is simply a VERY tricky/weird method of determining
//if the circle is in side the slope/face's voronio region, or that of the vertex.
var perp = (ox * -sy) + (oy * sx);
if((perp * signx * signy) < 0) {
//collide vs. vertex
var len = Math.sqrt(ox * ox + oy * oy);
var pen = obj.radius - len;
if(0 < pen) {
//note: if len=0, then perp=0 and we'll never reach here, so don't worry about div-by-0
ox /= len;
oy /= len;
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
} else {
//collide vs. slope
//if the component of (ox,oy) parallel to the normal is less than the circle radius, we're
//penetrating the slope. note that this method of penetration calculation doesn't hold
//in general (i.e it won't work if the circle is in the slope), but works in this case
//because we know the circle is in a neighboring cell
var dp = (ox * sx) + (oy * sy);
var pen = obj.radius - Math.abs(dp);//note: we don't need the abs because we know the dp will be positive, but just in case..
if(0 < pen) {
//collision; circle out along normal by penetration amount
obj.reportCollisionVsWorld(sx * pen, sy * pen, t.sx, t.sy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
}
} else {
//colliding diagonally
if(0 < ((signx * oH) + (signy * oV))) {
//the dotprod of slope normal and cell offset is strictly positive,
//therefore obj is in the diagonal neighb pointed at by the normal.
//collide vs slope
//we should really precalc this at compile time, but for now, fuck it
var slen = Math.sqrt(2 * 2 + 1 * 1);//the raw slope is (-2,-1)
sx = (signx * 1) / slen//get slope _unit_ normal;
;
sy = (signy * 2) / slen//raw RH normal is (1,-2)
;
var r = obj.radius;
var ox = (obj.pos.x - (sx * r)) - (t.pos.x - (signx * t.xw));//this gives is the coordinates of the innermost
var oy = (obj.pos.y - (sy * r)) - (t.pos.y + (signy * t.yw));//point on the circle, relative to a point on the slope
//if the dotprod of (ox,oy) and (sx,sy) is negative, the point on the circle is in the slope
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
var dp = (ox * sx) + (oy * sy);
if(dp < 0) {
//collision; project delta onto slope and use this to displace the object
//(sx,sy)*-dp is the projection vector
obj.reportCollisionVsWorld(-sx * dp, -sy * dp, t.sx, t.sy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
return Phaser.Physics.Circle.COL_NONE;
} else {
//collide vs the appropriate vertex
var vx = t.pos.x + (oH * t.xw);
var vy = t.pos.y + (oV * t.yw);
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if(0 < pen) {
//vertex is in the circle; project outward
if(len == 0) {
//project out by 45deg
dx = oH / Math.SQRT2;
dy = oV / Math.SQRT2;
} else {
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
return Phaser.Physics.Circle.COL_NONE;
};
return Circle22Deg;
})();
Projection.Circle22Deg = Circle22Deg;
})(Physics.Projection || (Physics.Projection = {}));
var Projection = Physics.Projection;
})(Phaser.Physics || (Phaser.Physics = {}));
var Physics = Phaser.Physics;
})(Phaser || (Phaser = {}));