mirror of
https://github.com/photonstorm/phaser
synced 2024-12-19 09:34:02 +00:00
843 lines
28 KiB
JavaScript
843 lines
28 KiB
JavaScript
|
/**
|
||
|
* @author Richard Davey <rich@photonstorm.com>
|
||
|
* @copyright 2014 Photon Storm Ltd.
|
||
|
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Ninja Physics AABB constructor.
|
||
|
*
|
||
|
* @class Phaser.Physics.Ninja.AABB
|
||
|
* @classdesc Arcade Physics Constructor
|
||
|
* @constructor
|
||
|
* @param {Phaser.Game} game reference to the current game instance.
|
||
|
*/
|
||
|
Phaser.Physics.Ninja.AABB = function (system, x, y, width, height) {
|
||
|
|
||
|
this.system = system;
|
||
|
this.pos = new Phaser.Point(x, y);
|
||
|
this.oldpos = new Phaser.Point(x, y);
|
||
|
|
||
|
this.xw = Math.abs(width / 2);
|
||
|
this.yw = Math.abs(height / 2);
|
||
|
|
||
|
this.width = width;
|
||
|
this.height = height;
|
||
|
|
||
|
this.oH = 0;
|
||
|
this.oV = 0;
|
||
|
|
||
|
// Setting drag to 0 and friction to 0 means you get a normalised speed (px psec)
|
||
|
this.drag = 1;
|
||
|
this.friction = 0.05;
|
||
|
this.gravityScale = 1;
|
||
|
this.bounce = 0.3;
|
||
|
this.velocity = new Phaser.Point();
|
||
|
|
||
|
// temp collision values
|
||
|
this.px = 0;
|
||
|
this.py = 0;
|
||
|
|
||
|
// collision mappings
|
||
|
this.aabbTileProjections = {};
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_FULL] = this.projAABB_Full;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_45DEG] = this.projAABB_45Deg;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONCAVE] = this.projAABB_Concave;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_CONVEX] = this.projAABB_Convex;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGs] = this.projAABB_22DegS;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_22DEGb] = this.projAABB_22DegB;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGs] = this.projAABB_67DegS;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_67DEGb] = this.projAABB_67DegB;
|
||
|
this.aabbTileProjections[Phaser.Physics.Ninja.Tile.TYPE_HALF] = this.projAABB_Half;
|
||
|
|
||
|
};
|
||
|
|
||
|
Phaser.Physics.Ninja.AABB.prototype.constructor = Phaser.Physics.Ninja.AABB;
|
||
|
|
||
|
Phaser.Physics.Ninja.AABB.COL_NONE = 0;
|
||
|
Phaser.Physics.Ninja.AABB.COL_AXIS = 1;
|
||
|
Phaser.Physics.Ninja.AABB.COL_OTHER = 2;
|
||
|
|
||
|
Phaser.Physics.Ninja.AABB.prototype = {
|
||
|
|
||
|
/**
|
||
|
* Updates this AABBs position.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#integrate
|
||
|
*/
|
||
|
integrate: function () {
|
||
|
|
||
|
var px = this.pos.x;
|
||
|
var py = this.pos.y;
|
||
|
|
||
|
// integrate
|
||
|
this.pos.x += (this.drag * this.pos.x) - (this.drag * this.oldpos.x);
|
||
|
this.pos.y += (this.drag * this.pos.y) - (this.drag * this.oldpos.y) + (this.system.gravity * this.gravityScale);
|
||
|
|
||
|
// store
|
||
|
this.velocity.set(this.pos.x - px, this.pos.y - py);
|
||
|
this.oldpos.set(px, py);
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Process a world collision and apply the resulting forces.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#reportCollisionVsWorld
|
||
|
* @param {number} px - The tangent velocity
|
||
|
* @param {number} py - The tangent velocity
|
||
|
* @param {number} dx - Collision normal
|
||
|
* @param {number} dy - Collision normal
|
||
|
* @param {number} obj - Object this AABB collided with
|
||
|
*/
|
||
|
reportCollisionVsWorld: function (px, py, dx, dy, obj) {
|
||
|
|
||
|
var p = this.pos;
|
||
|
var o = this.oldpos;
|
||
|
|
||
|
//calc velocity
|
||
|
var vx = p.x - o.x;
|
||
|
var vy = p.y - o.y;
|
||
|
|
||
|
//find component of velocity parallel to collision normal
|
||
|
var dp = (vx * dx + vy * dy);
|
||
|
var nx = dp * dx;//project velocity onto collision normal
|
||
|
|
||
|
var ny = dp * dy;//nx,ny is normal velocity
|
||
|
|
||
|
var tx = vx - nx;//px,py is tangent velocity
|
||
|
var ty = vy - ny;
|
||
|
|
||
|
//we only want to apply collision response forces if the object is travelling into, and not out of, the collision
|
||
|
var b, bx, by, f, fx, fy;
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//f = FRICTION;
|
||
|
fx = tx * this.friction;
|
||
|
fy = ty * this.friction;
|
||
|
|
||
|
b = 1 + this.bounce;
|
||
|
|
||
|
bx = (nx * b);
|
||
|
by = (ny * b);
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//moving out of collision, do not apply forces
|
||
|
bx = by = fx = fy = 0;
|
||
|
}
|
||
|
|
||
|
p.x += px;//project object out of collision
|
||
|
p.y += py;
|
||
|
|
||
|
o.x += px + bx + fx;//apply bounce+friction impulses which alter velocity
|
||
|
o.y += py + by + fy;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Collides this AABB against a Tile.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#collideAABBVsTile
|
||
|
* @param {Phaser.Physics.Ninja.Tile} tile - The Tile to collide against.
|
||
|
*/
|
||
|
collideAABBVsTile: function (tile) {
|
||
|
|
||
|
var pos = this.pos;
|
||
|
var c = tile;
|
||
|
|
||
|
var tx = c.pos.x;
|
||
|
var ty = c.pos.y;
|
||
|
var txw = c.xw;
|
||
|
var tyw = c.yw;
|
||
|
|
||
|
var dx = pos.x - tx;//tile->obj delta
|
||
|
var px = (txw + this.xw) - Math.abs(dx);//penetration depth in x
|
||
|
|
||
|
if (0 < px)
|
||
|
{
|
||
|
var dy = pos.y - ty;//tile->obj delta
|
||
|
var py = (tyw + this.yw) - Math.abs(dy);//pen depth in y
|
||
|
|
||
|
if (0 < py)
|
||
|
{
|
||
|
//object may be colliding with tile; call tile-specific collision function
|
||
|
|
||
|
//calculate projection vectors
|
||
|
if (px < py)
|
||
|
{
|
||
|
//project in x
|
||
|
if (dx < 0)
|
||
|
{
|
||
|
//project to the left
|
||
|
px *= -1;
|
||
|
py = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//proj to right
|
||
|
py = 0;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//project in y
|
||
|
if (dy < 0)
|
||
|
{
|
||
|
//project up
|
||
|
px = 0;
|
||
|
py *= -1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//project down
|
||
|
px = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return this.resolveTile(px, py, this, c);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Collides this AABB against the world bounds.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#collideWorldBounds
|
||
|
*/
|
||
|
collideWorldBounds: function () {
|
||
|
|
||
|
var p = this.pos;
|
||
|
var xw = this.xw;
|
||
|
var yw = this.yw;
|
||
|
|
||
|
var XMIN = this.system.bounds.x;
|
||
|
var XMAX = this.system.bounds.width;
|
||
|
var YMIN = this.system.bounds.y;
|
||
|
var YMAX = this.system.bounds.height;
|
||
|
|
||
|
var dx = this.system.bounds.x - (this.pos.x - this.xw);
|
||
|
|
||
|
if (0 < dx)
|
||
|
{
|
||
|
this.reportCollisionVsWorld(dx, 0, 1, 0, null);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dx = (this.pos.x + this.xw) - this.system.bounds.width;
|
||
|
|
||
|
if (0 < dx)
|
||
|
{
|
||
|
this.reportCollisionVsWorld(-dx, 0, -1, 0, null);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
var dy = this.system.bounds.y - (this.pos.y - this.yw);
|
||
|
|
||
|
if (0 < dy)
|
||
|
{
|
||
|
this.reportCollisionVsWorld(0, dy, 0, 1, null);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dy = (this.pos.y + this.yw) - this.system.bounds.height;
|
||
|
|
||
|
if (0 < dy)
|
||
|
{
|
||
|
this.reportCollisionVsWorld(0, -dy, 0, -1, null);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Renders this AABB to the context.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#render
|
||
|
*/
|
||
|
render: function (context) {
|
||
|
|
||
|
context.beginPath();
|
||
|
context.strokeStyle = 'rgb(0,255,0)';
|
||
|
context.strokeRect(this.pos.x - this.xw, this.pos.y - this.yw, this.xw * 2, this.yw * 2);
|
||
|
context.stroke();
|
||
|
context.closePath();
|
||
|
|
||
|
context.fillStyle = 'rgb(0,255,0)';
|
||
|
context.fillRect(this.pos.x, this.pos.y, 2, 2);
|
||
|
|
||
|
/*
|
||
|
if (this.oH == 1)
|
||
|
{
|
||
|
context.beginPath();
|
||
|
context.strokeStyle = 'rgb(255,0,0)';
|
||
|
context.moveTo(this.pos.x - this.radius, this.pos.y - this.radius);
|
||
|
context.lineTo(this.pos.x - this.radius, this.pos.y + this.radius);
|
||
|
context.stroke();
|
||
|
context.closePath();
|
||
|
}
|
||
|
else if (this.oH == -1)
|
||
|
{
|
||
|
context.beginPath();
|
||
|
context.strokeStyle = 'rgb(255,0,0)';
|
||
|
context.moveTo(this.pos.x + this.radius, this.pos.y - this.radius);
|
||
|
context.lineTo(this.pos.x + this.radius, this.pos.y + this.radius);
|
||
|
context.stroke();
|
||
|
context.closePath();
|
||
|
}
|
||
|
|
||
|
if (this.oV == 1)
|
||
|
{
|
||
|
context.beginPath();
|
||
|
context.strokeStyle = 'rgb(255,0,0)';
|
||
|
context.moveTo(this.pos.x - this.radius, this.pos.y - this.radius);
|
||
|
context.lineTo(this.pos.x + this.radius, this.pos.y - this.radius);
|
||
|
context.stroke();
|
||
|
context.closePath();
|
||
|
}
|
||
|
else if (this.oV == -1)
|
||
|
{
|
||
|
context.beginPath();
|
||
|
context.strokeStyle = 'rgb(255,0,0)';
|
||
|
context.moveTo(this.pos.x - this.radius, this.pos.y + this.radius);
|
||
|
context.lineTo(this.pos.x + this.radius, this.pos.y + this.radius);
|
||
|
context.stroke();
|
||
|
context.closePath();
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#resolveTile
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} body - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} tile - The Tile involved in the collision.
|
||
|
* @return {boolean} True if the collision was processed, otherwise false.
|
||
|
*/
|
||
|
resolveTile: function (x, y, body, tile) {
|
||
|
|
||
|
if (0 < tile.id)
|
||
|
{
|
||
|
return this.aabbTileProjections[tile.type](x, y, body, tile);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
console.warn("Ninja.AABB.resolveTile was called with an empty (or unknown) tile!: id=" + tile.id + ")");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves Full tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Full
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_Full: function (x, y, obj, t) {
|
||
|
|
||
|
var l = Math.sqrt(x * x + y * y);
|
||
|
obj.reportCollisionVsWorld(x, y, x / l, y / l, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves Half tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Half
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_Half: function (x, y, obj, t) {
|
||
|
|
||
|
//signx or signy must be 0; the other must be -1 or 1
|
||
|
//calculate the projection vector for the half-edge, and then
|
||
|
//(if collision is occuring) pick the minimum
|
||
|
|
||
|
var sx = t.signx;
|
||
|
var sy = t.signy;
|
||
|
|
||
|
var ox = (obj.pos.x - (sx*obj.xw)) - t.pos.x;//this gives is the coordinates of the innermost
|
||
|
var oy = (obj.pos.y - (sy*obj.yw)) - t.pos.y;//point on the AABB, relative to the tile center
|
||
|
|
||
|
//we perform operations analogous to the 45deg tile, except we're using
|
||
|
//an axis-aligned slope instead of an angled one..
|
||
|
|
||
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
||
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
||
|
var dp = (ox*sx) + (oy*sy);
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//collision; project delta onto slope and use this to displace the object
|
||
|
sx *= -dp;//(sx,sy) is now the projection vector
|
||
|
sy *= -dp;
|
||
|
|
||
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
||
|
var lenP = Math.sqrt(x*x + y*y);
|
||
|
|
||
|
if (lenP < lenN)
|
||
|
{
|
||
|
//project along axis; note that we're assuming that this tile is horizontal OR vertical
|
||
|
//relative to the AABB's current tile, and not diagonal OR the current tile.
|
||
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//note that we could use -= instead of -dp
|
||
|
obj.reportCollisionVsWorld(sx,sy,t.signx, t.signy, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves 45 Degree tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_45Deg
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_45Deg: function (x, y, obj, t) {
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
var ox = (obj.pos.x - (signx*obj.xw)) - t.pos.x;//this gives is the coordinates of the innermost
|
||
|
var oy = (obj.pos.y - (signy*obj.yw)) - t.pos.y;//point on the AABB, relative to the tile center
|
||
|
|
||
|
var sx = t.sx;
|
||
|
var sy = t.sy;
|
||
|
|
||
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
||
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
||
|
var dp = (ox*sx) + (oy*sy);
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//collision; project delta onto slope and use this to displace the object
|
||
|
sx *= -dp;//(sx,sy) is now the projection vector
|
||
|
sy *= -dp;
|
||
|
|
||
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
||
|
var lenP = Math.sqrt(x*x + y*y);
|
||
|
|
||
|
if (lenP < lenN)
|
||
|
{
|
||
|
//project along axis
|
||
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//project along slope
|
||
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves 22 Degree tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_22DegS
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_22DegS: function (x, y, obj, t) {
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
//first we need to check to make sure we're colliding with the slope at all
|
||
|
var py = obj.pos.y - (signy*obj.yw);
|
||
|
var penY = t.pos.y - py;//this is the vector from the innermost point on the box to the highest point on
|
||
|
//the tile; if it is positive, this means the box is above the tile and
|
||
|
//no collision is occuring
|
||
|
if (0 < (penY*signy))
|
||
|
{
|
||
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
||
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope
|
||
|
|
||
|
var sx = t.sx;//get slope unit normal
|
||
|
var sy = t.sy;
|
||
|
|
||
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
||
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
||
|
var dp = (ox*sx) + (oy*sy);
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//collision; project delta onto slope and use this to displace the object
|
||
|
sx *= -dp;//(sx,sy) is now the projection vector
|
||
|
sy *= -dp;
|
||
|
|
||
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
||
|
var lenP = Math.sqrt(x*x + y*y);
|
||
|
|
||
|
var aY = Math.abs(penY);
|
||
|
|
||
|
if (lenP < lenN)
|
||
|
{
|
||
|
if (aY < lenP)
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(0, penY, 0, penY/aY, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (aY < lenN)
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(0, penY, 0, penY/aY, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//if we've reached this point, no collision has occured
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves 22 Degree tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_22DegB
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_22DegB: function (x, y, obj, t) {
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
||
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope
|
||
|
|
||
|
var sx = t.sx;//get slope unit normal
|
||
|
var sy = t.sy;
|
||
|
|
||
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
||
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
||
|
var dp = (ox*sx) + (oy*sy);
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//collision; project delta onto slope and use this to displace the object
|
||
|
sx *= -dp;//(sx,sy) is now the projection vector
|
||
|
sy *= -dp;
|
||
|
|
||
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
||
|
var lenP = Math.sqrt(x*x + y*y);
|
||
|
|
||
|
if (lenP < lenN)
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves 67 Degree tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_67DegS
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_67DegS: function (x, y, obj, t) {
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
var px = obj.pos.x - (signx*obj.xw);
|
||
|
var penX = t.pos.x - px;
|
||
|
|
||
|
if (0 < (penX*signx))
|
||
|
{
|
||
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x - (signx*t.xw));//this gives is the coordinates of the innermost
|
||
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y + (signy*t.yw));//point on the AABB, relative to a point on the slope
|
||
|
|
||
|
var sx = t.sx;//get slope unit normal
|
||
|
var sy = t.sy;
|
||
|
|
||
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
||
|
//and we need to project it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
||
|
var dp = (ox*sx) + (oy*sy);
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//collision; project delta onto slope and use this to displace the object
|
||
|
sx *= -dp;//(sx,sy) is now the projection vector
|
||
|
sy *= -dp;
|
||
|
|
||
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
||
|
var lenP = Math.sqrt(x*x + y*y);
|
||
|
|
||
|
var aX = Math.abs(penX);
|
||
|
|
||
|
if (lenP < lenN)
|
||
|
{
|
||
|
if (aX < lenP)
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(penX, 0, penX/aX, 0, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (aX < lenN)
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(penX, 0, penX/aX, 0, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//if we've reached this point, no collision has occured
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves 67 Degree tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_67DegB
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_67DegB: function (x, y, obj, t) {
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
var ox = (obj.pos.x - (signx*obj.xw)) - (t.pos.x + (signx*t.xw));//this gives is the coordinates of the innermost
|
||
|
var oy = (obj.pos.y - (signy*obj.yw)) - (t.pos.y - (signy*t.yw));//point on the AABB, relative to a point on the slope
|
||
|
|
||
|
var sx = t.sx;//get slope unit normal
|
||
|
var sy = t.sy;
|
||
|
|
||
|
//if the dotprod of (ox,oy) and (sx,sy) is negative, the corner is in the slope
|
||
|
//and we need toproject it out by the magnitude of the projection of (ox,oy) onto (sx,sy)
|
||
|
var dp = (ox*sx) + (oy*sy);
|
||
|
|
||
|
if (dp < 0)
|
||
|
{
|
||
|
//collision; project delta onto slope and use this to displace the object
|
||
|
sx *= -dp;//(sx,sy) is now the projection vector
|
||
|
sy *= -dp;
|
||
|
|
||
|
var lenN = Math.sqrt(sx*sx + sy*sy);
|
||
|
var lenP = Math.sqrt(x*x + y*y);
|
||
|
|
||
|
if (lenP < lenN)
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(x,y,x/lenP, y/lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
obj.reportCollisionVsWorld(sx,sy,t.sx,t.sy,t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves Convex tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Convex
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_Convex: function (x, y, obj, t) {
|
||
|
|
||
|
//if distance from "innermost" corner of AABB is less than than tile radius,
|
||
|
//collision is occuring and we need to project
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
var ox = (obj.pos.x - (signx * obj.xw)) - (t.pos.x - (signx * t.xw));//(ox,oy) is the vector from the circle center to
|
||
|
var oy = (obj.pos.y - (signy * obj.yw)) - (t.pos.y - (signy * t.yw));//the AABB
|
||
|
var len = Math.sqrt(ox * ox + oy * oy);
|
||
|
|
||
|
var twid = t.xw * 2;
|
||
|
var rad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
||
|
//note that this should be precomputed at compile-time since it's constant
|
||
|
|
||
|
var pen = rad - len;
|
||
|
|
||
|
if (((signx * ox) < 0) || ((signy * oy) < 0))
|
||
|
{
|
||
|
//the test corner is "outside" the 1/4 of the circle we're interested in
|
||
|
var lenP = Math.sqrt(x * x + y * y);
|
||
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;//we need to report
|
||
|
}
|
||
|
else if (0 < pen)
|
||
|
{
|
||
|
//project along corner->circle vector
|
||
|
ox /= len;
|
||
|
oy /= len;
|
||
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Resolves Concave tile collision.
|
||
|
*
|
||
|
* @method Phaser.Physics.Ninja.AABB#projAABB_Concave
|
||
|
* @param {number} x - Penetration depth on the x axis.
|
||
|
* @param {number} y - Penetration depth on the y axis.
|
||
|
* @param {Phaser.Physics.Ninja.AABB} obj - The AABB involved in the collision.
|
||
|
* @param {Phaser.Physics.Ninja.Tile} t - The Tile involved in the collision.
|
||
|
* @return {number} The result of the collision.
|
||
|
*/
|
||
|
projAABB_Concave: function (x, y, obj, t) {
|
||
|
|
||
|
//if distance from "innermost" corner of AABB is further than tile radius,
|
||
|
//collision is occuring and we need to project
|
||
|
|
||
|
var signx = t.signx;
|
||
|
var signy = t.signy;
|
||
|
|
||
|
var ox = (t.pos.x + (signx * t.xw)) - (obj.pos.x - (signx * obj.xw));//(ox,oy) is the vector form the innermost AABB corner to the
|
||
|
var oy = (t.pos.y + (signy * t.yw)) - (obj.pos.y - (signy * obj.yw));//circle's center
|
||
|
|
||
|
var twid = t.xw * 2;
|
||
|
var rad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
|
||
|
//note that this should be precomputed at compile-time since it's constant
|
||
|
|
||
|
var len = Math.sqrt(ox * ox + oy * oy);
|
||
|
var pen = len - rad;
|
||
|
|
||
|
if (0 < pen)
|
||
|
{
|
||
|
//collision; we need to either project along the axes, or project along corner->circlecenter vector
|
||
|
|
||
|
var lenP = Math.sqrt(x * x + y * y);
|
||
|
|
||
|
if (lenP < pen)
|
||
|
{
|
||
|
//it's shorter to move along axis directions
|
||
|
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_AXIS;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//project along corner->circle vector
|
||
|
ox /= len;//len should never be 0, since if it IS 0, rad should be > than len
|
||
|
oy /= len;//and we should never reach here
|
||
|
|
||
|
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_OTHER;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return Phaser.Physics.Ninja.AABB.COL_NONE;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|