phaser/v3/src/math/Vector3.js

373 lines
8 KiB
JavaScript
Raw Normal View History

// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
var Class = require('../utils/Class');
var Vector3 = new Class({
initialize:
function Vector3 (x, y, z)
{
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
},
clone: function ()
{
return new Vector3(this.x, this.y, this.z);
},
copy: function (src)
{
this.x = src.x;
this.y = src.y;
this.z = src.z;
return this;
},
set: function (x, y, z)
{
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
return this;
},
add: function (v)
{
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
},
subtract: function (v)
{
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
},
multiply: function (v)
{
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
},
scale: function (scale)
{
this.x *= scale;
this.y *= scale;
this.z *= scale;
return this;
},
divide: function (v)
{
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
},
negate: function ()
{
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
return this;
},
distance: function (v)
{
var dx = v.x - this.x;
var dy = v.y - this.y;
var dz = v.z - this.z;
return Math.sqrt(dx * dx + dy * dy + dz * dz);
},
distanceSq: function (v)
{
var dx = v.x - this.x;
var dy = v.y - this.y;
var dz = v.z - this.z;
return dx * dx + dy * dy + dz * dz;
},
length: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
return Math.sqrt(x * x + y * y + z * z);
},
lengthSq: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
return x * x + y * y + z * z;
},
normalize: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var len = x * x + y * y + z * z;
if (len > 0)
{
len = 1 / Math.sqrt(len);
this.x = x * len;
this.y = y * len;
this.z = z * len;
}
return this;
},
dot: function (v)
{
return this.x * v.x + this.y * v.y + this.z * v.z;
},
cross: function (v)
{
var ax = this.x;
var ay = this.y;
var az = this.z;
var bx = v.x;
var by = v.y;
var bz = v.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
lerp: function (v, t)
{
if (t === undefined) { t = 0; }
var ax = this.x;
var ay = this.y;
var az = this.z;
this.x = ax + t * (v.x - ax);
this.y = ay + t * (v.y - ay);
this.z = az + t * (v.z - az);
return this;
},
transformMat3: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
this.x = x * m[0] + y * m[3] + z * m[6];
this.y = x * m[1] + y * m[4] + z * m[7];
this.z = x * m[2] + y * m[5] + z * m[8];
return this;
},
transformMat4: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
this.x = m[0] * x + m[4] * y + m[8] * z + m[12];
this.y = m[1] * x + m[5] * y + m[9] * z + m[13];
this.z = m[2] * x + m[6] * y + m[10] * z + m[14];
return this;
},
transformQuat: function (q)
{
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
var x = this.x;
var y = this.y;
var z = this.z;
var qx = q.x;
var qy = q.y;
var qz = q.z;
var qw = q.w;
// calculate quat * vec
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = -qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return this;
},
/**
* Multiplies this Vector3 by the specified matrix,
* applying a W divide. This is useful for projection,
* e.g. unprojecting a 2D point into 3D space.
*
* @method project
* @param {Matrix4} the 4x4 matrix to multiply with
* @return {Vector3} this object for chaining
*/
project: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
var a00 = m[0];
var a01 = m[1];
var a02 = m[2];
var a03 = m[3];
var a10 = m[4];
var a11 = m[5];
var a12 = m[6];
var a13 = m[7];
var a20 = m[8];
var a21 = m[9];
var a22 = m[10];
var a23 = m[11];
var a30 = m[12];
var a31 = m[13];
var a32 = m[14];
var a33 = m[15];
var lw = 1 / (x * a03 + y * a13 + z * a23 + a33);
this.x = (x * a00 + y * a10 + z * a20 + a30) * lw;
this.y = (x * a01 + y * a11 + z * a21 + a31) * lw;
this.z = (x * a02 + y * a12 + z * a22 + a32) * lw;
return this;
},
/**
* Unproject this point from 2D space to 3D space.
* The point should have its x and y properties set to
* 2D screen space, and the z either at 0 (near plane)
* or 1 (far plane). The provided matrix is assumed to already
* be combined, i.e. projection * view * model.
*
* After this operation, this vector's (x, y, z) components will
* represent the unprojected 3D coordinate.
*
* @param {Vector4} viewport screen x, y, width and height in pixels
* @param {Matrix4} invProjectionView combined projection and view matrix
* @return {Vector3} this object, for chaining
*/
unproject: function (viewport, invProjectionView)
{
var viewX = viewport.x;
var viewY = viewport.y;
var viewWidth = viewport.z;
var viewHeight = viewport.w;
// var x = this.x;
// var y = this.y;
// var z = this.z;
// x = x - viewX;
// y = viewHeight - y - 1;
// y = y - viewY;
var x = this.x - viewX;
var y = (viewHeight - this.y - 1) - viewY;
var z = this.z;
this.x = (2 * x) / viewWidth - 1;
this.y = (2 * y) / viewHeight - 1;
this.z = 2 * z - 1;
return this.project(invProjectionView);
},
random: function (scale)
{
if (scale === undefined) { scale = 1; }
var r = Math.random() * 2 * Math.PI;
var z = (Math.random() * 2) - 1;
var zScale = Math.sqrt(1 - z * z) * scale;
this.x = Math.cos(r) * zScale;
this.y = Math.sin(r) * zScale;
this.z = z * scale;
return this;
},
reset: function ()
{
this.x = 0;
this.y = 0;
this.z = 0;
return this;
}
});
Vector3.sub = Vector3.subtract;
Vector3.mul = Vector3.multiply;
Vector3.div = Vector3.divide;
Vector3.dist = Vector3.distance;
Vector3.distSq = Vector3.distanceSq;
Vector3.len = Vector3.length;
Vector3.lenSq = Vector3.lengthSq;
module.exports = Vector3;