phaser/TS Source/physics/circle/ProjCircleConcave.js

171 lines
9.2 KiB
JavaScript
Raw Normal View History

var Phaser;
(function (Phaser) {
(function (Physics) {
/// <reference path="../../_definitions.ts" />
/**
* Phaser - Physics - Projection
*/
(function (Projection) {
var CircleConcave = (function () {
function CircleConcave() { }
CircleConcave.Collide = function Collide(x, y, oH, oV, obj, t) {
//if we're colliding diagonally:
// -if obj is in the diagonal pointed to by the slope normal: we can't collide, do nothing
// -else, collide vs. the appropriate vertex
//if obj is in this tile: perform collision as for aabb
//if obj is horiz OR very neighb in direction of slope: collide vs vert
//if obj is horiz or vert neigh against direction of slope: collide vs. face
var signx = t.signx;
var signy = t.signy;
var lenP;
if(oH == 0) {
if(oV == 0) {
//colliding with current tile
var ox = (t.pos.x + (signx * t.xw)) - obj.pos.x;//(ox,oy) is the vector from the circle to
var oy = (t.pos.y + (signy * t.yw)) - obj.pos.y;//tile-circle's center
var twid = t.xw * 2;
var trad = Math.sqrt(twid * twid + 0);//this gives us the radius of a circle centered on the tile's corner and extending to the opposite edge of the tile;
//note that this should be precomputed at compile-time since it's constant
var len = Math.sqrt(ox * ox + oy * oy);
var pen = (len + obj.radius) - trad;
if(0 < pen) {
//find the smallest axial projection vector
if(x < y) {
//penetration in x is smaller
lenP = x;
y = 0;
//get sign for projection along x-axis
if((obj.pos.x - t.pos.x) < 0) {
x *= -1;
}
} else {
//penetration in y is smaller
lenP = y;
x = 0;
//get sign for projection along y-axis
if((obj.pos.y - t.pos.y) < 0) {
y *= -1;
}
}
if(lenP < pen) {
obj.reportCollisionVsWorld(x, y, x / lenP, y / lenP, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//we can assume that len >0, because if we're here then
//(len + obj.radius) > trad, and since obj.radius <= trad
//len MUST be > 0
ox /= len;
oy /= len;
obj.reportCollisionVsWorld(ox * pen, oy * pen, ox, oy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
} else {
return Phaser.Physics.Circle.COL_NONE;
}
} else {
//colliding vertically
if((signy * oV) < 0) {
//colliding with face/edge
obj.reportCollisionVsWorld(0, y * oV, 0, oV, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//we could only be colliding vs the vertical tip
//get diag vertex position
var vx = t.pos.x - (signx * t.xw);
var vy = t.pos.y + (oV * t.yw);
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if(0 < pen) {
//vertex is in the circle; project outward
if(len == 0) {
//project out vertically
dx = 0;
dy = oV;
} else {
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
} else if(oV == 0) {
//colliding horizontally
if((signx * oH) < 0) {
//colliding with face/edge
obj.reportCollisionVsWorld(x * oH, 0, oH, 0, t);
return Phaser.Physics.Circle.COL_AXIS;
} else {
//we could only be colliding vs the horizontal tip
//get diag vertex position
var vx = t.pos.x + (oH * t.xw);
var vy = t.pos.y - (signy * t.yw);
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if(0 < pen) {
//vertex is in the circle; project outward
if(len == 0) {
//project out horizontally
dx = oH;
dy = 0;
} else {
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
} else {
//colliding diagonally
if(0 < ((signx * oH) + (signy * oV))) {
//the dotprod of slope normal and cell offset is strictly positive,
//therefore obj is in the diagonal neighb pointed at by the normal, and
//it cannot possibly reach/touch/penetrate the slope
return Phaser.Physics.Circle.COL_NONE;
} else {
//collide vs. vertex
//get diag vertex position
var vx = t.pos.x + (oH * t.xw);
var vy = t.pos.y + (oV * t.yw);
var dx = obj.pos.x - vx;//calc vert->circle vector
var dy = obj.pos.y - vy;
var len = Math.sqrt(dx * dx + dy * dy);
var pen = obj.radius - len;
if(0 < pen) {
//vertex is in the circle; project outward
if(len == 0) {
//project out by 45deg
dx = oH / Math.SQRT2;
dy = oV / Math.SQRT2;
} else {
dx /= len;
dy /= len;
}
obj.reportCollisionVsWorld(dx * pen, dy * pen, dx, dy, t);
return Phaser.Physics.Circle.COL_OTHER;
}
}
}
return Phaser.Physics.Circle.COL_NONE;
};
return CircleConcave;
})();
Projection.CircleConcave = CircleConcave;
})(Physics.Projection || (Physics.Projection = {}));
var Projection = Physics.Projection;
})(Phaser.Physics || (Phaser.Physics = {}));
var Physics = Phaser.Physics;
})(Phaser || (Phaser = {}));