9daa5f9177
- This PR should fix/close: - #11266 - #12893 - #13736 - #13748 - #14170 - It doesn't fix #13736 though unfortunately. The issue there is at a different level to this fix (I think probably in the lexing somewhere, which I haven't touched). # The Problem The linked issues have many examples of the problem and the related confusion it causes, but I'll give some more examples here for illustration. It boils down to the following: This doesn't type check (good): ```nu def foo []: string -> int { false } ``` This does (bad): ```nu def foo [] : string -> int { false } ``` Because the parser is completely ignoring all the characters. This also compiles in 0.100.0: ```nu def blue [] Da ba Dee da Ba da { false } ``` And this also means commands which have a completely fine type, but an extra space before `:`, lose that type information and end up as `any -> any`, e.g. ```nu def foo [] : int -> int {$in + 3} ``` ```bash $ foo --help Input/output types: ╭───┬───────┬────────╮ │ # │ input │ output │ ├───┼───────┼────────┤ │ 0 │ any │ any │ ╰───┴───────┴────────╯ ``` # The Fix Special thank you to @texastoland whose draft PR (#12358) I referenced heavily while making this fix. That PR seeks to fix the invalid parsing by disallowing whitespace between `[]` and `:` in declarations, e.g. `def foo [] : int -> any {}` This PR instead allows the whitespace while properly parsing the type signature. I think this is the better choice for a few reasons: - The parsing is still straightforward and the information is all there anyway, - It's more consistent with type annotations in other places, e.g. `do {|nums : list<int>| $nums | describe} [ 1 2 3 ]` from the [Type Signatures doc page](https://www.nushell.sh/lang-guide/chapters/types/type_signatures.html) - It's more consistent with the new nu parser, which allows `let x : bool = false` (current nu doesn't, but this PR doesn't change that) - It will be less disruptive and should only break code where the types are actually wrong (if your types were correct, but you had a space before the `:`, those declarations will still compile and now have more type information vs. throwing an error in all cases and requiring spaces to be deleted) - It's the more intuitive syntax for most functional programmers like myself (haskell/lean/coq/agda and many more either allow or require whitespace for type annotations) I don't use Rust a lot, so I tried to keep most things the same and the rest I wrote as if it was Haskell (if you squint a bit). Code review/suggestions very welcome. I added all the tests I could think of and `toolkit check pr` gives it the all-clear. # User-Facing Changes This PR meets part of the goal of #13849, but doesn't do anything about parsing signatures twice and doesn't do much to improve error messages, it just enforces the existing errors and error messages. This will no doubt be a breaking change, mostly because the code is already broken and users don't realise yet (one of my personal scripts stopped compiling after this fix because I thought `def foo [] -> string {}` was valid syntax). It shouldn't break any type-correct code though. |
||
---|---|---|
.. | ||
fuzz | ||
src | ||
tests | ||
Cargo.toml | ||
LICENSE | ||
README.md |
nu-parser, the Nushell parser
Nushell's parser is a type-directed parser, meaning that the parser will use type information available during parse time to configure the parser. This allows it to handle a broader range of techniques to handle the arguments of a command.
Nushell's base language is whitespace-separated tokens with the command (Nushell's term for a function) name in the head position:
head1 arg1 arg2 | head2
Lexing
The first job of the parser is to a lexical analysis to find where the tokens start and end in the input. This turns the above into:
<item: "head1">, <item: "arg1">, <item: "arg2">, <pipe>, <item: "head2">
At this point, the parser has little to no understanding of the shape of the command or how to parse its arguments.
Lite parsing
As Nushell is a language of pipelines, pipes form a key role in both separating commands from each other as well as denoting the flow of information between commands. The lite parse phase, as the name suggests, helps to group the lexed tokens into units.
The above tokens are converted the following during the lite parse phase:
Pipeline:
Command #1:
<item: "head1">, <item: "arg1">, <item: "arg2">
Command #2:
<item: "head2">
Parsing
The real magic begins to happen when the parse moves on to the parsing stage. At this point, it traverses the lite parse tree and for each command makes a decision:
- If the command looks like an internal/external command literal: e.g.
foo
or/usr/bin/ls
, it parses it as an internal or external command - Otherwise, it parses the command as part of a mathematical expression
Types/shapes
Each command has a shape assigned to each of the arguments it reads in. These shapes help define how the parser will handle the parse.
For example, if the command is written as:
where $x > 10
When the parsing happens, the parser will look up the where
command and find its Signature. The Signature states what flags are allowed and what positional arguments are allowed (both required and optional). Each argument comes with a Shape that defines how to parse values to get that position.
In the above example, if the Signature of where
said that it took three String values, the result would be:
CallInfo:
Name: `where`
Args:
Expression($x), a String
Expression(>), a String
Expression(10), a String
Or, the Signature could state that it takes in three positional arguments: a Variable, an Operator, and a Number, which would give:
CallInfo:
Name: `where`
Args:
Expression($x), a Variable
Expression(>), an Operator
Expression(10), a Number
Note that in this case, each would be checked at compile time to confirm that the expression has the shape requested. For example, "foo"
would fail to parse as a Number.
Finally, some Shapes can consume more than one token. In the above, if the where
command stated it took in a single required argument, and that the Shape of this argument was a MathExpression, then the parser would treat the remaining tokens as part of the math expression.
CallInfo:
Name: `where`
Args:
MathExpression:
Op: >
LHS: Expression($x)
RHS: Expression(10)
When the command runs, it will now be able to evaluate the whole math expression as a single step rather than doing any additional parsing to understand the relationship between the parameters.
Making space
As some Shapes can consume multiple tokens, it's important that the parser allow for multiple Shapes to coexist as peacefully as possible.
The simplest way it does this is to ensure there is at least one token for each required parameter. If the Signature of the command says that it takes a MathExpression and a Number as two required arguments, then the parser will stop the math parser one token short. This allows the second Shape to consume the final token.
Another way that the parser makes space is to look for Keyword shapes in the Signature. A Keyword is a word that's special to this command. For example in the if
command, else
is a keyword. When it is found in the arguments, the parser will use it as a signpost for where to make space for each Shape. The tokens leading up to the else
will then feed into the parts of the Signature before the else
, and the tokens following are consumed by the else
and the Shapes that follow.