nushell/crates/nu-parser/src/parser.rs
2021-09-03 14:15:01 +12:00

2309 lines
73 KiB
Rust

use crate::{
lex, lite_parse,
type_check::{math_result_type, type_compatible},
LiteBlock, ParseError, Token, TokenContents,
};
use nu_protocol::{
ast::{Block, Call, Expr, Expression, Operator, Pipeline, Statement},
engine::StateWorkingSet,
span, Flag, PositionalArg, Signature, Span, SyntaxShape, Type, VarId,
};
#[derive(Debug, Clone)]
pub enum Import {}
#[derive(Debug, Clone)]
pub struct VarDecl {
var_id: VarId,
expression: Expression,
}
fn garbage(span: Span) -> Expression {
Expression::garbage(span)
}
fn is_identifier_byte(b: u8) -> bool {
b != b'.' && b != b'[' && b != b'(' && b != b'{'
}
fn is_identifier(bytes: &[u8]) -> bool {
bytes.iter().all(|x| is_identifier_byte(*x))
}
fn is_variable(bytes: &[u8]) -> bool {
if bytes.len() > 1 && bytes[0] == b'$' {
is_identifier(&bytes[1..])
} else {
is_identifier(bytes)
}
}
fn check_call(command: Span, sig: &Signature, call: &Call) -> Option<ParseError> {
if call.positional.len() < sig.required_positional.len() {
let missing = &sig.required_positional[call.positional.len()];
Some(ParseError::MissingPositional(missing.name.clone(), command))
} else {
for req_flag in sig.named.iter().filter(|x| x.required) {
if call.named.iter().all(|(n, _)| n != &req_flag.long) {
return Some(ParseError::MissingRequiredFlag(
req_flag.long.clone(),
command,
));
}
}
None
}
}
pub fn parse_external_call(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Expression, Option<ParseError>) {
// TODO: add external parsing
let mut args = vec![];
let name = working_set.get_span_contents(spans[0]).to_vec();
for span in &spans[1..] {
args.push(working_set.get_span_contents(*span).to_vec());
}
(
Expression {
expr: Expr::ExternalCall(name, args),
span: span(spans),
ty: Type::Unknown,
},
None,
)
}
fn parse_long_flag(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
sig: &Signature,
) -> (Option<String>, Option<Expression>, Option<ParseError>) {
let arg_span = spans[*spans_idx];
let arg_contents = working_set.get_span_contents(arg_span);
if arg_contents.starts_with(b"--") {
// FIXME: only use the first you find
let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect();
let long_name = String::from_utf8(split[0].into());
if let Ok(long_name) = long_name {
if let Some(flag) = sig.get_long_flag(&long_name) {
if let Some(arg_shape) = &flag.arg {
if split.len() > 1 {
// and we also have the argument
let mut span = arg_span;
span.start += long_name.len() + 1; //offset by long flag and '='
let (arg, err) = parse_value(working_set, span, arg_shape);
(Some(long_name), Some(arg), err)
} else if let Some(arg) = spans.get(*spans_idx + 1) {
let (arg, err) = parse_value(working_set, *arg, arg_shape);
*spans_idx += 1;
(Some(long_name), Some(arg), err)
} else {
(
Some(long_name),
None,
Some(ParseError::MissingFlagParam(arg_span)),
)
}
} else {
// A flag with no argument
(Some(long_name), None, None)
}
} else {
(
Some(long_name),
None,
Some(ParseError::UnknownFlag(arg_span)),
)
}
} else {
(Some("--".into()), None, Some(ParseError::NonUtf8(arg_span)))
}
} else {
(None, None, None)
}
}
fn parse_short_flags(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
positional_idx: usize,
sig: &Signature,
) -> (Option<Vec<Flag>>, Option<ParseError>) {
let mut error = None;
let arg_span = spans[*spans_idx];
let arg_contents = working_set.get_span_contents(arg_span);
if arg_contents.starts_with(b"-") && arg_contents.len() > 1 {
let short_flags = &arg_contents[1..];
let mut found_short_flags = vec![];
let mut unmatched_short_flags = vec![];
for short_flag in short_flags.iter().enumerate() {
let short_flag_char = char::from(*short_flag.1);
let orig = arg_span;
let short_flag_span = Span {
start: orig.start + 1 + short_flag.0,
end: orig.start + 1 + short_flag.0 + 1,
};
if let Some(flag) = sig.get_short_flag(short_flag_char) {
// If we require an arg and are in a batch of short flags, error
if !found_short_flags.is_empty() && flag.arg.is_some() {
error = error.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span)))
}
found_short_flags.push(flag);
} else {
unmatched_short_flags.push(short_flag_span);
}
}
if found_short_flags.is_empty() {
// check to see if we have a negative number
if let Some(positional) = sig.get_positional(positional_idx) {
if positional.shape == SyntaxShape::Int || positional.shape == SyntaxShape::Number {
if String::from_utf8_lossy(arg_contents).parse::<f64>().is_ok() {
return (None, None);
} else if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
} else if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
} else if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
} else if !unmatched_short_flags.is_empty() {
if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
}
(Some(found_short_flags), error)
} else {
(None, None)
}
}
fn first_kw_idx(
working_set: &StateWorkingSet,
signature: &Signature,
spans: &[Span],
spans_idx: usize,
positional_idx: usize,
) -> (Option<usize>, usize) {
for idx in (positional_idx + 1)..signature.num_positionals() {
if let Some(PositionalArg {
shape: SyntaxShape::Keyword(kw, ..),
..
}) = signature.get_positional(idx)
{
#[allow(clippy::needless_range_loop)]
for span_idx in spans_idx..spans.len() {
let contents = working_set.get_span_contents(spans[span_idx]);
if contents == kw {
return (Some(idx), span_idx);
}
}
}
}
(None, spans.len())
}
fn calculate_end_span(
working_set: &StateWorkingSet,
signature: &Signature,
spans: &[Span],
spans_idx: usize,
positional_idx: usize,
) -> usize {
if signature.rest_positional.is_some() {
spans.len()
} else {
let (kw_pos, kw_idx) =
first_kw_idx(working_set, signature, spans, spans_idx, positional_idx);
if let Some(kw_pos) = kw_pos {
// We found a keyword. Keywords, once found, create a guidepost to
// show us where the positionals will lay into the arguments. Because they're
// keywords, they get to set this by being present
let positionals_between = kw_pos - positional_idx - 1;
if positionals_between > (kw_idx - spans_idx) {
kw_idx
} else {
kw_idx - positionals_between
}
} else {
// Make space for the remaining require positionals, if we can
if positional_idx < signature.required_positional.len()
&& spans.len() > (signature.required_positional.len() - positional_idx)
{
spans.len() - (signature.required_positional.len() - positional_idx - 1)
} else {
if signature.num_positionals_after(positional_idx) == 0 {
spans.len()
} else {
spans_idx + 1
}
}
}
}
}
fn parse_multispan_value(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
shape: &SyntaxShape,
) -> (Expression, Option<ParseError>) {
let mut error = None;
match shape {
SyntaxShape::VarWithOptType => {
let (arg, err) = parse_var_with_opt_type(working_set, spans, spans_idx);
error = error.or(err);
(arg, error)
}
SyntaxShape::RowCondition => {
let (arg, err) = parse_row_condition(working_set, &spans[*spans_idx..]);
error = error.or(err);
*spans_idx = spans.len() - 1;
(arg, error)
}
SyntaxShape::Expression => {
let (arg, err) = parse_expression(working_set, &spans[*spans_idx..]);
error = error.or(err);
*spans_idx = spans.len() - 1;
(arg, error)
}
SyntaxShape::Keyword(keyword, arg) => {
let arg_span = spans[*spans_idx];
let arg_contents = working_set.get_span_contents(arg_span);
if arg_contents != keyword {
// When keywords mismatch, this is a strong indicator of something going wrong.
// We won't often override the current error, but as this is a strong indicator
// go ahead and override the current error and tell the user about the missing
// keyword/literal.
error = Some(ParseError::ExpectedKeyword(
String::from_utf8_lossy(keyword).into(),
arg_span,
))
}
*spans_idx += 1;
if *spans_idx >= spans.len() {
error = error.or_else(|| {
Some(ParseError::KeywordMissingArgument(
String::from_utf8_lossy(keyword).into(),
spans[*spans_idx - 1],
))
});
return (
Expression {
expr: Expr::Keyword(
keyword.clone(),
spans[*spans_idx - 1],
Box::new(Expression::garbage(arg_span)),
),
span: arg_span,
ty: Type::Unknown,
},
error,
);
}
let keyword_span = spans[*spans_idx - 1];
let (expr, err) = parse_multispan_value(working_set, spans, spans_idx, arg);
error = error.or(err);
let ty = expr.ty.clone();
(
Expression {
expr: Expr::Keyword(keyword.clone(), keyword_span, Box::new(expr)),
span: arg_span,
ty,
},
error,
)
}
_ => {
// All other cases are single-span values
let arg_span = spans[*spans_idx];
let (arg, err) = parse_value(working_set, arg_span, shape);
error = error.or(err);
(arg, error)
}
}
}
pub fn parse_internal_call(
working_set: &mut StateWorkingSet,
command_span: Span,
spans: &[Span],
decl_id: usize,
) -> (Box<Call>, Span, Option<ParseError>) {
let mut error = None;
let mut call = Call::new();
call.decl_id = decl_id;
call.head = command_span;
let signature = working_set.get_decl(decl_id).signature();
// The index into the positional parameter in the definition
let mut positional_idx = 0;
// The index into the spans of argument data given to parse
// Starting at the first argument
let mut spans_idx = 0;
while spans_idx < spans.len() {
let arg_span = spans[spans_idx];
// Check if we're on a long flag, if so, parse
let (long_name, arg, err) = parse_long_flag(working_set, spans, &mut spans_idx, &signature);
if let Some(long_name) = long_name {
// We found a long flag, like --bar
error = error.or(err);
call.named.push((long_name, arg));
spans_idx += 1;
continue;
}
// Check if we're on a short flag or group of short flags, if so, parse
let (short_flags, err) = parse_short_flags(
working_set,
spans,
&mut spans_idx,
positional_idx,
&signature,
);
if let Some(short_flags) = short_flags {
error = error.or(err);
for flag in short_flags {
if let Some(arg_shape) = flag.arg {
if let Some(arg) = spans.get(spans_idx + 1) {
let (arg, err) = parse_value(working_set, *arg, &arg_shape);
error = error.or(err);
call.named.push((flag.long.clone(), Some(arg)));
spans_idx += 1;
} else {
error = error.or(Some(ParseError::MissingFlagParam(arg_span)))
}
} else {
call.named.push((flag.long.clone(), None));
}
}
spans_idx += 1;
continue;
}
// Parse a positional arg if there is one
if let Some(positional) = signature.get_positional(positional_idx) {
let end = calculate_end_span(working_set, &signature, spans, spans_idx, positional_idx);
// println!(
// "start: {} end: {} positional_idx: {}",
// spans_idx, end, positional_idx
// );
let orig_idx = spans_idx;
let (arg, err) = parse_multispan_value(
working_set,
&spans[..end],
&mut spans_idx,
&positional.shape,
);
error = error.or(err);
let arg = if !type_compatible(&positional.shape.to_type(), &arg.ty) {
let span = span(&spans[orig_idx..spans_idx]);
error = error.or_else(|| {
Some(ParseError::TypeMismatch(
positional.shape.to_type(),
arg.ty,
arg.span,
))
});
Expression::garbage(span)
} else {
arg
};
call.positional.push(arg);
positional_idx += 1;
} else {
call.positional.push(Expression::garbage(arg_span));
error = error.or(Some(ParseError::ExtraPositional(arg_span)))
}
error = error.or(err);
spans_idx += 1;
}
let err = check_call(command_span, &signature, &call);
error = error.or(err);
// FIXME: type unknown
(Box::new(call), span(spans), error)
}
pub fn parse_call(
working_set: &mut StateWorkingSet,
spans: &[Span],
expand_aliases: bool,
) -> (Expression, Option<ParseError>) {
// assume spans.len() > 0?
let mut pos = 0;
let mut shorthand = vec![];
while pos < spans.len() {
// Check if there is any environment shorthand
let name = working_set.get_span_contents(spans[pos]);
let split: Vec<_> = name.splitn(2, |x| *x == b'=').collect();
if split.len() == 2 {
shorthand.push(split);
pos += 1;
} else {
break;
}
}
if pos == spans.len() {
return (
Expression::garbage(span(spans)),
Some(ParseError::UnknownCommand(spans[0])),
);
}
let name = working_set.get_span_contents(spans[pos]);
let cmd_start = pos;
if expand_aliases {
if let Some(expansion) = working_set.find_alias(&name) {
let orig_span = spans[pos];
//let mut spans = spans.to_vec();
let mut new_spans: Vec<Span> = vec![];
new_spans.extend(&spans[0..pos]);
new_spans.extend(expansion);
if spans.len() > pos {
new_spans.extend(&spans[(pos + 1)..]);
}
let (result, err) = parse_call(working_set, &new_spans, false);
let expression = match result {
Expression {
expr: Expr::Call(mut call),
span,
ty,
} => {
call.head = orig_span;
Expression {
expr: Expr::Call(call),
span,
ty,
}
}
x => x,
};
return (expression, err);
}
}
pos += 1;
if let Some(mut decl_id) = working_set.find_decl(name) {
let mut name = name.to_vec();
while pos < spans.len() {
// look to see if it's a subcommand
let mut new_name = name.to_vec();
new_name.push(b' ');
new_name.extend(working_set.get_span_contents(spans[pos]));
if expand_aliases {
if let Some(expansion) = working_set.find_alias(&new_name) {
let orig_span = span(&spans[cmd_start..pos + 1]);
//let mut spans = spans.to_vec();
let mut new_spans: Vec<Span> = vec![];
new_spans.extend(&spans[0..cmd_start]);
new_spans.extend(expansion);
if spans.len() > pos {
new_spans.extend(&spans[(pos + 1)..]);
}
let (result, err) = parse_call(working_set, &new_spans, false);
let expression = match result {
Expression {
expr: Expr::Call(mut call),
span,
ty,
} => {
call.head = orig_span;
Expression {
expr: Expr::Call(call),
span,
ty,
}
}
x => x,
};
return (expression, err);
}
}
if let Some(did) = working_set.find_decl(&new_name) {
decl_id = did;
} else {
break;
}
name = new_name;
pos += 1;
}
// parse internal command
let (call, _, err) =
parse_internal_call(working_set, span(&spans[0..pos]), &spans[pos..], decl_id);
(
Expression {
expr: Expr::Call(call),
span: span(spans),
ty: Type::Unknown, // FIXME
},
err,
)
} else {
parse_external_call(working_set, spans)
}
}
pub fn parse_int(
working_set: &mut StateWorkingSet,
token: &str,
span: Span,
) -> (Expression, Option<ParseError>) {
if let Some(token) = token.strip_prefix("0x") {
if let Ok(v) = i64::from_str_radix(token, 16) {
(
Expression {
expr: Expr::Int(v),
span,
ty: Type::Int,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch(
"int".into(),
"incompatible int".into(),
span,
)),
)
}
} else if let Some(token) = token.strip_prefix("0b") {
if let Ok(v) = i64::from_str_radix(token, 2) {
(
Expression {
expr: Expr::Int(v),
span,
ty: Type::Int,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch(
"int".into(),
"incompatible int".into(),
span,
)),
)
}
} else if let Some(token) = token.strip_prefix("0o") {
if let Ok(v) = i64::from_str_radix(token, 8) {
(
Expression {
expr: Expr::Int(v),
span,
ty: Type::Int,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch(
"int".into(),
"incompatible int".into(),
span,
)),
)
}
} else if let Ok(x) = token.parse::<i64>() {
(
Expression {
expr: Expr::Int(x),
span,
ty: Type::Int,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Expected("int".into(), span)),
)
}
}
pub fn parse_float(
working_set: &mut StateWorkingSet,
token: &str,
span: Span,
) -> (Expression, Option<ParseError>) {
if let Ok(x) = token.parse::<f64>() {
(
Expression {
expr: Expr::Float(x),
span,
ty: Type::Float,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Expected("float".into(), span)),
)
}
}
pub fn parse_number(
working_set: &mut StateWorkingSet,
token: &str,
span: Span,
) -> (Expression, Option<ParseError>) {
if let (x, None) = parse_int(working_set, token, span) {
(x, None)
} else if let (x, None) = parse_float(working_set, token, span) {
(x, None)
} else {
(
garbage(span),
Some(ParseError::Expected("number".into(), span)),
)
}
}
pub(crate) fn parse_dollar_expr(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
let contents = working_set.get_span_contents(span);
if contents.starts_with(b"$\"") {
parse_string_interpolation(working_set, span)
} else {
parse_variable_expr(working_set, span)
}
}
pub fn parse_string_interpolation(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
#[derive(PartialEq, Eq, Debug)]
enum InterpolationMode {
String,
Expression,
}
let mut error = None;
let contents = working_set.get_span_contents(span);
let start = if contents.starts_with(b"$\"") {
span.start + 2
} else {
span.start
};
let end = if contents.ends_with(b"\"") && contents.len() > 2 {
span.end - 1
} else {
span.end
};
let inner_span = Span { start, end };
let contents = working_set.get_span_contents(inner_span).to_vec();
let mut output = vec![];
let mut mode = InterpolationMode::String;
let mut token_start = start;
let mut depth = 0;
let mut b = start;
#[allow(clippy::needless_range_loop)]
while b != end {
if contents[b - start] == b'(' && mode == InterpolationMode::String {
depth = 1;
mode = InterpolationMode::Expression;
if token_start < b {
let span = Span {
start: token_start,
end: b,
};
let str_contents = working_set.get_span_contents(span);
output.push(Expression {
expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()),
span,
ty: Type::String,
});
}
token_start = b;
} else if contents[b - start] == b'(' && mode == InterpolationMode::Expression {
depth += 1;
} else if contents[b - start] == b')' && mode == InterpolationMode::Expression {
match depth {
0 => {}
1 => {
mode = InterpolationMode::String;
if token_start < b {
let span = Span {
start: token_start,
end: b + 1,
};
let (expr, err) = parse_full_column_path(working_set, span);
error = error.or(err);
output.push(expr);
}
token_start = b + 1;
}
_ => depth -= 1,
}
}
b += 1;
}
match mode {
InterpolationMode::String => {
if token_start < end {
let span = Span {
start: token_start,
end,
};
let str_contents = working_set.get_span_contents(span);
output.push(Expression {
expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()),
span,
ty: Type::String,
});
}
}
InterpolationMode::Expression => {
if token_start < end {
let span = Span {
start: token_start,
end,
};
let (expr, err) = parse_full_column_path(working_set, span);
error = error.or(err);
output.push(expr);
}
}
}
if let Some(decl_id) = working_set.find_decl(b"build-string") {
(
Expression {
expr: Expr::Call(Box::new(Call {
head: Span {
start: span.start,
end: span.start + 2,
},
named: vec![],
positional: output,
decl_id,
})),
span,
ty: Type::String,
},
error,
)
} else {
(
Expression::garbage(span),
Some(ParseError::UnknownCommand(span)),
)
}
}
pub fn parse_variable_expr(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
let contents = working_set.get_span_contents(span);
if contents == b"$true" {
return (
Expression {
expr: Expr::Bool(true),
span,
ty: Type::Bool,
},
None,
);
} else if contents == b"$false" {
return (
Expression {
expr: Expr::Bool(false),
span,
ty: Type::Bool,
},
None,
);
}
let (id, err) = parse_variable(working_set, span);
if err.is_none() {
if let Some(id) = id {
(
Expression {
expr: Expr::Var(id),
span,
ty: working_set.get_variable(id).clone(),
},
None,
)
} else {
let name = working_set.get_span_contents(span).to_vec();
// this seems okay to set it to unknown here, but we should double-check
let id = working_set.add_variable(name, Type::Unknown);
(
Expression {
expr: Expr::Var(id),
span,
ty: Type::Unknown,
},
None,
)
}
} else {
(garbage(span), err)
}
}
pub fn parse_full_column_path(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
// FIXME: assume for now a paren expr, but needs more
let bytes = working_set.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"(") {
start += 1;
}
if bytes.ends_with(b")") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
")".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = working_set.get_span_contents(span);
let (output, err) = lex(source, start, &[], &[]);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = parse_block(working_set, &output, true);
error = error.or(err);
let block_id = working_set.add_block(output);
(
Expression {
expr: Expr::Subexpression(block_id),
span,
ty: Type::Unknown, // FIXME
},
error,
)
}
pub fn parse_string(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(span);
let bytes = if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1)
|| (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1)
{
&bytes[1..(bytes.len() - 1)]
} else {
bytes
};
if let Ok(token) = String::from_utf8(bytes.into()) {
(
Expression {
expr: Expr::String(token),
span,
ty: Type::String,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Expected("string".into(), span)),
)
}
}
//TODO: Handle error case
pub fn parse_shape_name(
working_set: &StateWorkingSet,
bytes: &[u8],
span: Span,
) -> (SyntaxShape, Option<ParseError>) {
let result = match bytes {
b"any" => SyntaxShape::Any,
b"string" => SyntaxShape::String,
b"column-path" => SyntaxShape::ColumnPath,
b"number" => SyntaxShape::Number,
b"range" => SyntaxShape::Range,
b"int" => SyntaxShape::Int,
b"path" => SyntaxShape::FilePath,
b"glob" => SyntaxShape::GlobPattern,
b"block" => SyntaxShape::Block,
b"cond" => SyntaxShape::RowCondition,
b"operator" => SyntaxShape::Operator,
b"math" => SyntaxShape::MathExpression,
b"variable" => SyntaxShape::Variable,
b"signature" => SyntaxShape::Signature,
b"expr" => SyntaxShape::Expression,
_ => return (SyntaxShape::Any, Some(ParseError::UnknownType(span))),
};
(result, None)
}
pub fn parse_type(working_set: &StateWorkingSet, bytes: &[u8]) -> Type {
if bytes == b"int" {
Type::Int
} else {
Type::Unknown
}
}
pub fn parse_var_with_opt_type(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(spans[*spans_idx]).to_vec();
if bytes.ends_with(b":") {
// We end with colon, so the next span should be the type
if *spans_idx + 1 < spans.len() {
*spans_idx += 1;
let type_bytes = working_set.get_span_contents(spans[*spans_idx]);
let ty = parse_type(working_set, type_bytes);
let id = working_set.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), ty.clone());
(
Expression {
expr: Expr::Var(id),
span: span(&spans[*spans_idx - 1..*spans_idx + 1]),
ty,
},
None,
)
} else {
let id = working_set.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), Type::Unknown);
(
Expression {
expr: Expr::Var(id),
span: spans[*spans_idx],
ty: Type::Unknown,
},
Some(ParseError::MissingType(spans[*spans_idx])),
)
}
} else {
let id = working_set.add_variable(bytes, Type::Unknown);
(
Expression {
expr: Expr::Var(id),
span: span(&spans[*spans_idx..*spans_idx + 1]),
ty: Type::Unknown,
},
None,
)
}
}
pub fn parse_row_condition(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Expression, Option<ParseError>) {
parse_math_expression(working_set, spans)
}
pub fn parse_signature(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
enum ParseMode {
ArgMode,
TypeMode,
}
enum Arg {
Positional(PositionalArg, bool), // bool - required
Flag(Flag),
}
let bytes = working_set.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"[") {
start += 1;
}
if bytes.ends_with(b"]") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
"]".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = working_set.get_span_contents(span);
let (output, err) = lex(source, span.start, &[b'\n', b','], &[b':']);
error = error.or(err);
let mut args: Vec<Arg> = vec![];
let mut parse_mode = ParseMode::ArgMode;
for token in &output {
match token {
Token {
contents: crate::TokenContents::Item,
span,
} => {
let span = *span;
let contents = working_set.get_span_contents(span);
if contents == b":" {
match parse_mode {
ParseMode::ArgMode => {
parse_mode = ParseMode::TypeMode;
}
ParseMode::TypeMode => {
// We're seeing two types for the same thing for some reason, error
error =
error.or_else(|| Some(ParseError::Expected("type".into(), span)));
}
}
} else {
match parse_mode {
ParseMode::ArgMode => {
if contents.starts_with(b"--") && contents.len() > 2 {
// Long flag
let flags: Vec<_> =
contents.split(|x| x == &b'(').map(|x| x.to_vec()).collect();
let long = String::from_utf8_lossy(&flags[0]).to_string();
let variable_name = flags[0][2..].to_vec();
let var_id = working_set.add_variable(variable_name, Type::Unknown);
if flags.len() == 1 {
args.push(Arg::Flag(Flag {
arg: None,
desc: String::new(),
long,
short: None,
required: false,
var_id: Some(var_id),
}));
} else {
let short_flag = &flags[1];
let short_flag = if !short_flag.starts_with(b"-")
|| !short_flag.ends_with(b")")
{
error = error.or_else(|| {
Some(ParseError::Expected("short flag".into(), span))
});
short_flag
} else {
&short_flag[1..(short_flag.len() - 1)]
};
let short_flag =
String::from_utf8_lossy(short_flag).to_string();
let chars: Vec<char> = short_flag.chars().collect();
let long = String::from_utf8_lossy(&flags[0]).to_string();
let variable_name = flags[0][2..].to_vec();
let var_id =
working_set.add_variable(variable_name, Type::Unknown);
if chars.len() == 1 {
args.push(Arg::Flag(Flag {
arg: None,
desc: String::new(),
long,
short: Some(chars[0]),
required: false,
var_id: Some(var_id),
}));
} else {
error = error.or_else(|| {
Some(ParseError::Expected("short flag".into(), span))
});
}
}
} else if contents.starts_with(b"-") && contents.len() > 1 {
// Short flag
let short_flag = &contents[1..];
let short_flag = String::from_utf8_lossy(short_flag).to_string();
let chars: Vec<char> = short_flag.chars().collect();
if chars.len() > 1 {
error = error.or_else(|| {
Some(ParseError::Expected("short flag".into(), span))
});
args.push(Arg::Flag(Flag {
arg: None,
desc: String::new(),
long: String::new(),
short: None,
required: false,
var_id: None,
}));
} else {
let mut encoded_var_name = vec![0u8; 4];
let len = chars[0].encode_utf8(&mut encoded_var_name).len();
let variable_name = encoded_var_name[0..len].to_vec();
let var_id =
working_set.add_variable(variable_name, Type::Unknown);
args.push(Arg::Flag(Flag {
arg: None,
desc: String::new(),
long: String::new(),
short: Some(chars[0]),
required: false,
var_id: Some(var_id),
}));
}
} else if contents.starts_with(b"(-") {
let short_flag = &contents[2..];
let short_flag = if !short_flag.ends_with(b")") {
error = error.or_else(|| {
Some(ParseError::Expected("short flag".into(), span))
});
short_flag
} else {
&short_flag[..(short_flag.len() - 1)]
};
let short_flag = String::from_utf8_lossy(short_flag).to_string();
let chars: Vec<char> = short_flag.chars().collect();
if chars.len() == 1 {
match args.last_mut() {
Some(Arg::Flag(flag)) => {
if flag.short.is_some() {
error = error.or_else(|| {
Some(ParseError::Expected(
"one short flag".into(),
span,
))
});
} else {
flag.short = Some(chars[0]);
}
}
_ => {
error = error.or_else(|| {
Some(ParseError::Expected(
"unknown flag".into(),
span,
))
});
}
}
} else {
error = error.or_else(|| {
Some(ParseError::Expected("short flag".into(), span))
});
}
} else if contents.ends_with(b"?") {
let contents: Vec<_> = contents[..(contents.len() - 1)].into();
let name = String::from_utf8_lossy(&contents).to_string();
let var_id = working_set.add_variable(contents, Type::Unknown);
// Positional arg, optional
args.push(Arg::Positional(
PositionalArg {
desc: String::new(),
name,
shape: SyntaxShape::Any,
var_id: Some(var_id),
},
false,
))
} else {
let name = String::from_utf8_lossy(contents).to_string();
let contents_vec = contents.to_vec();
let var_id = working_set.add_variable(contents_vec, Type::Unknown);
// Positional arg, required
args.push(Arg::Positional(
PositionalArg {
desc: String::new(),
name,
shape: SyntaxShape::Any,
var_id: Some(var_id),
},
true,
))
}
}
ParseMode::TypeMode => {
if let Some(last) = args.last_mut() {
let (syntax_shape, err) =
parse_shape_name(working_set, contents, span);
error = error.or(err);
//TODO check if we're replacing one already
match last {
Arg::Positional(PositionalArg { shape, var_id, .. }, ..) => {
working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type());
*shape = syntax_shape;
}
Arg::Flag(Flag { arg, var_id, .. }) => {
working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type());
*arg = Some(syntax_shape)
}
}
}
parse_mode = ParseMode::ArgMode;
}
}
}
}
Token {
contents: crate::TokenContents::Comment,
span,
} => {
let contents = working_set.get_span_contents(Span {
start: span.start + 1,
end: span.end,
});
let mut contents = String::from_utf8_lossy(contents).to_string();
contents = contents.trim().into();
if let Some(last) = args.last_mut() {
match last {
Arg::Flag(flag) => {
if !flag.desc.is_empty() {
flag.desc.push('\n');
}
flag.desc.push_str(&contents);
}
Arg::Positional(positional, ..) => {
if !positional.desc.is_empty() {
positional.desc.push('\n');
}
positional.desc.push_str(&contents);
}
}
}
}
_ => {}
}
}
let mut sig = Signature::new(String::new());
for arg in args {
match arg {
Arg::Positional(positional, required) => {
if positional.name.starts_with("...") {
let name = positional.name[3..].to_string();
if name.is_empty() {
error = error.or(Some(ParseError::RestNeedsName(span)))
} else if sig.rest_positional.is_none() {
sig.rest_positional = Some(PositionalArg { name, ..positional })
} else {
// Too many rest params
error = error.or(Some(ParseError::MultipleRestParams(span)))
}
} else if required {
sig.required_positional.push(positional)
} else {
sig.optional_positional.push(positional)
}
}
Arg::Flag(flag) => sig.named.push(flag),
}
}
(
Expression {
expr: Expr::Signature(Box::new(sig)),
span,
ty: Type::Unknown,
},
error,
)
}
pub fn parse_list_expression(
working_set: &mut StateWorkingSet,
span: Span,
element_shape: &SyntaxShape,
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"[") {
start += 1;
}
if bytes.ends_with(b"]") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
"]".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = working_set.get_span_contents(span);
let (output, err) = lex(source, span.start, &[b'\n', b','], &[]);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let mut args = vec![];
let mut contained_type: Option<Type> = None;
if !output.block.is_empty() {
for arg in &output.block[0].commands {
let mut spans_idx = 0;
while spans_idx < arg.parts.len() {
let (arg, err) =
parse_multispan_value(working_set, &arg.parts, &mut spans_idx, element_shape);
error = error.or(err);
if let Some(ref ctype) = contained_type {
if *ctype != arg.ty {
contained_type = Some(Type::Unknown);
}
} else {
contained_type = Some(arg.ty.clone());
}
args.push(arg);
spans_idx += 1;
}
}
}
(
Expression {
expr: Expr::List(args),
span,
ty: Type::List(Box::new(if let Some(ty) = contained_type {
ty.clone()
} else {
Type::Unknown
})),
},
error,
)
}
pub fn parse_table_expression(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"[") {
start += 1;
}
if bytes.ends_with(b"]") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
"]".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = working_set.get_span_contents(span);
let (output, err) = lex(source, start, &[b'\n', b','], &[]);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
match output.block.len() {
0 => (
Expression {
expr: Expr::List(vec![]),
span,
ty: Type::Table,
},
None,
),
1 => {
// List
parse_list_expression(working_set, span, &SyntaxShape::Any)
}
_ => {
let mut table_headers = vec![];
let (headers, err) = parse_value(
working_set,
output.block[0].commands[0].parts[0],
&SyntaxShape::List(Box::new(SyntaxShape::Any)),
);
error = error.or(err);
if let Expression {
expr: Expr::List(headers),
..
} = headers
{
table_headers = headers;
}
let mut rows = vec![];
for part in &output.block[1].commands[0].parts {
let (values, err) = parse_value(
working_set,
*part,
&SyntaxShape::List(Box::new(SyntaxShape::Any)),
);
error = error.or(err);
if let Expression {
expr: Expr::List(values),
..
} = values
{
rows.push(values);
}
}
(
Expression {
expr: Expr::Table(table_headers, rows),
span,
ty: Type::Table,
},
error,
)
}
}
}
pub fn parse_block_expression(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"{") {
start += 1;
} else {
return (
garbage(span),
Some(ParseError::Expected("block".into(), span)),
);
}
if bytes.ends_with(b"}") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
"}".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = working_set.get_span_contents(span);
let (output, err) = lex(source, start, &[], &[]);
error = error.or(err);
// Check to see if we have parameters
let _params = if matches!(
output.first(),
Some(Token {
contents: TokenContents::Pipe,
..
})
) {
// We've found a parameter list
let mut param_tokens = vec![];
let mut token_iter = output.iter().skip(1);
for token in &mut token_iter {
if matches!(
token,
Token {
contents: TokenContents::Pipe,
..
}
) {
break;
} else {
param_tokens.push(token);
}
}
};
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = parse_block(working_set, &output, true);
error = error.or(err);
let block_id = working_set.add_block(output);
(
Expression {
expr: Expr::Block(block_id),
span,
ty: Type::Block,
},
error,
)
}
pub fn parse_value(
working_set: &mut StateWorkingSet,
span: Span,
shape: &SyntaxShape,
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(span);
// First, check the special-cases. These will likely represent specific values as expressions
// and may fit a variety of shapes.
//
// We check variable first because immediately following we check for variables with column paths
// which might result in a value that fits other shapes (and require the variable to already be
// declared)
if shape == &SyntaxShape::Variable {
return parse_variable_expr(working_set, span);
} else if bytes.starts_with(b"$") {
return parse_dollar_expr(working_set, span);
} else if bytes.starts_with(b"(") {
return parse_full_column_path(working_set, span);
} else if bytes.starts_with(b"[") {
match shape {
SyntaxShape::Any
| SyntaxShape::List(_)
| SyntaxShape::Table
| SyntaxShape::Signature => {}
_ => {
return (
Expression::garbage(span),
Some(ParseError::Expected("non-[] value".into(), span)),
);
}
}
}
match shape {
SyntaxShape::Number => {
if let Ok(token) = String::from_utf8(bytes.into()) {
parse_number(working_set, &token, span)
} else {
(
garbage(span),
Some(ParseError::Expected("number".into(), span)),
)
}
}
SyntaxShape::Int => {
if let Ok(token) = String::from_utf8(bytes.into()) {
parse_int(working_set, &token, span)
} else {
(
garbage(span),
Some(ParseError::Expected("int".into(), span)),
)
}
}
SyntaxShape::String | SyntaxShape::GlobPattern | SyntaxShape::FilePath => {
parse_string(working_set, span)
}
SyntaxShape::Block => {
if bytes.starts_with(b"{") {
parse_block_expression(working_set, span)
} else {
(
Expression::garbage(span),
Some(ParseError::Expected("block".into(), span)),
)
}
}
SyntaxShape::Signature => {
if bytes.starts_with(b"[") {
parse_signature(working_set, span)
} else {
(
Expression::garbage(span),
Some(ParseError::Expected("signature".into(), span)),
)
}
}
SyntaxShape::List(elem) => {
if bytes.starts_with(b"[") {
parse_list_expression(working_set, span, elem)
} else {
(
Expression::garbage(span),
Some(ParseError::Expected("list".into(), span)),
)
}
}
SyntaxShape::Table => {
if bytes.starts_with(b"[") {
parse_table_expression(working_set, span)
} else {
(
Expression::garbage(span),
Some(ParseError::Expected("table".into(), span)),
)
}
}
SyntaxShape::Any => {
let shapes = [
SyntaxShape::Int,
SyntaxShape::Number,
SyntaxShape::Range,
SyntaxShape::Filesize,
SyntaxShape::Duration,
SyntaxShape::Block,
SyntaxShape::Table,
SyntaxShape::List(Box::new(SyntaxShape::Any)),
SyntaxShape::String,
];
for shape in shapes.iter() {
if let (s, None) = parse_value(working_set, span, shape) {
return (s, None);
}
}
(
garbage(span),
Some(ParseError::Expected("any shape".into(), span)),
)
}
_ => (garbage(span), Some(ParseError::IncompleteParser(span))),
}
}
pub fn parse_operator(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Expression, Option<ParseError>) {
let contents = working_set.get_span_contents(span);
let operator = match contents {
b"==" => Operator::Equal,
b"!=" => Operator::NotEqual,
b"<" => Operator::LessThan,
b"<=" => Operator::LessThanOrEqual,
b">" => Operator::GreaterThan,
b">=" => Operator::GreaterThanOrEqual,
b"=~" => Operator::Contains,
b"!~" => Operator::NotContains,
b"+" => Operator::Plus,
b"-" => Operator::Minus,
b"*" => Operator::Multiply,
b"/" => Operator::Divide,
b"in" => Operator::In,
b"not-in" => Operator::NotIn,
b"mod" => Operator::Modulo,
b"&&" => Operator::And,
b"||" => Operator::Or,
b"**" => Operator::Pow,
_ => {
return (
garbage(span),
Some(ParseError::Expected("operator".into(), span)),
);
}
};
(
Expression {
expr: Expr::Operator(operator),
span,
ty: Type::Unknown,
},
None,
)
}
pub fn parse_math_expression(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Expression, Option<ParseError>) {
// As the expr_stack grows, we increase the required precedence to grow larger
// If, at any time, the operator we're looking at is the same or lower precedence
// of what is in the expression stack, we collapse the expression stack.
//
// This leads to an expression stack that grows under increasing precedence and collapses
// under decreasing/sustained precedence
//
// The end result is a stack that we can fold into binary operations as right associations
// safely.
let mut expr_stack: Vec<Expression> = vec![];
let mut idx = 0;
let mut last_prec = 1000000;
let mut error = None;
let (lhs, err) = parse_value(working_set, spans[0], &SyntaxShape::Any);
error = error.or(err);
idx += 1;
expr_stack.push(lhs);
while idx < spans.len() {
let (op, err) = parse_operator(working_set, spans[idx]);
error = error.or(err);
let op_prec = op.precedence();
idx += 1;
if idx == spans.len() {
// Handle broken math expr `1 +` etc
error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1])));
expr_stack.push(Expression::garbage(spans[idx - 1]));
expr_stack.push(Expression::garbage(spans[idx - 1]));
break;
}
let (rhs, err) = parse_value(working_set, spans[idx], &SyntaxShape::Any);
error = error.or(err);
if op_prec <= last_prec {
while expr_stack.len() > 1 {
// Collapse the right associated operations first
// so that we can get back to a stack with a lower precedence
let mut rhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut op = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut lhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs);
error = error.or(err);
let op_span = span(&[lhs.span, rhs.span]);
expr_stack.push(Expression {
expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)),
span: op_span,
ty: result_ty,
});
}
}
expr_stack.push(op);
expr_stack.push(rhs);
last_prec = op_prec;
idx += 1;
}
while expr_stack.len() != 1 {
let mut rhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut op = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut lhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs);
error = error.or(err);
let binary_op_span = span(&[lhs.span, rhs.span]);
expr_stack.push(Expression {
expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)),
span: binary_op_span,
ty: result_ty,
});
}
let output = expr_stack
.pop()
.expect("internal error: expression stack empty");
(output, error)
}
pub fn parse_expression(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Expression, Option<ParseError>) {
let bytes = working_set.get_span_contents(spans[0]);
match bytes[0] {
b'0' | b'1' | b'2' | b'3' | b'4' | b'5' | b'6' | b'7' | b'8' | b'9' | b'(' | b'{'
| b'[' | b'$' | b'"' | b'\'' => parse_math_expression(working_set, spans),
_ => parse_call(working_set, spans, true),
}
}
pub fn parse_variable(
working_set: &mut StateWorkingSet,
span: Span,
) -> (Option<VarId>, Option<ParseError>) {
let bytes = working_set.get_span_contents(span);
if is_variable(bytes) {
if let Some(var_id) = working_set.find_variable(bytes) {
(Some(var_id), None)
} else {
(None, None)
}
} else {
(None, Some(ParseError::Expected("variable".into(), span)))
}
}
pub fn parse_def_predecl(working_set: &mut StateWorkingSet, spans: &[Span]) {
let name = working_set.get_span_contents(spans[0]);
if name == b"def" && spans.len() >= 4 {
let (name_expr, ..) = parse_string(working_set, spans[1]);
let name = name_expr.as_string();
working_set.enter_scope();
// FIXME: because parse_signature will update the scope with the variables it sees
// we end up parsing the signature twice per def. The first time is during the predecl
// so that we can see the types that are part of the signature, which we need for parsing.
// The second time is when we actually parse the body itworking_set.
// We can't reuse the first time because the variables that are created during parse_signature
// are lost when we exit the scope below.
let (sig, ..) = parse_signature(working_set, spans[2]);
let signature = sig.as_signature();
working_set.exit_scope();
match (name, signature) {
(Some(name), Some(mut signature)) => {
signature.name = name;
let decl = signature.predeclare();
working_set.add_decl(decl);
}
_ => {}
}
}
}
pub fn parse_def(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Statement, Option<ParseError>) {
let mut error = None;
let name = working_set.get_span_contents(spans[0]);
if name == b"def" && spans.len() >= 4 {
//FIXME: don't use expect here
let (name_expr, err) = parse_string(working_set, spans[1]);
error = error.or(err);
working_set.enter_scope();
let (sig, err) = parse_signature(working_set, spans[2]);
error = error.or(err);
let (block, err) = parse_block_expression(working_set, spans[3]);
error = error.or(err);
working_set.exit_scope();
let name = name_expr.as_string();
let signature = sig.as_signature();
let block_id = block.as_block();
match (name, signature, block_id) {
(Some(name), Some(mut signature), Some(block_id)) => {
let decl_id = working_set
.find_decl(name.as_bytes())
.expect("internal error: predeclaration failed to add definition");
let declaration = working_set.get_decl_mut(decl_id);
signature.name = name;
*declaration = signature.into_block_command(block_id);
let def_decl_id = working_set
.find_decl(b"def")
.expect("internal error: missing def command");
let call = Box::new(Call {
head: spans[0],
decl_id: def_decl_id,
positional: vec![name_expr, sig, block],
named: vec![],
});
(
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Call(call),
span: span(spans),
ty: Type::Unknown,
}])),
error,
)
}
_ => (
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Garbage,
span: span(spans),
ty: Type::Unknown,
}])),
error,
),
}
} else {
(
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Garbage,
span: span(spans),
ty: Type::Unknown,
}])),
Some(ParseError::UnknownState(
"internal error: definition unparseable".into(),
span(spans),
)),
)
}
}
pub fn parse_alias(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Statement, Option<ParseError>) {
let name = working_set.get_span_contents(spans[0]);
if name == b"alias" {
if let Some(decl_id) = working_set.find_decl(b"alias") {
let (call, call_span, _) =
parse_internal_call(working_set, spans[0], &spans[1..], decl_id);
if spans.len() >= 4 {
let alias_name = working_set.get_span_contents(spans[1]);
let alias_name = if alias_name.starts_with(b"\"")
&& alias_name.ends_with(b"\"")
&& alias_name.len() > 1
{
alias_name[1..(alias_name.len() - 1)].to_vec()
} else {
alias_name.to_vec()
};
let _equals = working_set.get_span_contents(spans[2]);
let replacement = spans[3..].to_vec();
//println!("{:?} {:?}", alias_name, replacement);
working_set.add_alias(alias_name, replacement);
}
return (
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Call(call),
span: call_span,
ty: Type::Unknown,
}])),
None,
);
}
}
(
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Garbage,
span: span(spans),
ty: Type::Unknown,
}])),
Some(ParseError::UnknownState(
"internal error: let statement unparseable".into(),
span(spans),
)),
)
}
pub fn parse_let(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Statement, Option<ParseError>) {
let name = working_set.get_span_contents(spans[0]);
if name == b"let" {
if let Some(decl_id) = working_set.find_decl(b"let") {
let (call, call_span, err) =
parse_internal_call(working_set, spans[0], &spans[1..], decl_id);
// Update the variable to the known type if we can.
if err.is_none() {
let var_id = call.positional[0]
.as_var()
.expect("internal error: expected variable");
let rhs_type = call.positional[1].ty.clone();
working_set.set_variable_type(var_id, rhs_type);
}
return (
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Call(call),
span: call_span,
ty: Type::Unknown,
}])),
err,
);
}
}
(
Statement::Pipeline(Pipeline::from_vec(vec![Expression {
expr: Expr::Garbage,
span: span(spans),
ty: Type::Unknown,
}])),
Some(ParseError::UnknownState(
"internal error: let statement unparseable".into(),
span(spans),
)),
)
}
pub fn parse_statement(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> (Statement, Option<ParseError>) {
// FIXME: improve errors by checking keyword first
if let (decl, None) = parse_def(working_set, spans) {
(decl, None)
} else if let (stmt, None) = parse_let(working_set, spans) {
(stmt, None)
} else if let (stmt, None) = parse_alias(working_set, spans) {
(stmt, None)
} else {
let (expr, err) = parse_expression(working_set, spans);
(Statement::Pipeline(Pipeline::from_vec(vec![expr])), err)
}
}
pub fn parse_block(
working_set: &mut StateWorkingSet,
lite_block: &LiteBlock,
scoped: bool,
) -> (Block, Option<ParseError>) {
let mut error = None;
if scoped {
working_set.enter_scope();
}
let mut block = Block::new();
// Pre-declare any definition so that definitions
// that share the same block can see each other
for pipeline in &lite_block.block {
if pipeline.commands.len() == 1 {
parse_def_predecl(working_set, &pipeline.commands[0].parts);
}
}
for pipeline in &lite_block.block {
if pipeline.commands.len() > 1 {
let mut output = vec![];
for command in &pipeline.commands {
let (expr, err) = parse_expression(working_set, &command.parts);
error = error.or(err);
output.push(expr);
}
block.stmts.push(Statement::Pipeline(Pipeline {
expressions: output,
}));
} else {
let (stmt, err) = parse_statement(working_set, &pipeline.commands[0].parts);
error = error.or(err);
block.stmts.push(stmt);
}
}
if scoped {
working_set.exit_scope();
}
(block, error)
}
pub fn parse_file(
working_set: &mut StateWorkingSet,
fname: &str,
contents: &[u8],
scoped: bool,
) -> (Block, Option<ParseError>) {
let mut error = None;
let span_offset = working_set.next_span_start();
working_set.add_file(fname.into(), contents);
let (output, err) = lex(contents, span_offset, &[], &[]);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = parse_block(working_set, &output, scoped);
error = error.or(err);
(output, error)
}
pub fn parse_source(
working_set: &mut StateWorkingSet,
source: &[u8],
scoped: bool,
) -> (Block, Option<ParseError>) {
let mut error = None;
let span_offset = working_set.next_span_start();
working_set.add_file("source".into(), source);
let (output, err) = lex(source, span_offset, &[], &[]);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = parse_block(working_set, &output, scoped);
error = error.or(err);
(output, error)
}