mirror of
https://github.com/nushell/nushell
synced 2025-01-25 03:15:25 +00:00
cde92a9fb9
command used: cargo clippy -- -W clippy::perf
167 lines
5.9 KiB
Rust
167 lines
5.9 KiB
Rust
use crate::commands::evaluate_by::evaluate;
|
|
use crate::commands::group_by::group;
|
|
use crate::commands::map_max_by::map_max;
|
|
use crate::commands::reduce_by::reduce;
|
|
use crate::commands::t_sort_by::columns_sorted;
|
|
use crate::commands::t_sort_by::t_sort;
|
|
use crate::commands::WholeStreamCommand;
|
|
use crate::prelude::*;
|
|
use nu_errors::ShellError;
|
|
use nu_protocol::{
|
|
Primitive, ReturnSuccess, Signature, SyntaxShape, TaggedDictBuilder, UntaggedValue, Value,
|
|
};
|
|
use nu_source::Tagged;
|
|
use num_traits::cast::ToPrimitive;
|
|
|
|
pub struct Histogram;
|
|
|
|
#[derive(Deserialize)]
|
|
pub struct HistogramArgs {
|
|
column_name: Tagged<String>,
|
|
rest: Vec<Tagged<String>>,
|
|
}
|
|
|
|
impl WholeStreamCommand for Histogram {
|
|
fn name(&self) -> &str {
|
|
"histogram"
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build("histogram")
|
|
.required(
|
|
"column_name",
|
|
SyntaxShape::String,
|
|
"the name of the column to graph by",
|
|
)
|
|
.rest(
|
|
SyntaxShape::Member,
|
|
"column name to give the histogram's frequency column",
|
|
)
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Creates a new table with a histogram based on the column name passed in."
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
args: CommandArgs,
|
|
registry: &CommandRegistry,
|
|
) -> Result<OutputStream, ShellError> {
|
|
args.process(registry, histogram)?.run()
|
|
}
|
|
}
|
|
|
|
pub fn histogram(
|
|
HistogramArgs { column_name, rest }: HistogramArgs,
|
|
RunnableContext { input, name, .. }: RunnableContext,
|
|
) -> Result<OutputStream, ShellError> {
|
|
let stream = async_stream! {
|
|
let values: Vec<Value> = input.values.collect().await;
|
|
|
|
let Tagged { item: group_by, .. } = column_name.clone();
|
|
|
|
let groups = group(&column_name, values, &name)?;
|
|
let group_labels = columns_sorted(Some(group_by.clone()), &groups, &name);
|
|
let sorted = t_sort(Some(group_by.clone()), None, &groups, &name)?;
|
|
let evaled = evaluate(&sorted, None, &name)?;
|
|
let reduced = reduce(&evaled, None, &name)?;
|
|
let maxima = map_max(&reduced, None, &name)?;
|
|
let percents = percentages(&reduced, maxima, &name)?;
|
|
|
|
match percents {
|
|
Value {
|
|
value: UntaggedValue::Table(datasets),
|
|
..
|
|
} => {
|
|
|
|
let mut idx = 0;
|
|
|
|
let column_names_supplied: Vec<_> = rest.iter().map(|f| f.item.clone()).collect();
|
|
|
|
let frequency_column_name = if column_names_supplied.is_empty() {
|
|
"frequency".to_string()
|
|
} else {
|
|
column_names_supplied[0].clone()
|
|
};
|
|
|
|
let column = (*column_name).clone();
|
|
|
|
if let Value { value: UntaggedValue::Table(start), .. } = datasets.get(0).unwrap() {
|
|
for percentage in start.iter() {
|
|
|
|
let mut fact = TaggedDictBuilder::new(&name);
|
|
let value: Tagged<String> = group_labels.get(idx).unwrap().clone();
|
|
fact.insert_value(&column, UntaggedValue::string(value.item).into_value(value.tag));
|
|
|
|
if let Value { value: UntaggedValue::Primitive(Primitive::Int(ref num)), .. } = percentage.clone() {
|
|
let string = std::iter::repeat("*").take(num.to_i32().unwrap() as usize).collect::<String>();
|
|
fact.insert_untagged(&frequency_column_name, UntaggedValue::string(string));
|
|
}
|
|
|
|
idx += 1;
|
|
|
|
yield ReturnSuccess::value(fact.into_value());
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
};
|
|
|
|
Ok(stream.to_output_stream())
|
|
}
|
|
|
|
fn percentages(values: &Value, max: Value, tag: impl Into<Tag>) -> Result<Value, ShellError> {
|
|
let tag = tag.into();
|
|
|
|
let results: Value = match values {
|
|
Value {
|
|
value: UntaggedValue::Table(datasets),
|
|
..
|
|
} => {
|
|
let datasets: Vec<_> = datasets
|
|
.iter()
|
|
.map(|subsets| match subsets {
|
|
Value {
|
|
value: UntaggedValue::Table(data),
|
|
..
|
|
} => {
|
|
let data =
|
|
data.iter()
|
|
.map(|d| match d {
|
|
Value {
|
|
value: UntaggedValue::Primitive(Primitive::Int(n)),
|
|
..
|
|
} => {
|
|
let max = match max {
|
|
Value {
|
|
value:
|
|
UntaggedValue::Primitive(Primitive::Int(
|
|
ref maxima,
|
|
)),
|
|
..
|
|
} => maxima.to_i32().unwrap(),
|
|
_ => 0,
|
|
};
|
|
|
|
let n = { n.to_i32().unwrap() * 100 / max };
|
|
|
|
UntaggedValue::int(n).into_value(&tag)
|
|
}
|
|
_ => UntaggedValue::int(0).into_value(&tag),
|
|
})
|
|
.collect::<Vec<_>>();
|
|
UntaggedValue::Table(data).into_value(&tag)
|
|
}
|
|
_ => UntaggedValue::Table(vec![]).into_value(&tag),
|
|
})
|
|
.collect();
|
|
|
|
UntaggedValue::Table(datasets).into_value(&tag)
|
|
}
|
|
other => other.clone(),
|
|
};
|
|
|
|
Ok(results)
|
|
}
|