nushell/src/commands/histogram.rs
Thibaut Brandscheid cde92a9fb9 Fix most Clippy performance warnings
command used: cargo clippy -- -W clippy::perf
2019-12-06 23:25:47 +01:00

167 lines
5.9 KiB
Rust

use crate::commands::evaluate_by::evaluate;
use crate::commands::group_by::group;
use crate::commands::map_max_by::map_max;
use crate::commands::reduce_by::reduce;
use crate::commands::t_sort_by::columns_sorted;
use crate::commands::t_sort_by::t_sort;
use crate::commands::WholeStreamCommand;
use crate::prelude::*;
use nu_errors::ShellError;
use nu_protocol::{
Primitive, ReturnSuccess, Signature, SyntaxShape, TaggedDictBuilder, UntaggedValue, Value,
};
use nu_source::Tagged;
use num_traits::cast::ToPrimitive;
pub struct Histogram;
#[derive(Deserialize)]
pub struct HistogramArgs {
column_name: Tagged<String>,
rest: Vec<Tagged<String>>,
}
impl WholeStreamCommand for Histogram {
fn name(&self) -> &str {
"histogram"
}
fn signature(&self) -> Signature {
Signature::build("histogram")
.required(
"column_name",
SyntaxShape::String,
"the name of the column to graph by",
)
.rest(
SyntaxShape::Member,
"column name to give the histogram's frequency column",
)
}
fn usage(&self) -> &str {
"Creates a new table with a histogram based on the column name passed in."
}
fn run(
&self,
args: CommandArgs,
registry: &CommandRegistry,
) -> Result<OutputStream, ShellError> {
args.process(registry, histogram)?.run()
}
}
pub fn histogram(
HistogramArgs { column_name, rest }: HistogramArgs,
RunnableContext { input, name, .. }: RunnableContext,
) -> Result<OutputStream, ShellError> {
let stream = async_stream! {
let values: Vec<Value> = input.values.collect().await;
let Tagged { item: group_by, .. } = column_name.clone();
let groups = group(&column_name, values, &name)?;
let group_labels = columns_sorted(Some(group_by.clone()), &groups, &name);
let sorted = t_sort(Some(group_by.clone()), None, &groups, &name)?;
let evaled = evaluate(&sorted, None, &name)?;
let reduced = reduce(&evaled, None, &name)?;
let maxima = map_max(&reduced, None, &name)?;
let percents = percentages(&reduced, maxima, &name)?;
match percents {
Value {
value: UntaggedValue::Table(datasets),
..
} => {
let mut idx = 0;
let column_names_supplied: Vec<_> = rest.iter().map(|f| f.item.clone()).collect();
let frequency_column_name = if column_names_supplied.is_empty() {
"frequency".to_string()
} else {
column_names_supplied[0].clone()
};
let column = (*column_name).clone();
if let Value { value: UntaggedValue::Table(start), .. } = datasets.get(0).unwrap() {
for percentage in start.iter() {
let mut fact = TaggedDictBuilder::new(&name);
let value: Tagged<String> = group_labels.get(idx).unwrap().clone();
fact.insert_value(&column, UntaggedValue::string(value.item).into_value(value.tag));
if let Value { value: UntaggedValue::Primitive(Primitive::Int(ref num)), .. } = percentage.clone() {
let string = std::iter::repeat("*").take(num.to_i32().unwrap() as usize).collect::<String>();
fact.insert_untagged(&frequency_column_name, UntaggedValue::string(string));
}
idx += 1;
yield ReturnSuccess::value(fact.into_value());
}
}
}
_ => {}
}
};
Ok(stream.to_output_stream())
}
fn percentages(values: &Value, max: Value, tag: impl Into<Tag>) -> Result<Value, ShellError> {
let tag = tag.into();
let results: Value = match values {
Value {
value: UntaggedValue::Table(datasets),
..
} => {
let datasets: Vec<_> = datasets
.iter()
.map(|subsets| match subsets {
Value {
value: UntaggedValue::Table(data),
..
} => {
let data =
data.iter()
.map(|d| match d {
Value {
value: UntaggedValue::Primitive(Primitive::Int(n)),
..
} => {
let max = match max {
Value {
value:
UntaggedValue::Primitive(Primitive::Int(
ref maxima,
)),
..
} => maxima.to_i32().unwrap(),
_ => 0,
};
let n = { n.to_i32().unwrap() * 100 / max };
UntaggedValue::int(n).into_value(&tag)
}
_ => UntaggedValue::int(0).into_value(&tag),
})
.collect::<Vec<_>>();
UntaggedValue::Table(data).into_value(&tag)
}
_ => UntaggedValue::Table(vec![]).into_value(&tag),
})
.collect();
UntaggedValue::Table(datasets).into_value(&tag)
}
other => other.clone(),
};
Ok(results)
}