mirror of
https://github.com/nushell/nushell
synced 2025-01-10 20:29:06 +00:00
dacf80f34a
# Description Despite the innocent-looking title, this PR involves quite a few backend changes as the existing LazyRecord trait was not at all friendly towards the idea of these values being generated on the fly from Nu code. In particular, here are a few changes involved: - The LazyRecord trait now involves a lifetime `'a`, and this lifetime is used in the return value of `get_column_names`. This means it no longer returns `'static str`s (but implementations still can return these). This is more stringent on the consumption side. - The LazyRecord trait now must be able to clone itself via a new `clone_value` method (as requiring `Clone` is not object safe). This pattern is borrowed from `Value::CustomValue`. - LazyRecord no longer requires being serde serializable and deserializable. These, in hand, allow for the following: - LazyRecord can now clone itself, which means that they don't have to be collected into a Record when being cloned. - This is especially useful in Stack, which is cloned on each repl line and in a few other cases. This would mean that _every_ LazyRecord instance stored in a variable would be collected in its entirety and cloned, which can be catastrophic for performance. See: `let nulol = $nu`. - LazyRecord's columns don't have to be static, they can have the same lifetime of the struct itself, so different instances of the same LazyRecord type can have different columns and values (like the new `NuLazyRecord`) - Serialization and deserialization are no longer meaningless, they are simply less. I would consider this PR very "drafty", but everything works. It probably requires some cleanup and testing, though, but I'd like some eyes and pointers first. # User-Facing Changes New command. New restrictions are largely internal. Maybe there are some plugins affected? Example of new command's usage: ``` lazy make --columns [a b c] --get-value { |name| print $"getting ($name)"; $name | str upcase } ``` You can also trivially implement something like `lazy make record` to take a record of closures and turn it into a getter-like lazy struct: ``` def "lazy make record" [ record: record ] { let columns = ($record | columns) lazy make --columns $columns --get-value { |col| do ($record | get $col) } } ``` Open to bikeshedding. `lazy make` is similar to `error make` which is also in the core commands. I didn't like `make lazy` since it sounded like some transformation was going on. # Tour for reviewers Take a look at LazyMake's examples. They have `None` as the results, as such they aren't _really_ correct and aren't being tested at all. I didn't do this because creating the Value::LazyRecord is a little tricky and didn't want to risk messing it up, especially as the necessary variables aren't available when creating the examples (like stack and engine state). Also take a look at NuLazyRecord's get_value implementation, or in general. It uses an Arc<Mutex<_>> for the stack, which must be accessed mutably for eval_block but get_value only provides us with a `&self`. This is a sad state of affairs, but I don't know if there's a better way. On the same code path, we also have pipeline handling, and any pipeline that isn't a Pipeline::Value will return Value::nothing. I believe returning a Value::Error is probably better, or maybe some other handling. Couldn't decide on which ShellError to settle with for that branch. The "unfortunate casualty" in the columns.rs file. I'm not sure just how bad that is, though, I simply had to fight a little with the borrow checker. A few leftover comments like derives, comments about the now non-existing serde requirements, and impls. I'll definitely get around to those eventually but they're in atm Should NuLazyRecord implement caching? I'm leaning heavily towards **yes**, this was one of the main reasons not to use a record of closures (besides convenience), but maybe it could be opt-out. I'd wonder about its implementation too, but a simple way would be to move a HashMap into the mutex state and keep cached values there.
466 lines
12 KiB
Rust
466 lines
12 KiB
Rust
use chrono::prelude::DateTime;
|
|
use chrono::Local;
|
|
use nu_protocol::{
|
|
ast::Call,
|
|
engine::{Command, EngineState, Stack},
|
|
Category, Example, IntoPipelineData, LazyRecord, PipelineData, ShellError, Signature, Span,
|
|
Type, Value,
|
|
};
|
|
use std::time::{Duration, UNIX_EPOCH};
|
|
use sysinfo::{
|
|
ComponentExt, CpuExt, CpuRefreshKind, DiskExt, NetworkExt, System, SystemExt, UserExt,
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
pub struct Sys;
|
|
|
|
impl Command for Sys {
|
|
fn name(&self) -> &str {
|
|
"sys"
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build("sys")
|
|
.filter()
|
|
.category(Category::System)
|
|
.input_output_types(vec![(Type::Nothing, Type::Record(vec![]))])
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"View information about the system."
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
_engine_state: &EngineState,
|
|
_stack: &mut Stack,
|
|
call: &Call,
|
|
_input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let span = call.span();
|
|
let ret = Value::LazyRecord {
|
|
val: Box::new(SysResult { span }),
|
|
span,
|
|
};
|
|
|
|
Ok(ret.into_pipeline_data())
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Show info about the system",
|
|
example: "sys",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description: "Show the os system name with get",
|
|
example: "(sys).host | get name",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description: "Show the os system name",
|
|
example: "(sys).host.name",
|
|
result: None,
|
|
},
|
|
]
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct SysResult {
|
|
pub span: Span,
|
|
}
|
|
|
|
impl LazyRecord<'_> for SysResult {
|
|
fn column_names(&self) -> Vec<&'static str> {
|
|
vec!["host", "cpu", "disks", "mem", "temp", "net"]
|
|
}
|
|
|
|
fn get_column_value(&self, column: &str) -> Result<Value, ShellError> {
|
|
let span = self.span;
|
|
|
|
match column {
|
|
"host" => Ok(host(span)),
|
|
"cpu" => Ok(cpu(span)),
|
|
"disks" => Ok(disks(span)),
|
|
"mem" => Ok(mem(span)),
|
|
"temp" => Ok(temp(span)),
|
|
"net" => Ok(net(span)),
|
|
_ => Err(ShellError::LazyRecordAccessFailed {
|
|
message: format!("Could not find column '{column}'"),
|
|
column_name: column.to_string(),
|
|
span,
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn span(&self) -> Span {
|
|
self.span
|
|
}
|
|
|
|
fn clone_value(&self, span: Span) -> Value {
|
|
Value::LazyRecord {
|
|
val: Box::new((*self).clone()),
|
|
span,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn trim_cstyle_null(s: String) -> String {
|
|
s.trim_matches(char::from(0)).to_string()
|
|
}
|
|
|
|
pub fn disks(span: Span) -> Value {
|
|
let mut sys = System::new();
|
|
sys.refresh_disks();
|
|
sys.refresh_disks_list();
|
|
|
|
let mut output = vec![];
|
|
for disk in sys.disks() {
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
cols.push("device".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(disk.name().to_string_lossy().to_string()),
|
|
span,
|
|
});
|
|
|
|
cols.push("type".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(String::from_utf8_lossy(disk.file_system()).to_string()),
|
|
span,
|
|
});
|
|
|
|
cols.push("mount".into());
|
|
vals.push(Value::String {
|
|
val: disk.mount_point().to_string_lossy().to_string(),
|
|
span,
|
|
});
|
|
|
|
cols.push("total".into());
|
|
vals.push(Value::Filesize {
|
|
val: disk.total_space() as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("free".into());
|
|
vals.push(Value::Filesize {
|
|
val: disk.available_space() as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("removable".into());
|
|
vals.push(Value::Bool {
|
|
val: disk.is_removable(),
|
|
span,
|
|
});
|
|
|
|
cols.push("removable".into());
|
|
vals.push(Value::String {
|
|
val: format!("{:?}", disk.type_()),
|
|
span,
|
|
});
|
|
|
|
output.push(Value::Record { cols, vals, span });
|
|
}
|
|
Value::List { vals: output, span }
|
|
}
|
|
|
|
pub fn net(span: Span) -> Value {
|
|
let mut sys = System::new();
|
|
sys.refresh_networks();
|
|
sys.refresh_networks_list();
|
|
|
|
let mut output = vec![];
|
|
for (iface, data) in sys.networks() {
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
cols.push("name".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(iface.to_string()),
|
|
span,
|
|
});
|
|
|
|
cols.push("sent".into());
|
|
vals.push(Value::Filesize {
|
|
val: data.total_transmitted() as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("recv".into());
|
|
vals.push(Value::Filesize {
|
|
val: data.total_received() as i64,
|
|
span,
|
|
});
|
|
|
|
output.push(Value::Record { cols, vals, span });
|
|
}
|
|
Value::List { vals: output, span }
|
|
}
|
|
|
|
pub fn cpu(span: Span) -> Value {
|
|
let mut sys = System::new();
|
|
sys.refresh_cpu_specifics(CpuRefreshKind::everything());
|
|
// We must refresh the CPU twice a while apart to get valid usage data.
|
|
// In theory we could just sleep MINIMUM_CPU_UPDATE_INTERVAL, but I've noticed that
|
|
// that gives poor results (error of ~5%). Decided to wait 2x that long, somewhat arbitrarily
|
|
std::thread::sleep(System::MINIMUM_CPU_UPDATE_INTERVAL * 2);
|
|
sys.refresh_cpu_specifics(CpuRefreshKind::new().with_cpu_usage());
|
|
|
|
let mut output = vec![];
|
|
for cpu in sys.cpus() {
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
cols.push("name".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(cpu.name().to_string()),
|
|
span,
|
|
});
|
|
|
|
cols.push("brand".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(cpu.brand().to_string()),
|
|
span,
|
|
});
|
|
|
|
cols.push("freq".into());
|
|
vals.push(Value::Int {
|
|
val: cpu.frequency() as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("cpu_usage".into());
|
|
|
|
// sysinfo CPU usage numbers are not very precise unless you wait a long time between refreshes.
|
|
// Round to 1DP (chosen somewhat arbitrarily) so people aren't misled by high-precision floats.
|
|
let rounded_usage = (cpu.cpu_usage() * 10.0).round() / 10.0;
|
|
vals.push(Value::Float {
|
|
val: rounded_usage as f64,
|
|
span,
|
|
});
|
|
|
|
let load_avg = sys.load_average();
|
|
cols.push("load_average".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(format!(
|
|
"{:.2}, {:.2}, {:.2}",
|
|
load_avg.one, load_avg.five, load_avg.fifteen
|
|
)),
|
|
span,
|
|
});
|
|
|
|
cols.push("vendor_id".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(cpu.vendor_id().to_string()),
|
|
span,
|
|
});
|
|
|
|
output.push(Value::Record { cols, vals, span });
|
|
}
|
|
|
|
Value::List { vals: output, span }
|
|
}
|
|
|
|
pub fn mem(span: Span) -> Value {
|
|
let mut sys = System::new();
|
|
sys.refresh_memory();
|
|
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
let total_mem = sys.total_memory();
|
|
let free_mem = sys.free_memory();
|
|
let used_mem = sys.used_memory();
|
|
let avail_mem = sys.available_memory();
|
|
|
|
let total_swap = sys.total_swap();
|
|
let free_swap = sys.free_swap();
|
|
let used_swap = sys.used_swap();
|
|
|
|
cols.push("total".into());
|
|
vals.push(Value::Filesize {
|
|
val: total_mem as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("free".into());
|
|
vals.push(Value::Filesize {
|
|
val: free_mem as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("used".into());
|
|
vals.push(Value::Filesize {
|
|
val: used_mem as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("available".into());
|
|
vals.push(Value::Filesize {
|
|
val: avail_mem as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("swap total".into());
|
|
vals.push(Value::Filesize {
|
|
val: total_swap as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("swap free".into());
|
|
vals.push(Value::Filesize {
|
|
val: free_swap as i64,
|
|
span,
|
|
});
|
|
|
|
cols.push("swap used".into());
|
|
vals.push(Value::Filesize {
|
|
val: used_swap as i64,
|
|
span,
|
|
});
|
|
|
|
Value::Record { cols, vals, span }
|
|
}
|
|
|
|
pub fn host(span: Span) -> Value {
|
|
let mut sys = System::new();
|
|
sys.refresh_users_list();
|
|
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
if let Some(name) = sys.name() {
|
|
cols.push("name".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(name),
|
|
span,
|
|
});
|
|
}
|
|
if let Some(version) = sys.os_version() {
|
|
cols.push("os_version".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(version),
|
|
span,
|
|
});
|
|
}
|
|
|
|
if let Some(long_version) = sys.long_os_version() {
|
|
cols.push("long_os_version".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(long_version),
|
|
span,
|
|
});
|
|
}
|
|
|
|
if let Some(version) = sys.kernel_version() {
|
|
cols.push("kernel_version".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(version),
|
|
span,
|
|
});
|
|
}
|
|
if let Some(hostname) = sys.host_name() {
|
|
cols.push("hostname".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(hostname),
|
|
span,
|
|
});
|
|
}
|
|
|
|
cols.push("uptime".into());
|
|
vals.push(Value::Duration {
|
|
val: 1000000000 * sys.uptime() as i64,
|
|
span,
|
|
});
|
|
|
|
// Creates a new SystemTime from the specified number of whole seconds
|
|
let d = UNIX_EPOCH + Duration::from_secs(sys.boot_time());
|
|
// Create DateTime from SystemTime
|
|
let datetime = DateTime::<Local>::from(d);
|
|
// Convert to local time and then rfc3339
|
|
let timestamp_str = datetime.with_timezone(datetime.offset()).to_rfc3339();
|
|
|
|
cols.push("boot_time".into());
|
|
vals.push(Value::String {
|
|
val: timestamp_str,
|
|
span,
|
|
});
|
|
|
|
let mut users = vec![];
|
|
for user in sys.users() {
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
cols.push("name".into());
|
|
vals.push(Value::String {
|
|
val: trim_cstyle_null(user.name().to_string()),
|
|
span,
|
|
});
|
|
|
|
let mut groups = vec![];
|
|
for group in user.groups() {
|
|
groups.push(Value::String {
|
|
val: trim_cstyle_null(group.to_string()),
|
|
span,
|
|
});
|
|
}
|
|
|
|
cols.push("groups".into());
|
|
vals.push(Value::List { vals: groups, span });
|
|
|
|
users.push(Value::Record { cols, vals, span });
|
|
}
|
|
|
|
if !users.is_empty() {
|
|
cols.push("sessions".into());
|
|
vals.push(Value::List { vals: users, span });
|
|
}
|
|
|
|
Value::Record { cols, vals, span }
|
|
}
|
|
|
|
pub fn temp(span: Span) -> Value {
|
|
let mut sys = System::new();
|
|
sys.refresh_components();
|
|
sys.refresh_components_list();
|
|
|
|
let mut output = vec![];
|
|
|
|
for component in sys.components() {
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
cols.push("unit".into());
|
|
vals.push(Value::String {
|
|
val: component.label().to_string(),
|
|
span,
|
|
});
|
|
|
|
cols.push("temp".into());
|
|
vals.push(Value::Float {
|
|
val: component.temperature() as f64,
|
|
span,
|
|
});
|
|
|
|
cols.push("high".into());
|
|
vals.push(Value::Float {
|
|
val: component.max() as f64,
|
|
span,
|
|
});
|
|
|
|
if let Some(critical) = component.critical() {
|
|
cols.push("critical".into());
|
|
vals.push(Value::Float {
|
|
val: critical as f64,
|
|
span,
|
|
});
|
|
}
|
|
output.push(Value::Record { cols, vals, span });
|
|
}
|
|
|
|
Value::List { vals: output, span }
|
|
}
|