nushell/crates/nu-term-grid/src/grid.rs
Stefan Holderbach 659da3c4a4
Make ANSI stripping lazy in more places (#4380)
Same rationale as in #4378

Also accelerate `grid`

before:

```
Command being timed: "./eager_nu -c for i in 0..100000 { echo whatever } | grid"
        User time (seconds): 0.21
        System time (seconds): 0.05
        Percent of CPU this job got: 36%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.71
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 48112
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 10580
        Voluntary context switches: 266
        Involuntary context switches: 2595
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
```

after:

```
Command being timed: "./lazy_nu -c for i in 0..100000 { echo whatever } | grid"
        User time (seconds): 0.14
        System time (seconds): 0.05
        Percent of CPU this job got: 33%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.60
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 48272
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 1
        Minor (reclaiming a frame) page faults: 10582
        Voluntary context switches: 286
        Involuntary context switches: 831
        Swaps: 0
        File system inputs: 56
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
```
2022-02-08 18:25:31 -06:00

781 lines
26 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Thanks to https://github.com/ogham/rust-term-grid for making this available
//! This library arranges textual data in a grid format suitable for
//! fixed-width fonts, using an algorithm to minimise the amount of space
//! needed. For example:
//!
//! ```rust
//! use nu_term_grid::grid::{Grid, GridOptions, Direction, Filling, Cell};
//!
//! let mut grid = Grid::new(GridOptions {
//! filling: Filling::Spaces(1),
//! direction: Direction::LeftToRight,
//! });
//!
//! for s in &["one", "two", "three", "four", "five", "six", "seven",
//! "eight", "nine", "ten", "eleven", "twelve"]
//! {
//! grid.add(Cell::from(*s));
//! }
//!
//! println!("{}", grid.fit_into_width(24).unwrap());
//! ```
//!
//! Produces the following tabular result:
//!
//! ```text
//! one two three four
//! five six seven eight
//! nine ten eleven twelve
//! ```
//!
//!
//! ## Creating a grid
//!
//! To add data to a grid, first create a new [`Grid`] value, and then add
//! cells to them with the `add` function.
//!
//! There are two options that must be specified in the [`GridOptions`] value
//! that dictate how the grid is formatted:
//!
//! - `filling`: what to put in between two columns — either a number of
//! spaces, or a text string;
//! - `direction`, which specifies whether the cells should go along
//! rows, or columns:
//! - `Direction::LeftToRight` starts them in the top left and
//! moves *rightwards*, going to the start of a new row after reaching the
//! final column;
//! - `Direction::TopToBottom` starts them in the top left and moves
//! *downwards*, going to the top of a new column after reaching the final
//! row.
//!
//!
//! ## Displaying a grid
//!
//! When display a grid, you can either specify the number of columns in advance,
//! or try to find the maximum number of columns that can fit in an area of a
//! given width.
//!
//! Splitting a series of cells into columns — or, in other words, starting a new
//! row every <var>n</var> cells — is achieved with the [`fit_into_columns`] function
//! on a `Grid` value. It takes as its argument the number of columns.
//!
//! Trying to fit as much data onto one screen as possible is the main use case
//! for specifying a maximum width instead. This is achieved with the
//! [`fit_into_width`] function. It takes the maximum allowed width, including
//! separators, as its argument. However, it returns an *optional* [`Display`]
//! value, depending on whether any of the cells actually had a width greater than
//! the maximum width! If this is the case, your best bet is to just output the
//! cells with one per line.
//!
//!
//! ## Cells and data
//!
//! Grids to not take `String`s or `&str`s — they take [`Cell`] values.
//!
//! A **Cell** is a struct containing an individual cells contents, as a string,
//! and its pre-computed length, which gets used when calculating a grids final
//! dimensions. Usually, you want the *Unicode width* of the string to be used for
//! this, so you can turn a `String` into a `Cell` with the `.into()` function.
//!
//! However, you may also want to supply your own width: when you already know the
//! width in advance, or when you want to change the measurement, such as skipping
//! over terminal control characters. For cases like these, the fields on the
//! `Cell` values are public, meaning you can construct your own instances as
//! necessary.
//!
//! [`Cell`]: ./struct.Cell.html
//! [`Display`]: ./struct.Display.html
//! [`Grid`]: ./struct.Grid.html
//! [`fit_into_columns`]: ./struct.Grid.html#method.fit_into_columns
//! [`fit_into_width`]: ./struct.Grid.html#method.fit_into_width
//! [`GridOptions`]: ./struct.GridOptions.html
use std::borrow::Cow;
use std::cmp::max;
use std::fmt;
use std::iter::repeat;
use strip_ansi_escapes;
use unicode_width::UnicodeWidthStr;
/// Removes ANSI escape codes and some ASCII control characters
///
/// Keeps `\n` removes `\r`, `\t` etc.
///
/// If parsing fails silently returns the input string
fn strip_ansi(string: &str) -> Cow<str> {
// Check if any ascii control character except LF(0x0A = 10) is present,
// which will be stripped. Includes the primary start of ANSI sequences ESC
// (0x1B = decimal 27)
if string.bytes().any(|x| matches!(x, 0..=9 | 11..=31)) {
if let Ok(stripped) = strip_ansi_escapes::strip(string) {
if let Ok(new_string) = String::from_utf8(stripped) {
return Cow::Owned(new_string);
}
}
}
// Else case includes failures to parse!
Cow::Borrowed(string)
}
fn unicode_width_strip_ansi(astring: &str) -> usize {
strip_ansi(astring).width()
}
/// Alignment indicate on which side the content should stick if some filling
/// is required.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Alignment {
/// The content will stick to the left.
Left,
/// The content will stick to the right.
Right,
}
/// A **Cell** is the combination of a string and its pre-computed length.
///
/// The easiest way to create a Cell is just by using `string.into()`, which
/// uses the **unicode width** of the string (see the `unicode_width` crate).
/// However, the fields are public, if you wish to provide your own length.
#[derive(PartialEq, Debug, Clone)]
pub struct Cell {
/// The string to display when this cell gets rendered.
pub contents: String,
/// The pre-computed length of the string.
pub width: Width,
/// The side (left/right) to align the content if some filling is required.
pub alignment: Alignment,
}
impl From<String> for Cell {
fn from(string: String) -> Self {
Self {
width: unicode_width_strip_ansi(&*string),
contents: string,
alignment: Alignment::Left,
}
}
}
impl<'a> From<&'a str> for Cell {
fn from(string: &'a str) -> Self {
Self {
width: unicode_width_strip_ansi(&*string),
contents: string.into(),
alignment: Alignment::Left,
}
}
}
/// Direction cells should be written in — either across, or downwards.
#[derive(PartialEq, Debug, Copy, Clone)]
pub enum Direction {
/// Starts at the top left and moves rightwards, going back to the first
/// column for a new row, like a typewriter.
LeftToRight,
/// Starts at the top left and moves downwards, going back to the first
/// row for a new column, like how `ls` lists files by default.
TopToBottom,
}
/// The width of a cell, in columns.
pub type Width = usize;
/// The text to put in between each pair of columns.
/// This does not include any spaces used when aligning cells.
#[derive(PartialEq, Debug)]
pub enum Filling {
/// A certain number of spaces should be used as the separator.
Spaces(Width),
/// An arbitrary string.
/// `"|"` is a common choice.
Text(String),
}
impl Filling {
fn width(&self) -> Width {
match *self {
Filling::Spaces(w) => w,
Filling::Text(ref t) => unicode_width_strip_ansi(&t[..]),
}
}
}
/// The user-assignable options for a grid view that should be passed to
/// [`Grid::new()`](struct.Grid.html#method.new).
#[derive(PartialEq, Debug)]
pub struct GridOptions {
/// The direction that the cells should be written in — either
/// across, or downwards.
pub direction: Direction,
/// The number of spaces to put in between each column of cells.
pub filling: Filling,
}
#[derive(PartialEq, Debug)]
struct Dimensions {
/// The number of lines in the grid.
num_lines: Width,
/// The width of each column in the grid. The length of this vector serves
/// as the number of columns.
widths: Vec<Width>,
}
impl Dimensions {
fn total_width(&self, separator_width: Width) -> Width {
if self.widths.is_empty() {
0
} else {
let values = self.widths.iter().sum::<Width>();
let separators = separator_width * (self.widths.len() - 1);
values + separators
}
}
}
/// Everything needed to format the cells with the grid options.
///
/// For more information, see the [`grid` crate documentation](index.html).
#[derive(PartialEq, Debug)]
pub struct Grid {
options: GridOptions,
cells: Vec<Cell>,
widest_cell_length: Width,
width_sum: Width,
cell_count: usize,
}
impl Grid {
/// Creates a new grid view with the given options.
pub fn new(options: GridOptions) -> Self {
let cells = Vec::new();
Self {
options,
cells,
widest_cell_length: 0,
width_sum: 0,
cell_count: 0,
}
}
/// Reserves space in the vector for the given number of additional cells
/// to be added. (See the `Vec::reserve` function.)
pub fn reserve(&mut self, additional: usize) {
self.cells.reserve(additional)
}
/// Adds another cell onto the vector.
pub fn add(&mut self, cell: Cell) {
if cell.width > self.widest_cell_length {
self.widest_cell_length = cell.width;
}
self.width_sum += cell.width;
self.cell_count += 1;
self.cells.push(cell)
}
/// Returns a displayable grid thats been packed to fit into the given
/// width in the fewest number of rows.
///
/// Returns `None` if any of the cells has a width greater than the
/// maximum width.
pub fn fit_into_width(&self, maximum_width: Width) -> Option<Display<'_>> {
self.width_dimensions(maximum_width).map(|dims| Display {
grid: self,
dimensions: dims,
})
}
/// Returns a displayable grid with the given number of columns, and no
/// maximum width.
pub fn fit_into_columns(&self, num_columns: usize) -> Display<'_> {
Display {
grid: self,
dimensions: self.columns_dimensions(num_columns),
}
}
fn columns_dimensions(&self, num_columns: usize) -> Dimensions {
let mut num_lines = self.cells.len() / num_columns;
if self.cells.len() % num_columns != 0 {
num_lines += 1;
}
self.column_widths(num_lines, num_columns)
}
fn column_widths(&self, num_lines: usize, num_columns: usize) -> Dimensions {
let mut widths: Vec<Width> = repeat(0).take(num_columns).collect();
for (index, cell) in self.cells.iter().enumerate() {
let index = match self.options.direction {
Direction::LeftToRight => index % num_columns,
Direction::TopToBottom => index / num_lines,
};
widths[index] = max(widths[index], cell.width);
}
Dimensions { num_lines, widths }
}
fn theoretical_max_num_lines(&self, maximum_width: usize) -> usize {
let mut theoretical_min_num_cols = 0;
let mut col_total_width_so_far = 0;
let mut cells = self.cells.clone();
cells.sort_unstable_by(|a, b| b.width.cmp(&a.width)); // Sort in reverse order
for cell in &cells {
if cell.width + col_total_width_so_far <= maximum_width {
theoretical_min_num_cols += 1;
col_total_width_so_far += cell.width;
} else {
let mut theoretical_max_num_lines = self.cell_count / theoretical_min_num_cols;
if self.cell_count % theoretical_min_num_cols != 0 {
theoretical_max_num_lines += 1;
}
return theoretical_max_num_lines;
}
col_total_width_so_far += self.options.filling.width()
}
// If we make it to this point, we have exhausted all cells before
// reaching the maximum width; the theoretical max number of lines
// needed to display all cells is 1.
1
}
fn width_dimensions(&self, maximum_width: Width) -> Option<Dimensions> {
if self.widest_cell_length > maximum_width {
// Largest cell is wider than maximum width; it is impossible to fit.
return None;
}
if self.cell_count == 0 {
return Some(Dimensions {
num_lines: 0,
widths: Vec::new(),
});
}
if self.cell_count == 1 {
let the_cell = &self.cells[0];
return Some(Dimensions {
num_lines: 1,
widths: vec![the_cell.width],
});
}
let theoretical_max_num_lines = self.theoretical_max_num_lines(maximum_width);
if theoretical_max_num_lines == 1 {
// This if—statement is neccesary for the function to work correctly
// for small inputs.
return Some(Dimensions {
num_lines: 1,
// I clone self.cells twice. Once here, and once in
// self.theoretical_max_num_lines. Perhaps not the best for
// performance?
widths: self
.cells
.clone()
.into_iter()
.map(|cell| cell.width)
.collect(),
});
}
// Instead of numbers of columns, try to find the fewest number of *lines*
// that the output will fit in.
let mut smallest_dimensions_yet = None;
for num_lines in (1..=theoretical_max_num_lines).rev() {
// The number of columns is the number of cells divided by the number
// of lines, *rounded up*.
let mut num_columns = self.cell_count / num_lines;
if self.cell_count % num_lines != 0 {
num_columns += 1;
}
// Early abort: if there are so many columns that the width of the
// *column separators* is bigger than the width of the screen, then
// dont even try to tabulate it.
// This is actually a necessary check, because the width is stored as
// a usize, and making it go negative makes it huge instead, but it
// also serves as a speed-up.
let total_separator_width = (num_columns - 1) * self.options.filling.width();
if maximum_width < total_separator_width {
continue;
}
// Remove the separator width from the available space.
let adjusted_width = maximum_width - total_separator_width;
let potential_dimensions = self.column_widths(num_lines, num_columns);
if potential_dimensions.widths.iter().sum::<Width>() < adjusted_width {
smallest_dimensions_yet = Some(potential_dimensions);
} else {
return smallest_dimensions_yet;
}
}
None
}
}
/// A displayable representation of a [`Grid`](struct.Grid.html).
///
/// This type implements `Display`, so you can get the textual version
/// of the grid by calling `.to_string()`.
#[derive(PartialEq, Debug)]
pub struct Display<'grid> {
/// The grid to display.
grid: &'grid Grid,
/// The pre-computed column widths for this grid.
dimensions: Dimensions,
}
impl Display<'_> {
/// Returns how many columns this display takes up, based on the separator
/// width and the number and width of the columns.
pub fn width(&self) -> Width {
self.dimensions
.total_width(self.grid.options.filling.width())
}
/// Returns how many rows this display takes up.
pub fn row_count(&self) -> usize {
self.dimensions.num_lines
}
/// Returns whether this display takes up as many columns as were allotted
/// to it.
///
/// Its possible to construct tables that dont actually use up all the
/// columns that they could, such as when there are more columns than
/// cells! In this case, a column would have a width of zero. This just
/// checks for that.
pub fn is_complete(&self) -> bool {
self.dimensions.widths.iter().all(|&x| x > 0)
}
}
impl fmt::Display for Display<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
for y in 0..self.dimensions.num_lines {
for x in 0..self.dimensions.widths.len() {
let num = match self.grid.options.direction {
Direction::LeftToRight => y * self.dimensions.widths.len() + x,
Direction::TopToBottom => y + self.dimensions.num_lines * x,
};
// Abandon a line mid-way through if thats where the cells end
if num >= self.grid.cells.len() {
continue;
}
let cell = &self.grid.cells[num];
if x == self.dimensions.widths.len() - 1 {
match cell.alignment {
Alignment::Left => {
// The final column doesnt need to have trailing spaces,
// as long as its left-aligned.
write!(f, "{}", cell.contents)?;
}
Alignment::Right => {
let extra_spaces = self.dimensions.widths[x] - cell.width;
write!(
f,
"{}",
pad_string(&cell.contents, extra_spaces, Alignment::Right)
)?;
}
}
} else {
assert!(self.dimensions.widths[x] >= cell.width);
match (&self.grid.options.filling, cell.alignment) {
(Filling::Spaces(n), Alignment::Left) => {
let extra_spaces = self.dimensions.widths[x] - cell.width + n;
write!(
f,
"{}",
pad_string(&cell.contents, extra_spaces, cell.alignment)
)?;
}
(Filling::Spaces(n), Alignment::Right) => {
let s = spaces(*n);
let extra_spaces = self.dimensions.widths[x] - cell.width;
write!(
f,
"{}{}",
pad_string(&cell.contents, extra_spaces, cell.alignment),
s
)?;
}
(Filling::Text(ref t), _) => {
let extra_spaces = self.dimensions.widths[x] - cell.width;
write!(
f,
"{}{}",
pad_string(&cell.contents, extra_spaces, cell.alignment),
t
)?;
}
}
}
}
writeln!(f)?;
}
Ok(())
}
}
/// Pad a string with the given number of spaces.
fn spaces(length: usize) -> String {
" ".repeat(length)
}
/// Pad a string with the given alignment and number of spaces.
///
/// This doesnt take the width the string *should* be, rather the number
/// of spaces to add.
fn pad_string(string: &str, padding: usize, alignment: Alignment) -> String {
if alignment == Alignment::Left {
format!("{}{}", string, spaces(padding))
} else {
format!("{}{}", spaces(padding), string)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn no_items() {
let grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
let display = grid.fit_into_width(40).unwrap();
assert_eq!(display.dimensions.num_lines, 0);
assert!(display.dimensions.widths.is_empty());
assert_eq!(display.width(), 0);
}
#[test]
fn one_item() {
let mut grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
grid.add(Cell::from("1"));
let display = grid.fit_into_width(40).unwrap();
assert_eq!(display.dimensions.num_lines, 1);
assert_eq!(display.dimensions.widths, vec![1]);
assert_eq!(display.width(), 1);
}
#[test]
fn one_item_exact_width() {
let mut grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
grid.add(Cell::from("1234567890"));
let display = grid.fit_into_width(10).unwrap();
assert_eq!(display.dimensions.num_lines, 1);
assert_eq!(display.dimensions.widths, vec![10]);
assert_eq!(display.width(), 10);
}
#[test]
fn one_item_just_over() {
let mut grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
grid.add(Cell::from("1234567890!"));
assert_eq!(grid.fit_into_width(10), None);
}
#[test]
fn two_small_items() {
let mut grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
grid.add(Cell::from("1"));
grid.add(Cell::from("2"));
let display = grid.fit_into_width(40).unwrap();
assert_eq!(display.dimensions.num_lines, 1);
assert_eq!(display.dimensions.widths, vec![1, 1]);
assert_eq!(display.width(), 1 + 2 + 1);
}
#[test]
fn two_medium_size_items() {
let mut grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
grid.add(Cell::from("hello there"));
grid.add(Cell::from("how are you today?"));
let display = grid.fit_into_width(40).unwrap();
assert_eq!(display.dimensions.num_lines, 1);
assert_eq!(display.dimensions.widths, vec![11, 18]);
assert_eq!(display.width(), 11 + 2 + 18);
}
#[test]
fn two_big_items() {
let mut grid = Grid::new(GridOptions {
direction: Direction::TopToBottom,
filling: Filling::Spaces(2),
});
grid.add(Cell::from(
"nuihuneihsoenhisenouiuteinhdauisdonhuisudoiosadiuohnteihaosdinhteuieudi",
));
grid.add(Cell::from(
"oudisnuthasuouneohbueobaugceoduhbsauglcobeuhnaeouosbubaoecgueoubeohubeo",
));
assert_eq!(grid.fit_into_width(40), None);
}
#[test]
fn that_example_from_earlier() {
let mut grid = Grid::new(GridOptions {
filling: Filling::Spaces(1),
direction: Direction::LeftToRight,
});
for s in &[
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
"eleven", "twelve",
] {
grid.add(Cell::from(*s));
}
let bits = "one two three four\nfive six seven eight\nnine ten eleven twelve\n";
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
}
#[test]
fn number_grid_with_pipe() {
let mut grid = Grid::new(GridOptions {
filling: Filling::Text("|".into()),
direction: Direction::LeftToRight,
});
for s in &[
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
"eleven", "twelve",
] {
grid.add(Cell::from(*s));
}
let bits = "one |two|three |four\nfive|six|seven |eight\nnine|ten|eleven|twelve\n";
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
}
#[test]
fn numbers_right() {
let mut grid = Grid::new(GridOptions {
filling: Filling::Spaces(1),
direction: Direction::LeftToRight,
});
for s in &[
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
"eleven", "twelve",
] {
let mut cell = Cell::from(*s);
cell.alignment = Alignment::Right;
grid.add(cell);
}
let bits = " one two three four\nfive six seven eight\nnine ten eleven twelve\n";
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
}
#[test]
fn numbers_right_pipe() {
let mut grid = Grid::new(GridOptions {
filling: Filling::Text("|".into()),
direction: Direction::LeftToRight,
});
for s in &[
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
"eleven", "twelve",
] {
let mut cell = Cell::from(*s);
cell.alignment = Alignment::Right;
grid.add(cell);
}
let bits = " one|two| three| four\nfive|six| seven| eight\nnine|ten|eleven|twelve\n";
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
}
#[test]
fn huge_separator() {
let mut grid = Grid::new(GridOptions {
filling: Filling::Spaces(100),
direction: Direction::LeftToRight,
});
grid.add("a".into());
grid.add("b".into());
assert_eq!(grid.fit_into_width(99), None);
}
#[test]
fn huge_yet_unused_separator() {
let mut grid = Grid::new(GridOptions {
filling: Filling::Spaces(100),
direction: Direction::LeftToRight,
});
grid.add("abcd".into());
let display = grid.fit_into_width(99).unwrap();
assert_eq!(display.dimensions.num_lines, 1);
assert_eq!(display.dimensions.widths, vec![4]);
assert_eq!(display.width(), 4);
}
}