mirror of
https://github.com/nushell/nushell
synced 2025-01-24 19:05:22 +00:00
aec41f3df0
# Description This PR adds a few functions to `Span` for merging spans together: - `Span::append`: merges two spans that are known to be in order. - `Span::concat`: returns a span that encompasses all the spans in a slice. The spans must be in order. - `Span::merge`: merges two spans (no order necessary). - `Span::merge_many`: merges an iterator of spans into a single span (no order necessary). These are meant to replace the free-standing `nu_protocol::span` function. The spans in a `LiteCommand` (the `parts`) should always be in order based on the lite parser and lexer. So, the parser code sees the most usage of `Span::append` and `Span::concat` where the order is known. In other code areas, `Span::merge` and `Span::merge_many` are used since the order between spans is often not known.
225 lines
6.9 KiB
Rust
225 lines
6.9 KiB
Rust
use miette::SourceSpan;
|
|
use serde::{Deserialize, Serialize};
|
|
use std::ops::Deref;
|
|
|
|
/// A spanned area of interest, generic over what kind of thing is of interest
|
|
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq)]
|
|
pub struct Spanned<T> {
|
|
pub item: T,
|
|
pub span: Span,
|
|
}
|
|
|
|
impl<T> Spanned<T> {
|
|
/// Map to a spanned reference of the inner type, i.e. `Spanned<T> -> Spanned<&T>`.
|
|
pub fn as_ref(&self) -> Spanned<&T> {
|
|
Spanned {
|
|
item: &self.item,
|
|
span: self.span,
|
|
}
|
|
}
|
|
|
|
/// Map to a mutable reference of the inner type, i.e. `Spanned<T> -> Spanned<&mut T>`.
|
|
pub fn as_mut(&mut self) -> Spanned<&mut T> {
|
|
Spanned {
|
|
item: &mut self.item,
|
|
span: self.span,
|
|
}
|
|
}
|
|
|
|
/// Map to the result of [`.deref()`](std::ops::Deref::deref) on the inner type.
|
|
///
|
|
/// This can be used for example to turn `Spanned<Vec<T>>` into `Spanned<&[T]>`.
|
|
pub fn as_deref(&self) -> Spanned<&<T as Deref>::Target>
|
|
where
|
|
T: Deref,
|
|
{
|
|
Spanned {
|
|
item: self.item.deref(),
|
|
span: self.span,
|
|
}
|
|
}
|
|
|
|
/// Map the spanned item with a function.
|
|
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> Spanned<U> {
|
|
Spanned {
|
|
item: f(self.item),
|
|
span: self.span,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper trait to create [`Spanned`] more ergonomically.
|
|
pub trait IntoSpanned: Sized {
|
|
/// Wrap items together with a span into [`Spanned`].
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nu_protocol::{Span, IntoSpanned};
|
|
/// # let span = Span::test_data();
|
|
/// let spanned = "Hello, world!".into_spanned(span);
|
|
/// assert_eq!("Hello, world!", spanned.item);
|
|
/// assert_eq!(span, spanned.span);
|
|
/// ```
|
|
fn into_spanned(self, span: Span) -> Spanned<Self>;
|
|
}
|
|
|
|
impl<T> IntoSpanned for T {
|
|
fn into_spanned(self, span: Span) -> Spanned<Self> {
|
|
Spanned { item: self, span }
|
|
}
|
|
}
|
|
|
|
/// Spans are a global offset across all seen files, which are cached in the engine's state. The start and
|
|
/// end offset together make the inclusive start/exclusive end pair for where to underline to highlight
|
|
/// a given point of interest.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
|
|
pub struct Span {
|
|
pub start: usize,
|
|
pub end: usize,
|
|
}
|
|
|
|
impl Span {
|
|
pub fn new(start: usize, end: usize) -> Self {
|
|
debug_assert!(
|
|
end >= start,
|
|
"Can't create a Span whose end < start, start={start}, end={end}"
|
|
);
|
|
|
|
Self { start, end }
|
|
}
|
|
|
|
pub const fn unknown() -> Self {
|
|
Self { start: 0, end: 0 }
|
|
}
|
|
|
|
/// Note: Only use this for test data, *not* live data, as it will point into unknown source
|
|
/// when used in errors.
|
|
pub const fn test_data() -> Self {
|
|
Self::unknown()
|
|
}
|
|
|
|
pub fn offset(&self, offset: usize) -> Self {
|
|
Self::new(self.start - offset, self.end - offset)
|
|
}
|
|
|
|
pub fn contains(&self, pos: usize) -> bool {
|
|
self.start <= pos && pos < self.end
|
|
}
|
|
|
|
pub fn contains_span(&self, span: Self) -> bool {
|
|
self.start <= span.start && span.end <= self.end
|
|
}
|
|
|
|
/// Point to the space just past this span, useful for missing values
|
|
pub fn past(&self) -> Self {
|
|
Self {
|
|
start: self.end,
|
|
end: self.end,
|
|
}
|
|
}
|
|
|
|
/// Returns the minimal [`Span`] that encompasses both of the given spans.
|
|
///
|
|
/// The two `Spans` can overlap in the middle,
|
|
/// but must otherwise be in order by satisfying:
|
|
/// - `self.start <= after.start`
|
|
/// - `self.end <= after.end`
|
|
///
|
|
/// If this is not guaranteed to be the case, use [`Span::merge`] instead.
|
|
pub fn append(self, after: Self) -> Self {
|
|
debug_assert!(
|
|
self.start <= after.start && self.end <= after.end,
|
|
"Can't merge two Spans that are not in order"
|
|
);
|
|
Self {
|
|
start: self.start,
|
|
end: after.end,
|
|
}
|
|
}
|
|
|
|
/// Returns the minimal [`Span`] that encompasses both of the given spans.
|
|
///
|
|
/// The spans need not be in order or have any relationship.
|
|
///
|
|
/// [`Span::append`] is slightly more efficient if the spans are known to be in order.
|
|
pub fn merge(self, other: Self) -> Self {
|
|
Self {
|
|
start: usize::min(self.start, other.start),
|
|
end: usize::max(self.end, other.end),
|
|
}
|
|
}
|
|
|
|
/// Returns the minimal [`Span`] that encompasses all of the spans in the given slice.
|
|
///
|
|
/// The spans are assumed to be in order, that is, all consecutive spans must satisfy:
|
|
/// - `spans[i].start <= spans[i + 1].start`
|
|
/// - `spans[i].end <= spans[i + 1].end`
|
|
///
|
|
/// (Two consecutive spans can overlap as long as the above is true.)
|
|
///
|
|
/// Use [`Span::merge_many`] if the spans are not known to be in order.
|
|
pub fn concat(spans: &[Self]) -> Self {
|
|
// TODO: enable assert below
|
|
// debug_assert!(!spans.is_empty());
|
|
debug_assert!(spans.windows(2).all(|spans| {
|
|
let &[a, b] = spans else {
|
|
return false;
|
|
};
|
|
a.start <= b.start && a.end <= b.end
|
|
}));
|
|
Self {
|
|
start: spans.first().map(|s| s.start).unwrap_or(0),
|
|
end: spans.last().map(|s| s.end).unwrap_or(0),
|
|
}
|
|
}
|
|
|
|
/// Returns the minimal [`Span`] that encompasses all of the spans in the given iterator.
|
|
///
|
|
/// The spans need not be in order or have any relationship.
|
|
///
|
|
/// [`Span::concat`] is more efficient if the spans are known to be in order.
|
|
pub fn merge_many(spans: impl IntoIterator<Item = Self>) -> Self {
|
|
spans
|
|
.into_iter()
|
|
.reduce(Self::merge)
|
|
.unwrap_or(Self::unknown())
|
|
}
|
|
}
|
|
|
|
impl From<Span> for SourceSpan {
|
|
fn from(s: Span) -> Self {
|
|
Self::new(s.start.into(), s.end - s.start)
|
|
}
|
|
}
|
|
|
|
/// An extension trait for `Result`, which adds a span to the error type.
|
|
pub trait ErrSpan {
|
|
type Result;
|
|
|
|
/// Add the given span to the error type `E`, turning it into a `Spanned<E>`.
|
|
///
|
|
/// Some auto-conversion methods to `ShellError` from other error types are available on spanned
|
|
/// errors, to give users better information about where an error came from. For example, it is
|
|
/// preferred when working with `std::io::Error`:
|
|
///
|
|
/// ```no_run
|
|
/// use nu_protocol::{ErrSpan, ShellError, Span};
|
|
/// use std::io::Read;
|
|
///
|
|
/// fn read_from(mut reader: impl Read, span: Span) -> Result<Vec<u8>, ShellError> {
|
|
/// let mut vec = vec![];
|
|
/// reader.read_to_end(&mut vec).err_span(span)?;
|
|
/// Ok(vec)
|
|
/// }
|
|
/// ```
|
|
fn err_span(self, span: Span) -> Self::Result;
|
|
}
|
|
|
|
impl<T, E> ErrSpan for Result<T, E> {
|
|
type Result = Result<T, Spanned<E>>;
|
|
|
|
fn err_span(self, span: Span) -> Self::Result {
|
|
self.map_err(|err| err.into_spanned(span))
|
|
}
|
|
}
|