nushell/crates/nu-command/src/dataframe/open.rs
Fernando Herrera 1fd26727c5
Batch of dataframe commands (#442)
* corrected missing shellerror type

* batch dataframe commands

* removed option to find declaration with input

* ordered dataframe folders
2021-12-06 17:09:49 +13:00

218 lines
6.5 KiB
Rust

use super::values::NuDataFrame;
use nu_engine::CallExt;
use nu_protocol::{
ast::Call,
engine::{Command, EngineState, Stack},
Category, Example, PipelineData, ShellError, Signature, Spanned, SyntaxShape,
};
use std::{fs::File, path::PathBuf};
use polars::prelude::{CsvEncoding, CsvReader, JsonReader, ParquetReader, SerReader};
#[derive(Clone)]
pub struct OpenDataFrame;
impl Command for OpenDataFrame {
fn name(&self) -> &str {
"open-df"
}
fn usage(&self) -> &str {
"Opens csv, json or parquet file to create dataframe"
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.required(
"file",
SyntaxShape::Filepath,
"file path to load values from",
)
.named(
"delimiter",
SyntaxShape::String,
"file delimiter character. CSV file",
Some('d'),
)
.switch(
"no-header",
"Indicates if file doesn't have header. CSV file",
None,
)
.named(
"infer-schema",
SyntaxShape::Number,
"Number of rows to infer the schema of the file. CSV file",
None,
)
.named(
"skip-rows",
SyntaxShape::Number,
"Number of rows to skip from file. CSV file",
None,
)
.named(
"columns",
SyntaxShape::List(Box::new(SyntaxShape::String)),
"Columns to be selected from csv file. CSV and Parquet file",
None,
)
.category(Category::Custom("dataframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![Example {
description: "Takes a file name and creates a dataframe",
example: "open-df test.csv",
result: None,
}]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
_input: PipelineData,
) -> Result<PipelineData, ShellError> {
command(engine_state, stack, call)
}
}
fn command(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
) -> Result<PipelineData, ShellError> {
let span = call.head;
let file: Spanned<PathBuf> = call.req(engine_state, stack, 0)?;
match file.item.extension() {
Some(e) => match e.to_str() {
Some("csv") => from_csv(engine_state, stack, call),
Some("parquet") => from_parquet(engine_state, stack, call),
Some("json") => from_json(engine_state, stack, call),
_ => Err(ShellError::FileNotFoundCustom(
"Not a csv, parquet or json file".into(),
file.span,
)),
},
None => Err(ShellError::FileNotFoundCustom(
"File without extension".into(),
file.span,
)),
}
.map(|df| PipelineData::Value(NuDataFrame::dataframe_into_value(df, span), None))
}
fn from_parquet(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
) -> Result<polars::prelude::DataFrame, ShellError> {
let file: Spanned<PathBuf> = call.req(engine_state, stack, 0)?;
let columns: Option<Vec<String>> = call.get_flag(engine_state, stack, "columns")?;
let r = File::open(&file.item).map_err(|e| {
ShellError::SpannedLabeledError("Error opening file".into(), e.to_string(), file.span)
})?;
let reader = ParquetReader::new(r);
let reader = match columns {
None => reader,
Some(columns) => reader.with_columns(Some(columns)),
};
reader.finish().map_err(|e| {
ShellError::SpannedLabeledError(
"Parquet reader error".into(),
format!("{:?}", e),
call.head,
)
})
}
fn from_json(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
) -> Result<polars::prelude::DataFrame, ShellError> {
let file: Spanned<PathBuf> = call.req(engine_state, stack, 0)?;
let r = File::open(&file.item).map_err(|e| {
ShellError::SpannedLabeledError("Error opening file".into(), e.to_string(), file.span)
})?;
let reader = JsonReader::new(r);
reader.finish().map_err(|e| {
ShellError::SpannedLabeledError("Json reader error".into(), format!("{:?}", e), call.head)
})
}
fn from_csv(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
) -> Result<polars::prelude::DataFrame, ShellError> {
let file: Spanned<PathBuf> = call.req(engine_state, stack, 0)?;
let delimiter: Option<Spanned<String>> = call.get_flag(engine_state, stack, "delimiter")?;
let no_header: bool = call.has_flag("no_header");
let infer_schema: Option<usize> = call.get_flag(engine_state, stack, "infer_schema")?;
let skip_rows: Option<usize> = call.get_flag(engine_state, stack, "skip_rows")?;
let columns: Option<Vec<String>> = call.get_flag(engine_state, stack, "columns")?;
let csv_reader = CsvReader::from_path(&file.item)
.map_err(|e| {
ShellError::SpannedLabeledError(
"Error creating CSV reader".into(),
e.to_string(),
file.span,
)
})?
.with_encoding(CsvEncoding::LossyUtf8);
let csv_reader = match delimiter {
None => csv_reader,
Some(d) => {
if d.item.len() != 1 {
return Err(ShellError::SpannedLabeledError(
"Incorrect delimiter".into(),
"Delimiter has to be one character".into(),
d.span,
));
} else {
let delimiter = match d.item.chars().next() {
Some(d) => d as u8,
None => unreachable!(),
};
csv_reader.with_delimiter(delimiter)
}
}
};
let csv_reader = csv_reader.has_header(!no_header);
let csv_reader = match infer_schema {
None => csv_reader,
Some(r) => csv_reader.infer_schema(Some(r)),
};
let csv_reader = match skip_rows {
None => csv_reader,
Some(r) => csv_reader.with_skip_rows(r),
};
let csv_reader = match columns {
None => csv_reader,
Some(columns) => csv_reader.with_columns(Some(columns)),
};
csv_reader.finish().map_err(|e| {
ShellError::SpannedLabeledError(
"Parquet reader error".into(),
format!("{:?}", e),
call.head,
)
})
}