nushell/src/parser.rs
2021-07-08 18:19:38 +12:00

1386 lines
43 KiB
Rust

use std::ops::{Index, IndexMut};
use crate::{
lex, lite_parse,
parser_state::{Type, VarId},
DeclId, LiteBlock, ParseError, ParserWorkingSet, Signature, Span,
};
/// The syntactic shapes that values must match to be passed into a command. You can think of this as the type-checking that occurs when you call a function.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum SyntaxShape {
/// A specific match to a word or symbol
Literal(Vec<u8>),
/// Any syntactic form is allowed
Any,
/// Strings and string-like bare words are allowed
String,
/// A dotted path to navigate the table
ColumnPath,
/// A dotted path to navigate the table (including variable)
FullColumnPath,
/// Only a numeric (integer or decimal) value is allowed
Number,
/// A range is allowed (eg, `1..3`)
Range,
/// Only an integer value is allowed
Int,
/// A filepath is allowed
FilePath,
/// A glob pattern is allowed, eg `foo*`
GlobPattern,
/// A block is allowed, eg `{start this thing}`
Block,
/// A table is allowed, eg `[first second]`
Table,
/// A filesize value is allowed, eg `10kb`
Filesize,
/// A duration value is allowed, eg `19day`
Duration,
/// An operator
Operator,
/// A math expression which expands shorthand forms on the lefthand side, eg `foo > 1`
/// The shorthand allows us to more easily reach columns inside of the row being passed in
RowCondition,
/// A general math expression, eg `1 + 2`
MathExpression,
/// A variable name
Variable,
/// A general expression, eg `1 + 2` or `foo --bar`
Expression,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Operator {
Equal,
NotEqual,
LessThan,
GreaterThan,
LessThanOrEqual,
GreaterThanOrEqual,
Contains,
NotContains,
Plus,
Minus,
Multiply,
Divide,
In,
NotIn,
Modulo,
And,
Or,
Pow,
}
#[derive(Debug, Clone)]
pub struct Call {
/// identifier of the declaration to call
pub decl_id: DeclId,
pub positional: Vec<Expression>,
pub named: Vec<(String, Option<Expression>)>,
}
impl Default for Call {
fn default() -> Self {
Self::new()
}
}
impl Call {
pub fn new() -> Call {
Self {
decl_id: 0,
positional: vec![],
named: vec![],
}
}
}
#[derive(Debug, Clone)]
pub enum Expr {
Int(i64),
Var(VarId),
Call(Box<Call>),
Operator(Operator),
BinaryOp(Box<Expression>, Box<Expression>, Box<Expression>), //lhs, op, rhs
Subexpression(Box<Block>),
Block(Box<Block>),
List(Vec<Expression>),
Table(Vec<Expression>, Vec<Vec<Expression>>),
Literal(Vec<u8>),
String(String), // FIXME: improve this in the future?
Garbage,
}
#[derive(Debug, Clone)]
pub struct Expression {
expr: Expr,
span: Span,
}
impl Expression {
pub fn garbage(span: Span) -> Expression {
Expression {
expr: Expr::Garbage,
span,
//ty: Type::Unknown,
}
}
pub fn precedence(&self) -> usize {
match &self.expr {
Expr::Operator(operator) => {
// Higher precedence binds tighter
match operator {
Operator::Pow => 100,
Operator::Multiply | Operator::Divide | Operator::Modulo => 95,
Operator::Plus | Operator::Minus => 90,
Operator::NotContains
| Operator::Contains
| Operator::LessThan
| Operator::LessThanOrEqual
| Operator::GreaterThan
| Operator::GreaterThanOrEqual
| Operator::Equal
| Operator::NotEqual
| Operator::In
| Operator::NotIn => 80,
Operator::And => 50,
Operator::Or => 40, // TODO: should we have And and Or be different precedence?
}
}
_ => 0,
}
}
}
#[derive(Debug, Clone)]
pub enum Import {}
#[derive(Debug, Clone)]
pub struct Block {
pub stmts: Vec<Statement>,
}
impl Block {
pub fn len(&self) -> usize {
self.stmts.len()
}
pub fn is_empty(&self) -> bool {
self.stmts.is_empty()
}
}
impl Index<usize> for Block {
type Output = Statement;
fn index(&self, index: usize) -> &Self::Output {
&self.stmts[index]
}
}
impl IndexMut<usize> for Block {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.stmts[index]
}
}
impl Default for Block {
fn default() -> Self {
Self::new()
}
}
impl Block {
pub fn new() -> Self {
Self { stmts: vec![] }
}
}
#[derive(Debug, Clone)]
pub struct VarDecl {
var_id: VarId,
expression: Expression,
}
#[derive(Debug, Clone)]
pub enum Statement {
Pipeline(Pipeline),
VarDecl(VarDecl),
Import(Import),
Expression(Expression),
None,
}
#[derive(Debug, Clone)]
pub struct Pipeline {}
impl Default for Pipeline {
fn default() -> Self {
Self::new()
}
}
impl Pipeline {
pub fn new() -> Self {
Self {}
}
}
fn garbage(span: Span) -> Expression {
Expression::garbage(span)
}
fn is_identifier_byte(b: u8) -> bool {
b != b'.' && b != b'[' && b != b'(' && b != b'{'
}
fn is_identifier(bytes: &[u8]) -> bool {
bytes.iter().all(|x| is_identifier_byte(*x))
}
fn is_variable(bytes: &[u8]) -> bool {
if bytes.len() > 1 && bytes[0] == b'$' {
is_identifier(&bytes[1..])
} else {
is_identifier(bytes)
}
}
fn check_call(command: Span, sig: &Signature, call: &Call) -> Option<ParseError> {
if call.positional.len() < sig.required_positional.len() {
let missing = &sig.required_positional[call.positional.len()];
Some(ParseError::MissingPositional(missing.name.clone(), command))
} else {
for req_flag in sig.named.iter().filter(|x| x.required) {
if call.named.iter().all(|(n, _)| n != &req_flag.long) {
return Some(ParseError::MissingRequiredFlag(
req_flag.long.clone(),
command,
));
}
}
None
}
}
fn span(spans: &[Span]) -> Span {
let length = spans.len();
if length == 0 {
Span::unknown()
} else if length == 1 {
spans[0]
} else {
Span {
start: spans[0].start,
end: spans[length - 1].end,
}
}
}
impl ParserWorkingSet {
pub fn parse_external_call(&mut self, spans: &[Span]) -> (Expression, Option<ParseError>) {
// TODO: add external parsing
(Expression::garbage(spans[0]), None)
}
pub fn parse_internal_call(
&mut self,
spans: &[Span],
decl_id: usize,
) -> (Box<Call>, Span, Option<ParseError>) {
let mut error = None;
let mut call = Call::new();
call.decl_id = decl_id;
let sig = self
.get_decl(decl_id)
.expect("internal error: bad DeclId")
.clone();
let mut positional_idx = 0;
let mut arg_offset = 1;
while arg_offset < spans.len() {
let arg_span = spans[arg_offset];
let arg_contents = self.get_span_contents(arg_span);
if arg_contents.starts_with(&[b'-', b'-']) {
// FIXME: only use the first you find
let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect();
let long_name = String::from_utf8(split[0].into());
if let Ok(long_name) = long_name {
if let Some(flag) = sig.get_long_flag(&long_name) {
if let Some(arg_shape) = &flag.arg {
if split.len() > 1 {
// and we also have the argument
let mut span = arg_span;
span.start += long_name.len() + 1; //offset by long flag and '='
let (arg, err) = self.parse_arg(span, arg_shape.clone());
error = error.or(err);
call.named.push((long_name, Some(arg)));
} else if let Some(arg) = spans.get(arg_offset + 1) {
let (arg, err) = self.parse_arg(*arg, arg_shape.clone());
error = error.or(err);
call.named.push((long_name, Some(arg)));
arg_offset += 1;
} else {
error = error.or(Some(ParseError::MissingFlagParam(arg_span)))
}
}
} else {
error = error.or(Some(ParseError::UnknownFlag(arg_span)))
}
} else {
error = error.or(Some(ParseError::NonUtf8(arg_span)))
}
} else if arg_contents.starts_with(&[b'-']) && arg_contents.len() > 1 {
let short_flags = &arg_contents[1..];
let mut found_short_flags = vec![];
let mut unmatched_short_flags = vec![];
for short_flag in short_flags.iter().enumerate() {
let short_flag_char = char::from(*short_flag.1);
let orig = arg_span;
let short_flag_span = Span {
start: orig.start + 1 + short_flag.0,
end: orig.start + 1 + short_flag.0 + 1,
};
if let Some(flag) = sig.get_short_flag(short_flag_char) {
// If we require an arg and are in a batch of short flags, error
if !found_short_flags.is_empty() && flag.arg.is_some() {
error = error
.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span)))
}
found_short_flags.push(flag);
} else {
unmatched_short_flags.push(short_flag_span);
}
}
if found_short_flags.is_empty() {
// check to see if we have a negative number
if let Some(positional) = sig.get_positional(positional_idx) {
if positional.shape == SyntaxShape::Int
|| positional.shape == SyntaxShape::Number
{
let (arg, err) = self.parse_arg(arg_span, positional.shape);
if err.is_some() {
if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
} else {
// We have successfully found a positional argument, move on
call.positional.push(arg);
positional_idx += 1;
}
} else if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
} else if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
} else if !unmatched_short_flags.is_empty() {
if let Some(first) = unmatched_short_flags.first() {
error = error.or(Some(ParseError::UnknownFlag(*first)));
}
}
for flag in found_short_flags {
if let Some(arg_shape) = flag.arg {
if let Some(arg) = spans.get(arg_offset + 1) {
let (arg, err) = self.parse_arg(*arg, arg_shape.clone());
error = error.or(err);
call.named.push((flag.long.clone(), Some(arg)));
arg_offset += 1;
} else {
error = error.or(Some(ParseError::MissingFlagParam(arg_span)))
}
} else {
call.named.push((flag.long.clone(), None));
}
}
} else if let Some(positional) = sig.get_positional(positional_idx) {
match positional.shape {
SyntaxShape::RowCondition => {
let remainder = sig.num_positionals() - positional_idx;
if spans.len() < remainder {
error = error.or_else(|| {
Some(ParseError::MissingPositional(
"required args".into(),
arg_span,
))
});
} else {
let (arg, err) = self.parse_row_condition(
&spans[arg_offset..(spans.len() - remainder + 1)],
);
error = error.or(err);
call.positional.push(arg);
arg_offset = spans.len() - remainder;
}
}
SyntaxShape::Expression => {
let remainder = sig.num_positionals() - positional_idx;
if spans.len() < remainder {
error = error.or_else(|| {
Some(ParseError::MissingPositional(
"required args".into(),
arg_span,
))
});
} else {
let (arg, err) = self.parse_expression(
&spans[arg_offset..(spans.len() - remainder + 1)],
);
error = error.or(err);
call.positional.push(arg);
arg_offset = spans.len() - remainder;
}
}
SyntaxShape::Literal(literal) => {
if arg_contents != literal {
// When keywords mismatch, this is a strong indicator of something going wrong.
// We won't often override the current error, but as this is a strong indicator
// go ahead and override the current error and tell the user about the missing
// keyword/literal.
error = Some(ParseError::Mismatch(
String::from_utf8_lossy(&literal).into(),
arg_span,
))
}
call.positional.push(Expression {
expr: Expr::Literal(literal),
span: arg_span,
});
}
_ => {
let (arg, err) = self.parse_arg(arg_span, positional.shape);
error = error.or(err);
call.positional.push(arg);
}
}
positional_idx += 1;
} else {
error = error.or(Some(ParseError::ExtraPositional(arg_span)))
}
arg_offset += 1;
}
let err = check_call(spans[0], &sig, &call);
error = error.or(err);
// FIXME: type unknown
(Box::new(call), span(spans), error)
}
pub fn parse_call(&mut self, spans: &[Span]) -> (Expression, Option<ParseError>) {
// assume spans.len() > 0?
let name = self.get_span_contents(spans[0]);
if let Some(decl_id) = self.find_decl(name) {
let (call, span, err) = self.parse_internal_call(spans, decl_id);
(
Expression {
expr: Expr::Call(call),
span,
},
err,
)
} else {
self.parse_external_call(spans)
}
}
pub fn parse_int(&mut self, token: &str, span: Span) -> (Expression, Option<ParseError>) {
if let Some(token) = token.strip_prefix("0x") {
if let Ok(v) = i64::from_str_radix(token, 16) {
(
Expression {
expr: Expr::Int(v),
span,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch("int".into(), span)),
)
}
} else if let Some(token) = token.strip_prefix("0b") {
if let Ok(v) = i64::from_str_radix(token, 2) {
(
Expression {
expr: Expr::Int(v),
span,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch("int".into(), span)),
)
}
} else if let Some(token) = token.strip_prefix("0o") {
if let Ok(v) = i64::from_str_radix(token, 8) {
(
Expression {
expr: Expr::Int(v),
span,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch("int".into(), span)),
)
}
} else if let Ok(x) = token.parse::<i64>() {
(
Expression {
expr: Expr::Int(x),
span,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch("int".into(), span)),
)
}
}
pub fn parse_number(&mut self, token: &str, span: Span) -> (Expression, Option<ParseError>) {
if let (x, None) = self.parse_int(token, span) {
(x, None)
} else {
(
garbage(span),
Some(ParseError::Mismatch("number".into(), span)),
)
}
}
pub fn parse_dollar_expr(&mut self, span: Span) -> (Expression, Option<ParseError>) {
let bytes = self.get_span_contents(span);
if let Some(var_id) = self.find_variable(bytes) {
(
Expression {
expr: Expr::Var(var_id),
span,
},
None,
)
} else {
(garbage(span), Some(ParseError::VariableNotFound(span)))
}
}
pub fn parse_variable_expr(&mut self, span: Span) -> (Expression, Option<ParseError>) {
let (id, err) = self.parse_variable(span);
if err.is_none() {
if let Some(id) = id {
(
Expression {
expr: Expr::Var(id),
span,
},
None,
)
} else {
let name = self.get_span_contents(span).to_vec();
// this seems okay to set it to unknown here, but we should double-check
let id = self.add_variable(name, Type::Unknown);
(
Expression {
expr: Expr::Var(id),
span,
},
None,
)
}
} else {
(garbage(span), err)
}
}
pub fn parse_full_column_path(&mut self, span: Span) -> (Expression, Option<ParseError>) {
// FIXME: assume for now a paren expr, but needs more
let bytes = self.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"(") {
start += 1;
}
if bytes.ends_with(b")") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
")".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = self.get_span_contents(span);
let (output, err) = lex(&source, start, crate::LexMode::Normal);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = self.parse_block(&output);
error = error.or(err);
(
Expression {
expr: Expr::Subexpression(Box::new(output)),
span,
},
error,
)
}
pub fn parse_string(&mut self, span: Span) -> (Expression, Option<ParseError>) {
let bytes = self.get_span_contents(span);
if let Ok(token) = String::from_utf8(bytes.into()) {
(
Expression {
expr: Expr::String(token),
span,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch("string".into(), span)),
)
}
}
pub fn parse_row_condition(&mut self, spans: &[Span]) -> (Expression, Option<ParseError>) {
self.parse_math_expression(spans)
}
pub fn parse_table_expression(&mut self, span: Span) -> (Expression, Option<ParseError>) {
let bytes = self.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"[") {
start += 1;
}
if bytes.ends_with(b"]") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
"]".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = &self.file_contents[..end];
let (output, err) = lex(&source, start, crate::LexMode::CommaAndNewlineIsSpace);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
match output.block.len() {
0 => (
Expression {
expr: Expr::List(vec![]),
span,
},
None,
),
1 => {
// List
let mut args = vec![];
for arg in &output.block[0].commands {
for part in &arg.parts {
let (arg, err) = self.parse_arg(*part, SyntaxShape::Any);
error = error.or(err);
args.push(arg);
}
}
(
Expression {
expr: Expr::List(args),
span,
},
error,
)
}
_ => {
let mut table_headers = vec![];
let (headers, err) =
self.parse_arg(output.block[0].commands[0].parts[0], SyntaxShape::Table);
error = error.or(err);
if let Expression {
expr: Expr::List(headers),
..
} = headers
{
table_headers = headers;
}
let mut rows = vec![];
for part in &output.block[1].commands[0].parts {
let (values, err) = self.parse_arg(*part, SyntaxShape::Table);
error = error.or(err);
if let Expression {
expr: Expr::List(values),
..
} = values
{
rows.push(values);
}
}
(
Expression {
expr: Expr::Table(table_headers, rows),
span,
},
error,
)
}
}
}
pub fn parse_block_expression(&mut self, span: Span) -> (Expression, Option<ParseError>) {
let bytes = self.get_span_contents(span);
let mut error = None;
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"{") {
start += 1;
} else {
return (
garbage(span),
Some(ParseError::Mismatch("block".into(), span)),
);
}
if bytes.ends_with(b"}") {
end -= 1;
} else {
error = error.or_else(|| {
Some(ParseError::Unclosed(
"}".into(),
Span {
start: end,
end: end + 1,
},
))
});
}
let span = Span { start, end };
let source = &self.file_contents[..end];
let (output, err) = lex(&source, start, crate::LexMode::Normal);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = self.parse_block(&output);
error = error.or(err);
println!("{:?} {:?}", output, error);
(
Expression {
expr: Expr::Block(Box::new(output)),
span,
},
error,
)
}
pub fn parse_arg(
&mut self,
span: Span,
shape: SyntaxShape,
) -> (Expression, Option<ParseError>) {
let bytes = self.get_span_contents(span);
if shape == SyntaxShape::Variable {
return self.parse_variable_expr(span);
} else if bytes.starts_with(b"$") {
return self.parse_dollar_expr(span);
} else if bytes.starts_with(b"(") {
return self.parse_full_column_path(span);
} else if bytes.starts_with(b"{") {
if shape != SyntaxShape::Block && shape != SyntaxShape::Any {
// FIXME: need better errors
return (
garbage(span),
Some(ParseError::Mismatch("not a block".into(), span)),
);
}
return self.parse_block_expression(span);
} else if bytes.starts_with(b"[") {
if shape != SyntaxShape::Table && shape != SyntaxShape::Any {
// FIXME: need better errors
return (
garbage(span),
Some(ParseError::Mismatch("not a table".into(), span)),
);
}
return self.parse_table_expression(span);
}
match shape {
SyntaxShape::Number => {
if let Ok(token) = String::from_utf8(bytes.into()) {
self.parse_number(&token, span)
} else {
(
garbage(span),
Some(ParseError::Mismatch("number".into(), span)),
)
}
}
SyntaxShape::Int => {
if let Ok(token) = String::from_utf8(bytes.into()) {
self.parse_int(&token, span)
} else {
(
garbage(span),
Some(ParseError::Mismatch("int".into(), span)),
)
}
}
SyntaxShape::Literal(literal) => {
if bytes == literal {
(
Expression {
expr: Expr::Literal(literal),
span,
},
None,
)
} else {
(
garbage(span),
Some(ParseError::Mismatch(
format!("keyword '{}'", String::from_utf8_lossy(&literal)),
span,
)),
)
}
}
SyntaxShape::String | SyntaxShape::GlobPattern | SyntaxShape::FilePath => {
self.parse_string(span)
}
SyntaxShape::Block => self.parse_block_expression(span),
SyntaxShape::Any => {
let shapes = vec![
SyntaxShape::Int,
SyntaxShape::Number,
SyntaxShape::Range,
SyntaxShape::Filesize,
SyntaxShape::Duration,
SyntaxShape::Block,
SyntaxShape::Table,
SyntaxShape::String,
];
for shape in shapes.iter() {
if let (s, None) = self.parse_arg(span, shape.clone()) {
return (s, None);
}
}
(
garbage(span),
Some(ParseError::Mismatch("any shape".into(), span)),
)
}
_ => (
garbage(span),
Some(ParseError::Mismatch("incomplete parser".into(), span)),
),
}
}
pub fn parse_operator(&mut self, span: Span) -> (Expression, Option<ParseError>) {
let contents = self.get_span_contents(span);
let operator = match contents {
b"==" => Operator::Equal,
b"!=" => Operator::NotEqual,
b"<" => Operator::LessThan,
b"<=" => Operator::LessThanOrEqual,
b">" => Operator::GreaterThan,
b">=" => Operator::GreaterThanOrEqual,
b"=~" => Operator::Contains,
b"!~" => Operator::NotContains,
b"+" => Operator::Plus,
b"-" => Operator::Minus,
b"*" => Operator::Multiply,
b"/" => Operator::Divide,
b"in" => Operator::In,
b"not-in" => Operator::NotIn,
b"mod" => Operator::Modulo,
b"&&" => Operator::And,
b"||" => Operator::Or,
b"**" => Operator::Pow,
_ => {
return (
garbage(span),
Some(ParseError::Mismatch("operator".into(), span)),
);
}
};
(
Expression {
expr: Expr::Operator(operator),
span,
},
None,
)
}
pub fn parse_math_expression(&mut self, spans: &[Span]) -> (Expression, Option<ParseError>) {
// As the expr_stack grows, we increase the required precedence to grow larger
// If, at any time, the operator we're looking at is the same or lower precedence
// of what is in the expression stack, we collapse the expression stack.
//
// This leads to an expression stack that grows under increasing precedence and collapses
// under decreasing/sustained precedence
//
// The end result is a stack that we can fold into binary operations as right associations
// safely.
let mut expr_stack: Vec<Expression> = vec![];
let mut idx = 0;
let mut last_prec = 1000000;
let mut error = None;
let (lhs, err) = self.parse_arg(spans[0], SyntaxShape::Any);
error = error.or(err);
idx += 1;
expr_stack.push(lhs);
while idx < spans.len() {
let (op, err) = self.parse_operator(spans[idx]);
error = error.or(err);
let op_prec = op.precedence();
idx += 1;
if idx == spans.len() {
// Handle broken math expr `1 +` etc
error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1])));
break;
}
let (rhs, err) = self.parse_arg(spans[idx], SyntaxShape::Any);
error = error.or(err);
if op_prec <= last_prec {
while expr_stack.len() > 1 {
// Collapse the right associated operations first
// so that we can get back to a stack with a lower precedence
let rhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let op = expr_stack
.pop()
.expect("internal error: expression stack empty");
let lhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let op_span = span(&[lhs.span, rhs.span]);
expr_stack.push(Expression {
expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)),
span: op_span,
});
}
}
expr_stack.push(op);
expr_stack.push(rhs);
last_prec = op_prec;
idx += 1;
}
while expr_stack.len() != 1 {
let rhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let op = expr_stack
.pop()
.expect("internal error: expression stack empty");
let lhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let binary_op_span = span(&[lhs.span, rhs.span]);
expr_stack.push(Expression {
expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)),
span: binary_op_span,
});
}
let output = expr_stack
.pop()
.expect("internal error: expression stack empty");
(output, error)
}
pub fn parse_expression(&mut self, spans: &[Span]) -> (Expression, Option<ParseError>) {
let bytes = self.get_span_contents(spans[0]);
match bytes[0] {
b'0' | b'1' | b'2' | b'3' | b'4' | b'5' | b'6' | b'7' | b'8' | b'9' | b'(' | b'{'
| b'[' | b'$' => self.parse_math_expression(spans),
_ => self.parse_call(spans),
}
}
pub fn parse_variable(&mut self, span: Span) -> (Option<VarId>, Option<ParseError>) {
let bytes = self.get_span_contents(span);
if is_variable(bytes) {
if let Some(var_id) = self.find_variable(bytes) {
(Some(var_id), None)
} else {
(None, None)
}
} else {
(None, Some(ParseError::Mismatch("variable".into(), span)))
}
}
pub fn parse_keyword(&self, span: Span, keyword: &[u8]) -> Option<ParseError> {
if self.get_span_contents(span) == keyword {
None
} else {
Some(ParseError::Mismatch(
String::from_utf8_lossy(keyword).to_string(),
span,
))
}
}
pub fn parse_let(&mut self, spans: &[Span]) -> (Statement, Option<ParseError>) {
if let Some(decl_id) = self.find_decl(b"let") {
let (call, call_span, err) = self.parse_internal_call(spans, decl_id);
if err.is_some() {
return (
Statement::Expression(Expression {
expr: Expr::Call(call),
span: call_span,
}),
err,
);
} else if let Expression {
expr: Expr::Var(var_id),
..
} = &call.positional[0]
{
return (
Statement::VarDecl(VarDecl {
var_id: *var_id,
expression: call.positional[2].clone(),
}),
None,
);
}
}
(
Statement::Expression(Expression {
expr: Expr::Garbage,
span: span(spans),
}),
Some(ParseError::UnknownState(
"internal error: let statement unparseable".into(),
span(spans),
)),
)
/*
let mut error = None;
if spans.len() >= 4 && self.parse_keyword(spans[0], b"let").is_none() {
let (_, err) = self.parse_variable(spans[1]);
error = error.or(err);
let err = self.parse_keyword(spans[2], b"=");
error = error.or(err);
let (expression, err) = self.parse_expression(&spans[3..]);
error = error.or(err);
let var_name: Vec<_> = self.get_span_contents(spans[1]).into();
let var_id = self.add_variable(var_name, Type::Unknown);
(Statement::VarDecl(VarDecl { var_id, expression }), error)
} else {
let span = span(spans);
(
Statement::Expression(garbage(span)),
Some(ParseError::Mismatch("let".into(), span)),
)
}
*/
}
pub fn parse_statement(&mut self, spans: &[Span]) -> (Statement, Option<ParseError>) {
if let (stmt, None) = self.parse_let(spans) {
(stmt, None)
} else {
let (expr, err) = self.parse_expression(spans);
(Statement::Expression(expr), err)
}
}
pub fn parse_block(&mut self, lite_block: &LiteBlock) -> (Block, Option<ParseError>) {
let mut error = None;
self.enter_scope();
let mut block = Block::new();
for pipeline in &lite_block.block {
let (stmt, err) = self.parse_statement(&pipeline.commands[0].parts);
error = error.or(err);
block.stmts.push(stmt);
}
self.exit_scope();
(block, error)
}
pub fn parse_file(&mut self, fname: &str, contents: Vec<u8>) -> (Block, Option<ParseError>) {
let mut error = None;
let (output, err) = lex(&contents, 0, crate::LexMode::Normal);
error = error.or(err);
self.add_file(fname.into(), contents);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = self.parse_block(&output);
error = error.or(err);
(output, error)
}
pub fn parse_source(&mut self, source: &[u8]) -> (Block, Option<ParseError>) {
let mut error = None;
self.add_file("source".into(), source.into());
let (output, err) = lex(source, 0, crate::LexMode::Normal);
error = error.or(err);
let (output, err) = lite_parse(&output);
error = error.or(err);
let (output, err) = self.parse_block(&output);
error = error.or(err);
(output, error)
}
}
#[cfg(test)]
mod tests {
use crate::{ParseError, Signature};
use super::*;
#[test]
pub fn parse_int() {
let mut working_set = ParserWorkingSet::new(None);
let (block, err) = working_set.parse_source(b"3");
assert!(err.is_none());
assert!(block.len() == 1);
assert!(matches!(
block[0],
Statement::Expression(Expression {
expr: Expr::Int(3),
..
})
));
}
#[test]
pub fn parse_call() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j'));
working_set.add_decl((b"foo").to_vec(), sig);
let (block, err) = working_set.parse_source(b"foo");
assert!(err.is_none());
assert!(block.len() == 1);
match &block[0] {
Statement::Expression(Expression {
expr: Expr::Call(call),
..
}) => {
assert_eq!(call.decl_id, 0);
}
_ => panic!("not a call"),
}
}
#[test]
pub fn parse_call_missing_flag_arg() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j'));
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo --jazz");
assert!(matches!(err, Some(ParseError::MissingFlagParam(..))));
}
#[test]
pub fn parse_call_missing_short_flag_arg() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j'));
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo -j");
assert!(matches!(err, Some(ParseError::MissingFlagParam(..))));
}
#[test]
pub fn parse_call_too_many_shortflag_args() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo")
.named("--jazz", SyntaxShape::Int, "jazz!!", Some('j'))
.named("--math", SyntaxShape::Int, "math!!", Some('m'));
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo -mj");
assert!(matches!(
err,
Some(ParseError::ShortFlagBatchCantTakeArg(..))
));
}
#[test]
pub fn parse_call_unknown_shorthand() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j'));
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo -mj");
assert!(matches!(err, Some(ParseError::UnknownFlag(..))));
}
#[test]
pub fn parse_call_extra_positional() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j'));
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo -j 100");
assert!(matches!(err, Some(ParseError::ExtraPositional(..))));
}
#[test]
pub fn parse_call_missing_req_positional() {
let mut working_set = ParserWorkingSet::new(None);
let sig = Signature::build("foo").required("jazz", SyntaxShape::Int, "jazz!!");
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo");
assert!(matches!(err, Some(ParseError::MissingPositional(..))));
}
#[test]
pub fn parse_call_missing_req_flag() {
let mut working_set = ParserWorkingSet::new(None);
let sig =
Signature::build("foo").required_named("--jazz", SyntaxShape::Int, "jazz!!", None);
working_set.add_decl((b"foo").to_vec(), sig);
let (_, err) = working_set.parse_source(b"foo");
assert!(matches!(err, Some(ParseError::MissingRequiredFlag(..))));
}
}