use std::ops::{Index, IndexMut}; use crate::{ lex, lite_parse, parser_state::{Type, VarId}, signature::{Flag, PositionalArg}, BlockId, DeclId, Declaration, LiteBlock, ParseError, ParserWorkingSet, Signature, Span, Token, }; /// The syntactic shapes that values must match to be passed into a command. You can think of this as the type-checking that occurs when you call a function. #[derive(Debug, Clone, PartialEq, Eq)] pub enum SyntaxShape { /// A specific match to a word or symbol Keyword(Vec, Box), /// Any syntactic form is allowed Any, /// Strings and string-like bare words are allowed String, /// A dotted path to navigate the table ColumnPath, /// A dotted path to navigate the table (including variable) FullColumnPath, /// Only a numeric (integer or decimal) value is allowed Number, /// A range is allowed (eg, `1..3`) Range, /// Only an integer value is allowed Int, /// A filepath is allowed FilePath, /// A glob pattern is allowed, eg `foo*` GlobPattern, /// A block is allowed, eg `{start this thing}` Block, /// A table is allowed, eg `[[first, second]; [1, 2]]` Table, /// A table is allowed, eg `[first second]` List(Box), /// A filesize value is allowed, eg `10kb` Filesize, /// A duration value is allowed, eg `19day` Duration, /// An operator Operator, /// A math expression which expands shorthand forms on the lefthand side, eg `foo > 1` /// The shorthand allows us to more easily reach columns inside of the row being passed in RowCondition, /// A general math expression, eg `1 + 2` MathExpression, /// A variable name Variable, /// A variable with optional type, `x` or `x: int` VarWithOptType, /// A signature for a definition, `[x:int, --foo]` Signature, /// A general expression, eg `1 + 2` or `foo --bar` Expression, } impl SyntaxShape { pub fn to_type(&self) -> Type { match self { SyntaxShape::Any => Type::Unknown, SyntaxShape::Block => Type::Block, SyntaxShape::ColumnPath => Type::Unknown, SyntaxShape::Duration => Type::Duration, SyntaxShape::Expression => Type::Unknown, SyntaxShape::FilePath => Type::FilePath, SyntaxShape::Filesize => Type::Filesize, SyntaxShape::FullColumnPath => Type::Unknown, SyntaxShape::GlobPattern => Type::String, SyntaxShape::Int => Type::Int, SyntaxShape::List(x) => { let contents = x.to_type(); Type::List(Box::new(contents)) } SyntaxShape::Keyword(_, expr) => expr.to_type(), SyntaxShape::MathExpression => Type::Unknown, SyntaxShape::Number => Type::Number, SyntaxShape::Operator => Type::Unknown, SyntaxShape::Range => Type::Unknown, SyntaxShape::RowCondition => Type::Bool, SyntaxShape::Signature => Type::Unknown, SyntaxShape::String => Type::String, SyntaxShape::Table => Type::Table, SyntaxShape::VarWithOptType => Type::Unknown, SyntaxShape::Variable => Type::Unknown, } } } #[derive(Debug, Clone, PartialEq, Eq)] pub enum Operator { Equal, NotEqual, LessThan, GreaterThan, LessThanOrEqual, GreaterThanOrEqual, Contains, NotContains, Plus, Minus, Multiply, Divide, In, NotIn, Modulo, And, Or, Pow, } #[derive(Debug, Clone)] pub struct Call { /// identifier of the declaration to call pub decl_id: DeclId, pub head: Span, pub positional: Vec, pub named: Vec<(String, Option)>, } impl Default for Call { fn default() -> Self { Self::new() } } impl Call { pub fn new() -> Call { Self { decl_id: 0, head: Span::unknown(), positional: vec![], named: vec![], } } } #[derive(Debug, Clone)] pub enum Expr { Bool(bool), Int(i64), Var(VarId), Call(Box), ExternalCall(Vec, Vec>), Operator(Operator), BinaryOp(Box, Box, Box), //lhs, op, rhs Subexpression(BlockId), Block(BlockId), List(Vec), Table(Vec, Vec>), Keyword(Vec, Span, Box), String(String), // FIXME: improve this in the future? Signature(Box), Garbage, } #[derive(Debug, Clone)] pub struct Expression { pub expr: Expr, pub span: Span, pub ty: Type, } impl Expression { pub fn garbage(span: Span) -> Expression { Expression { expr: Expr::Garbage, span, ty: Type::Unknown, } } pub fn precedence(&self) -> usize { match &self.expr { Expr::Operator(operator) => { // Higher precedence binds tighter match operator { Operator::Pow => 100, Operator::Multiply | Operator::Divide | Operator::Modulo => 95, Operator::Plus | Operator::Minus => 90, Operator::NotContains | Operator::Contains | Operator::LessThan | Operator::LessThanOrEqual | Operator::GreaterThan | Operator::GreaterThanOrEqual | Operator::Equal | Operator::NotEqual | Operator::In | Operator::NotIn => 80, Operator::And => 50, Operator::Or => 40, // TODO: should we have And and Or be different precedence? } } _ => 0, } } pub fn as_block(&self) -> Option { match self.expr { Expr::Block(block_id) => Some(block_id), _ => None, } } pub fn as_signature(&self) -> Option> { match &self.expr { Expr::Signature(sig) => Some(sig.clone()), _ => None, } } pub fn as_list(&self) -> Option> { match &self.expr { Expr::List(list) => Some(list.clone()), _ => None, } } pub fn as_keyword(&self) -> Option<&Expression> { match &self.expr { Expr::Keyword(_, _, expr) => Some(expr), _ => None, } } pub fn as_var(&self) -> Option { match self.expr { Expr::Var(var_id) => Some(var_id), _ => None, } } pub fn as_string(&self) -> Option { match &self.expr { Expr::String(string) => Some(string.clone()), _ => None, } } } #[derive(Debug, Clone)] pub enum Import {} #[derive(Debug, Clone)] pub struct Block { pub stmts: Vec, } impl Block { pub fn len(&self) -> usize { self.stmts.len() } pub fn is_empty(&self) -> bool { self.stmts.is_empty() } } impl Index for Block { type Output = Statement; fn index(&self, index: usize) -> &Self::Output { &self.stmts[index] } } impl IndexMut for Block { fn index_mut(&mut self, index: usize) -> &mut Self::Output { &mut self.stmts[index] } } impl Default for Block { fn default() -> Self { Self::new() } } impl Block { pub fn new() -> Self { Self { stmts: vec![] } } } #[derive(Debug, Clone)] pub struct VarDecl { var_id: VarId, expression: Expression, } #[derive(Debug, Clone)] pub enum Statement { Declaration(DeclId), Pipeline(Pipeline), Expression(Expression), } #[derive(Debug, Clone)] pub struct Pipeline { pub expressions: Vec, } impl Default for Pipeline { fn default() -> Self { Self::new() } } impl Pipeline { pub fn new() -> Self { Self { expressions: vec![], } } } fn garbage(span: Span) -> Expression { Expression::garbage(span) } fn is_identifier_byte(b: u8) -> bool { b != b'.' && b != b'[' && b != b'(' && b != b'{' } fn is_identifier(bytes: &[u8]) -> bool { bytes.iter().all(|x| is_identifier_byte(*x)) } fn is_variable(bytes: &[u8]) -> bool { if bytes.len() > 1 && bytes[0] == b'$' { is_identifier(&bytes[1..]) } else { is_identifier(bytes) } } fn check_call(command: Span, sig: &Signature, call: &Call) -> Option { if call.positional.len() < sig.required_positional.len() { let missing = &sig.required_positional[call.positional.len()]; Some(ParseError::MissingPositional(missing.name.clone(), command)) } else { for req_flag in sig.named.iter().filter(|x| x.required) { if call.named.iter().all(|(n, _)| n != &req_flag.long) { return Some(ParseError::MissingRequiredFlag( req_flag.long.clone(), command, )); } } None } } fn span(spans: &[Span]) -> Span { let length = spans.len(); if length == 0 { Span::unknown() } else if length == 1 { spans[0] } else { Span { start: spans[0].start, end: spans[length - 1].end, } } } impl<'a> ParserWorkingSet<'a> { pub fn parse_external_call(&mut self, spans: &[Span]) -> (Expression, Option) { // TODO: add external parsing let mut args = vec![]; let name = self.get_span_contents(spans[0]).to_vec(); for span in &spans[1..] { args.push(self.get_span_contents(*span).to_vec()); } ( Expression { expr: Expr::ExternalCall(name, args), span: span(spans), ty: Type::Unknown, }, None, ) } fn parse_long_flag( &mut self, spans: &[Span], spans_idx: &mut usize, sig: &Signature, ) -> (Option, Option, Option) { let arg_span = spans[*spans_idx]; let arg_contents = self.get_span_contents(arg_span); if arg_contents.starts_with(b"--") { // FIXME: only use the first you find let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect(); let long_name = String::from_utf8(split[0].into()); if let Ok(long_name) = long_name { if let Some(flag) = sig.get_long_flag(&long_name) { if let Some(arg_shape) = &flag.arg { if split.len() > 1 { // and we also have the argument let mut span = arg_span; span.start += long_name.len() + 1; //offset by long flag and '=' let (arg, err) = self.parse_value(span, arg_shape); (Some(long_name), Some(arg), err) } else if let Some(arg) = spans.get(*spans_idx + 1) { let (arg, err) = self.parse_value(*arg, arg_shape); *spans_idx += 1; (Some(long_name), Some(arg), err) } else { ( Some(long_name), None, Some(ParseError::MissingFlagParam(arg_span)), ) } } else { // A flag with no argument (Some(long_name), None, None) } } else { ( Some(long_name), None, Some(ParseError::UnknownFlag(arg_span)), ) } } else { (Some("--".into()), None, Some(ParseError::NonUtf8(arg_span))) } } else { (None, None, None) } } fn parse_short_flags( &mut self, spans: &[Span], spans_idx: &mut usize, positional_idx: usize, sig: &Signature, ) -> (Option>, Option) { let mut error = None; let arg_span = spans[*spans_idx]; let arg_contents = self.get_span_contents(arg_span); if arg_contents.starts_with(b"-") && arg_contents.len() > 1 { let short_flags = &arg_contents[1..]; let mut found_short_flags = vec![]; let mut unmatched_short_flags = vec![]; for short_flag in short_flags.iter().enumerate() { let short_flag_char = char::from(*short_flag.1); let orig = arg_span; let short_flag_span = Span { start: orig.start + 1 + short_flag.0, end: orig.start + 1 + short_flag.0 + 1, }; if let Some(flag) = sig.get_short_flag(short_flag_char) { // If we require an arg and are in a batch of short flags, error if !found_short_flags.is_empty() && flag.arg.is_some() { error = error.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span))) } found_short_flags.push(flag); } else { unmatched_short_flags.push(short_flag_span); } } if found_short_flags.is_empty() { // check to see if we have a negative number if let Some(positional) = sig.get_positional(positional_idx) { if positional.shape == SyntaxShape::Int || positional.shape == SyntaxShape::Number { if String::from_utf8_lossy(arg_contents).parse::().is_ok() { return (None, None); } else if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } else if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } else if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } else if !unmatched_short_flags.is_empty() { if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } (Some(found_short_flags), error) } else { (None, None) } } fn calculate_end_span( &self, decl: &Declaration, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> usize { if decl.signature.rest_positional.is_some() { spans.len() } else { // println!("num_positionals: {}", decl.signature.num_positionals()); // println!("positional_idx: {}", positional_idx); // println!("spans.len(): {}", spans.len()); // println!("spans_idx: {}", spans_idx); // check to see if a keyword follows the current position. let mut next_keyword_idx = spans.len(); for idx in (positional_idx + 1)..decl.signature.num_positionals() { if let Some(PositionalArg { shape: SyntaxShape::Keyword(kw, ..), .. }) = decl.signature.get_positional(idx) { #[allow(clippy::needless_range_loop)] for span_idx in spans_idx..spans.len() { let contents = self.get_span_contents(spans[span_idx]); if contents == kw { next_keyword_idx = span_idx - (idx - (positional_idx + 1)); break; } } } } let remainder = decl.signature.num_positionals_after(positional_idx); let remainder_idx = if remainder < spans.len() { spans.len() - remainder + 1 } else { spans_idx + 1 }; let end = [next_keyword_idx, remainder_idx, spans.len()] .iter() .min() .copied() .expect("internal error: can't find min"); // println!( // "{:?}", // [ // next_keyword_idx, // remainder_idx, // spans.len(), // spans_idx, // remainder, // positional_idx, // ] // ); end } } fn parse_multispan_value( &mut self, spans: &[Span], spans_idx: &mut usize, shape: &SyntaxShape, ) -> (Expression, Option) { let mut error = None; match shape { SyntaxShape::VarWithOptType => { let (arg, err) = self.parse_var_with_opt_type(spans, spans_idx); error = error.or(err); (arg, error) } SyntaxShape::RowCondition => { let (arg, err) = self.parse_row_condition(&spans[*spans_idx..]); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Expression => { let (arg, err) = self.parse_expression(&spans[*spans_idx..]); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Keyword(keyword, arg) => { let arg_span = spans[*spans_idx]; let arg_contents = self.get_span_contents(arg_span); if arg_contents != keyword { // When keywords mismatch, this is a strong indicator of something going wrong. // We won't often override the current error, but as this is a strong indicator // go ahead and override the current error and tell the user about the missing // keyword/literal. error = Some(ParseError::Mismatch( String::from_utf8_lossy(keyword).into(), arg_span, )) } *spans_idx += 1; if *spans_idx >= spans.len() { error = error.or_else(|| { Some(ParseError::MissingPositional( String::from_utf8_lossy(keyword).into(), spans[*spans_idx - 1], )) }); return ( Expression { expr: Expr::Keyword( keyword.clone(), spans[*spans_idx - 1], Box::new(Expression::garbage(arg_span)), ), span: arg_span, ty: Type::Unknown, }, error, ); } let keyword_span = spans[*spans_idx - 1]; let (expr, err) = self.parse_multispan_value(spans, spans_idx, arg); error = error.or(err); let ty = expr.ty.clone(); ( Expression { expr: Expr::Keyword(keyword.clone(), keyword_span, Box::new(expr)), span: arg_span, ty, }, error, ) } _ => { // All other cases are single-span values let arg_span = spans[*spans_idx]; let (arg, err) = self.parse_value(arg_span, shape); error = error.or(err); (arg, error) } } } pub fn parse_internal_call( &mut self, command_span: Span, spans: &[Span], decl_id: usize, ) -> (Box, Span, Option) { let mut error = None; let mut call = Call::new(); call.decl_id = decl_id; call.head = command_span; let decl = self.get_decl(decl_id).clone(); // The index into the positional parameter in the definition let mut positional_idx = 0; // The index into the spans of argument data given to parse // Starting at the first argument let mut spans_idx = 0; while spans_idx < spans.len() { let arg_span = spans[spans_idx]; // Check if we're on a long flag, if so, parse let (long_name, arg, err) = self.parse_long_flag(spans, &mut spans_idx, &decl.signature); if let Some(long_name) = long_name { // We found a long flag, like --bar error = error.or(err); call.named.push((long_name, arg)); spans_idx += 1; continue; } // Check if we're on a short flag or group of short flags, if so, parse let (short_flags, err) = self.parse_short_flags(spans, &mut spans_idx, positional_idx, &decl.signature); if let Some(short_flags) = short_flags { error = error.or(err); for flag in short_flags { if let Some(arg_shape) = flag.arg { if let Some(arg) = spans.get(spans_idx + 1) { let (arg, err) = self.parse_value(*arg, &arg_shape); error = error.or(err); call.named.push((flag.long.clone(), Some(arg))); spans_idx += 1; } else { error = error.or(Some(ParseError::MissingFlagParam(arg_span))) } } else { call.named.push((flag.long.clone(), None)); } } spans_idx += 1; continue; } // Parse a positional arg if there is one if let Some(positional) = decl.signature.get_positional(positional_idx) { //Make sure we leave enough spans for the remaining positionals let end = self.calculate_end_span(&decl, spans, spans_idx, positional_idx); let orig_idx = spans_idx; let (arg, err) = self.parse_multispan_value(&spans[..end], &mut spans_idx, &positional.shape); error = error.or(err); let arg = if positional.shape.to_type() != Type::Unknown && arg.ty != positional.shape.to_type() { let span = span(&spans[orig_idx..spans_idx]); error = error.or_else(|| { Some(ParseError::TypeMismatch(positional.shape.to_type(), span)) }); Expression::garbage(span) } else { arg }; call.positional.push(arg); positional_idx += 1; } else { call.positional.push(Expression::garbage(arg_span)); error = error.or(Some(ParseError::ExtraPositional(arg_span))) } error = error.or(err); spans_idx += 1; } let err = check_call(command_span, &decl.signature, &call); error = error.or(err); // FIXME: type unknown (Box::new(call), span(spans), error) } pub fn parse_call(&mut self, spans: &[Span]) -> (Expression, Option) { // assume spans.len() > 0? let name = self.get_span_contents(spans[0]); if let Some(mut decl_id) = self.find_decl(name) { let mut name = name.to_vec(); let mut pos = 1; while pos < spans.len() { // look to see if it's a subcommand let mut new_name = name.to_vec(); new_name.push(b' '); new_name.extend(self.get_span_contents(spans[pos])); if let Some(did) = self.find_decl(&new_name) { decl_id = did; } else { break; } name = new_name; pos += 1; } // parse internal command let (call, _, err) = self.parse_internal_call(span(&spans[0..pos]), &spans[pos..], decl_id); ( Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, // FIXME }, err, ) } else { self.parse_external_call(spans) } } pub fn parse_int(&mut self, token: &str, span: Span) -> (Expression, Option) { if let Some(token) = token.strip_prefix("0x") { if let Ok(v) = i64::from_str_radix(token, 16) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } else if let Some(token) = token.strip_prefix("0b") { if let Ok(v) = i64::from_str_radix(token, 2) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } else if let Some(token) = token.strip_prefix("0o") { if let Ok(v) = i64::from_str_radix(token, 8) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } else if let Ok(x) = token.parse::() { ( Expression { expr: Expr::Int(x), span, ty: Type::Int, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } pub fn parse_number(&mut self, token: &str, span: Span) -> (Expression, Option) { if let (x, None) = self.parse_int(token, span) { (x, None) } else { ( garbage(span), Some(ParseError::Mismatch("number".into(), span)), ) } } pub(crate) fn parse_dollar_expr(&mut self, span: Span) -> (Expression, Option) { let contents = self.get_span_contents(span); if contents.starts_with(b"$\"") { self.parse_string_interpolation(span) } else { self.parse_variable_expr(span) } } pub fn parse_string_interpolation(&mut self, span: Span) -> (Expression, Option) { #[derive(PartialEq, Eq, Debug)] enum InterpolationMode { String, Expression, } let mut error = None; let contents = self.get_span_contents(span); let start = if contents.starts_with(b"$\"") { span.start + 2 } else { span.start }; let end = if contents.ends_with(b"\"") && contents.len() > 2 { span.end - 1 } else { span.end }; let inner_span = Span { start, end }; let contents = self.get_span_contents(inner_span).to_vec(); let mut output = vec![]; let mut mode = InterpolationMode::String; let mut token_start = start; let mut depth = 0; let mut b = start; #[allow(clippy::needless_range_loop)] while b != end { if contents[b - start] == b'(' && mode == InterpolationMode::String { depth = 1; mode = InterpolationMode::Expression; if token_start < b { let span = Span { start: token_start, end: b, }; let str_contents = self.get_span_contents(span); output.push(Expression { expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()), span, ty: Type::String, }); } token_start = b; } else if contents[b - start] == b'(' && mode == InterpolationMode::Expression { depth += 1; } else if contents[b - start] == b')' && mode == InterpolationMode::Expression { match depth { 0 => {} 1 => { mode = InterpolationMode::String; if token_start < b { let span = Span { start: token_start, end: b + 1, }; let (expr, err) = self.parse_full_column_path(span); error = error.or(err); output.push(expr); } token_start = b + 1; } _ => depth -= 1, } } b += 1; } match mode { InterpolationMode::String => { if token_start < end { let span = Span { start: token_start, end, }; let str_contents = self.get_span_contents(span); output.push(Expression { expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()), span, ty: Type::String, }); } } InterpolationMode::Expression => { if token_start < end { let span = Span { start: token_start, end, }; let (expr, err) = self.parse_full_column_path(span); error = error.or(err); output.push(expr); } } } if let Some(decl_id) = self.find_decl(b"build-string") { ( Expression { expr: Expr::Call(Box::new(Call { head: Span { start: span.start, end: span.start + 2, }, named: vec![], positional: output, decl_id, })), span, ty: Type::String, }, error, ) } else { ( Expression::garbage(span), Some(ParseError::UnknownCommand(span)), ) } } pub fn parse_variable_expr(&mut self, span: Span) -> (Expression, Option) { let contents = self.get_span_contents(span); if contents == b"$true" { return ( Expression { expr: Expr::Bool(true), span, ty: Type::Bool, }, None, ); } else if contents == b"$false" { return ( Expression { expr: Expr::Bool(false), span, ty: Type::Bool, }, None, ); } let (id, err) = self.parse_variable(span); if err.is_none() { if let Some(id) = id { ( Expression { expr: Expr::Var(id), span, ty: self.get_variable(id).clone(), }, None, ) } else { let name = self.get_span_contents(span).to_vec(); // this seems okay to set it to unknown here, but we should double-check let id = self.add_variable(name, Type::Unknown); ( Expression { expr: Expr::Var(id), span, ty: Type::Unknown, }, None, ) } } else { (garbage(span), err) } } pub fn parse_full_column_path(&mut self, span: Span) -> (Expression, Option) { // FIXME: assume for now a paren expr, but needs more let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"(") { start += 1; } if bytes.ends_with(b")") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( ")".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = self.get_span_contents(span); let (output, err) = lex(source, start, &[], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output, true); error = error.or(err); let block_id = self.add_block(output); ( Expression { expr: Expr::Subexpression(block_id), span, ty: Type::Unknown, // FIXME }, error, ) } pub fn parse_string(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); let bytes = if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1) || (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1) { &bytes[1..(bytes.len() - 1)] } else { bytes }; if let Ok(token) = String::from_utf8(bytes.into()) { ( Expression { expr: Expr::String(token), span, ty: Type::String, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("string".into(), span)), ) } } //TODO: Handle error case pub fn parse_shape_name(&self, bytes: &[u8], span: Span) -> (SyntaxShape, Option) { let result = match bytes { b"any" => SyntaxShape::Any, b"string" => SyntaxShape::String, b"column-path" => SyntaxShape::ColumnPath, b"number" => SyntaxShape::Number, b"range" => SyntaxShape::Range, b"int" => SyntaxShape::Int, b"path" => SyntaxShape::FilePath, b"glob" => SyntaxShape::GlobPattern, b"block" => SyntaxShape::Block, b"cond" => SyntaxShape::RowCondition, b"operator" => SyntaxShape::Operator, b"math" => SyntaxShape::MathExpression, b"variable" => SyntaxShape::Variable, b"signature" => SyntaxShape::Signature, b"expr" => SyntaxShape::Expression, _ => return (SyntaxShape::Any, Some(ParseError::UnknownType(span))), }; (result, None) } pub fn parse_type(&self, bytes: &[u8]) -> Type { if bytes == b"int" { Type::Int } else { Type::Unknown } } pub fn parse_var_with_opt_type( &mut self, spans: &[Span], spans_idx: &mut usize, ) -> (Expression, Option) { let bytes = self.get_span_contents(spans[*spans_idx]).to_vec(); if bytes.ends_with(b":") { // We end with colon, so the next span should be the type if *spans_idx + 1 < spans.len() { *spans_idx += 1; let type_bytes = self.get_span_contents(spans[*spans_idx]); let ty = self.parse_type(type_bytes); let id = self.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), ty.clone()); ( Expression { expr: Expr::Var(id), span: span(&spans[*spans_idx - 1..*spans_idx + 1]), ty, }, None, ) } else { let id = self.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), Type::Unknown); ( Expression { expr: Expr::Var(id), span: spans[*spans_idx], ty: Type::Unknown, }, Some(ParseError::MissingType(spans[*spans_idx])), ) } } else { let id = self.add_variable(bytes, Type::Unknown); ( Expression { expr: Expr::Var(id), span: span(&spans[*spans_idx..*spans_idx + 1]), ty: Type::Unknown, }, None, ) } } pub fn parse_row_condition(&mut self, spans: &[Span]) -> (Expression, Option) { self.parse_math_expression(spans) } pub fn parse_signature(&mut self, span: Span) -> (Expression, Option) { enum ParseMode { ArgMode, TypeMode, } enum Arg { Positional(PositionalArg, bool), // bool - required Flag(Flag), } let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = self.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b','], &[b':']); error = error.or(err); let mut args: Vec = vec![]; let mut parse_mode = ParseMode::ArgMode; for token in &output { match token { Token { contents: crate::TokenContents::Item, span, } => { let span = *span; let contents = self.get_span_contents(span); if contents == b":" { match parse_mode { ParseMode::ArgMode => { parse_mode = ParseMode::TypeMode; } ParseMode::TypeMode => { // We're seeing two types for the same thing for some reason, error error = error .or_else(|| Some(ParseError::Mismatch("type".into(), span))); } } } else { match parse_mode { ParseMode::ArgMode => { if contents.starts_with(b"--") && contents.len() > 2 { // Long flag let flags: Vec<_> = contents .split(|x| x == &b'(') .map(|x| x.to_vec()) .collect(); let long = String::from_utf8_lossy(&flags[0]).to_string(); let variable_name = flags[0][2..].to_vec(); let var_id = self.add_variable(variable_name, Type::Unknown); if flags.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: None, required: false, var_id: Some(var_id), })); } else { let short_flag = &flags[1]; let short_flag = if !short_flag.starts_with(b"-") || !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Mismatch( "short flag".into(), span, )) }); short_flag } else { &short_flag[1..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); let long = String::from_utf8_lossy(&flags[0]).to_string(); let variable_name = flags[0][2..].to_vec(); let var_id = self.add_variable(variable_name, Type::Unknown); if chars.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: Some(chars[0]), required: false, var_id: Some(var_id), })); } else { error = error.or_else(|| { Some(ParseError::Mismatch( "short flag".into(), span, )) }); } } } else if contents.starts_with(b"-") && contents.len() > 1 { // Short flag let short_flag = &contents[1..]; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() > 1 { error = error.or_else(|| { Some(ParseError::Mismatch("short flag".into(), span)) }); args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long: String::new(), short: None, required: false, var_id: None, })); } else { let mut encoded_var_name = vec![0u8; 4]; let len = chars[0].encode_utf8(&mut encoded_var_name).len(); let variable_name = encoded_var_name[0..len].to_vec(); let var_id = self.add_variable(variable_name, Type::Unknown); args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long: String::new(), short: Some(chars[0]), required: false, var_id: Some(var_id), })); } } else if contents.starts_with(b"(-") { let short_flag = &contents[2..]; let short_flag = if !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Mismatch("short flag".into(), span)) }); short_flag } else { &short_flag[..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() == 1 { match args.last_mut() { Some(Arg::Flag(flag)) => { if flag.short.is_some() { error = error.or_else(|| { Some(ParseError::Mismatch( "one short flag".into(), span, )) }); } else { flag.short = Some(chars[0]); } } _ => { error = error.or_else(|| { Some(ParseError::Mismatch( "unknown flag".into(), span, )) }); } } } else { error = error.or_else(|| { Some(ParseError::Mismatch("short flag".into(), span)) }); } } else if contents.ends_with(b"?") { let contents: Vec<_> = contents[..(contents.len() - 1)].into(); let name = String::from_utf8_lossy(&contents).to_string(); let var_id = self.add_variable(contents, Type::Unknown); // Positional arg, optional args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, false, )) } else { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec = contents.to_vec(); let var_id = self.add_variable(contents_vec, Type::Unknown); // Positional arg, required args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, true, )) } } ParseMode::TypeMode => { if let Some(last) = args.last_mut() { let (syntax_shape, err) = self.parse_shape_name(contents, span); error = error.or(err); //TODO check if we're replacing one already match last { Arg::Positional( PositionalArg { shape, var_id, .. }, .., ) => { self.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *shape = syntax_shape; } Arg::Flag(Flag { arg, var_id, .. }) => { self.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *arg = Some(syntax_shape) } } } parse_mode = ParseMode::ArgMode; } } } } Token { contents: crate::TokenContents::Comment, span, } => { let contents = self.get_span_contents(Span { start: span.start + 1, end: span.end, }); let mut contents = String::from_utf8_lossy(contents).to_string(); contents = contents.trim().into(); if let Some(last) = args.last_mut() { match last { Arg::Flag(flag) => { if !flag.desc.is_empty() { flag.desc.push('\n'); } flag.desc.push_str(&contents); } Arg::Positional(positional, ..) => { if !positional.desc.is_empty() { positional.desc.push('\n'); } positional.desc.push_str(&contents); } } } } _ => {} } } let mut sig = Signature::new(String::new()); for arg in args { match arg { Arg::Positional(positional, required) => { if positional.name == "...rest" { if sig.rest_positional.is_none() { sig.rest_positional = Some(PositionalArg { name: "rest".into(), ..positional }) } else { // Too many rest params error = error.or(Some(ParseError::MultipleRestParams(span))) } } else if required { sig.required_positional.push(positional) } else { sig.optional_positional.push(positional) } } Arg::Flag(flag) => sig.named.push(flag), } } ( Expression { expr: Expr::Signature(Box::new(sig)), span, ty: Type::Unknown, }, error, ) } pub fn parse_list_expression( &mut self, span: Span, element_shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = self.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b','], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let mut args = vec![]; if !output.block.is_empty() { for arg in &output.block[0].commands { let mut spans_idx = 0; while spans_idx < arg.parts.len() { let (arg, err) = self.parse_multispan_value(&arg.parts, &mut spans_idx, element_shape); error = error.or(err); args.push(arg); spans_idx += 1; } } } ( Expression { expr: Expr::List(args), span, ty: Type::List(Box::new(Type::Unknown)), // FIXME }, error, ) } pub fn parse_table_expression(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = self.get_span_contents(span); let (output, err) = lex(source, start, &[b'\n', b','], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); match output.block.len() { 0 => ( Expression { expr: Expr::List(vec![]), span, ty: Type::Table, }, None, ), 1 => { // List self.parse_list_expression(span, &SyntaxShape::Any) } _ => { let mut table_headers = vec![]; let (headers, err) = self.parse_value(output.block[0].commands[0].parts[0], &SyntaxShape::Table); error = error.or(err); if let Expression { expr: Expr::List(headers), .. } = headers { table_headers = headers; } let mut rows = vec![]; for part in &output.block[1].commands[0].parts { let (values, err) = self.parse_value(*part, &SyntaxShape::Table); error = error.or(err); if let Expression { expr: Expr::List(values), .. } = values { rows.push(values); } } ( Expression { expr: Expr::Table(table_headers, rows), span, ty: Type::Table, }, error, ) } } } pub fn parse_block_expression(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { return ( garbage(span), Some(ParseError::Mismatch("block".into(), span)), ); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "}".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = self.get_span_contents(span); let (output, err) = lex(source, start, &[], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output, true); error = error.or(err); let block_id = self.add_block(output); ( Expression { expr: Expr::Block(block_id), span, ty: Type::Block, }, error, ) } pub fn parse_value( &mut self, span: Span, shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = self.get_span_contents(span); // First, check the special-cases. These will likely represent specific values as expressions // and may fit a variety of shapes. // // We check variable first because immediately following we check for variables with column paths // which might result in a value that fits other shapes (and require the variable to already be // declared) if shape == &SyntaxShape::Variable { return self.parse_variable_expr(span); } else if bytes.starts_with(b"$") { return self.parse_dollar_expr(span); } else if bytes.starts_with(b"(") { return self.parse_full_column_path(span); } else if bytes.starts_with(b"[") { match shape { SyntaxShape::Any | SyntaxShape::List(_) | SyntaxShape::Table | SyntaxShape::Signature => {} _ => { return ( Expression::garbage(span), Some(ParseError::Mismatch("non-[] value".into(), span)), ); } } } match shape { SyntaxShape::Number => { if let Ok(token) = String::from_utf8(bytes.into()) { self.parse_number(&token, span) } else { ( garbage(span), Some(ParseError::Mismatch("number".into(), span)), ) } } SyntaxShape::Int => { if let Ok(token) = String::from_utf8(bytes.into()) { self.parse_int(&token, span) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } SyntaxShape::String | SyntaxShape::GlobPattern | SyntaxShape::FilePath => { self.parse_string(span) } SyntaxShape::Block => { if bytes.starts_with(b"{") { self.parse_block_expression(span) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("table".into(), span)), ) } } SyntaxShape::Signature => { if bytes.starts_with(b"[") { self.parse_signature(span) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("signature".into(), span)), ) } } SyntaxShape::List(elem) => { if bytes.starts_with(b"[") { self.parse_list_expression(span, elem) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("list".into(), span)), ) } } SyntaxShape::Table => { if bytes.starts_with(b"[") { self.parse_table_expression(span) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("table".into(), span)), ) } } SyntaxShape::Any => { let shapes = [ SyntaxShape::Int, SyntaxShape::Number, SyntaxShape::Range, SyntaxShape::Filesize, SyntaxShape::Duration, SyntaxShape::Block, SyntaxShape::Table, SyntaxShape::List(Box::new(SyntaxShape::Any)), SyntaxShape::String, ]; for shape in shapes.iter() { if let (s, None) = self.parse_value(span, shape) { return (s, None); } } ( garbage(span), Some(ParseError::Mismatch("any shape".into(), span)), ) } _ => ( garbage(span), Some(ParseError::Mismatch("incomplete parser".into(), span)), ), } } pub fn parse_operator(&mut self, span: Span) -> (Expression, Option) { let contents = self.get_span_contents(span); let operator = match contents { b"==" => Operator::Equal, b"!=" => Operator::NotEqual, b"<" => Operator::LessThan, b"<=" => Operator::LessThanOrEqual, b">" => Operator::GreaterThan, b">=" => Operator::GreaterThanOrEqual, b"=~" => Operator::Contains, b"!~" => Operator::NotContains, b"+" => Operator::Plus, b"-" => Operator::Minus, b"*" => Operator::Multiply, b"/" => Operator::Divide, b"in" => Operator::In, b"not-in" => Operator::NotIn, b"mod" => Operator::Modulo, b"&&" => Operator::And, b"||" => Operator::Or, b"**" => Operator::Pow, _ => { return ( garbage(span), Some(ParseError::Mismatch("operator".into(), span)), ); } }; ( Expression { expr: Expr::Operator(operator), span, ty: Type::Unknown, }, None, ) } pub fn parse_math_expression(&mut self, spans: &[Span]) -> (Expression, Option) { // As the expr_stack grows, we increase the required precedence to grow larger // If, at any time, the operator we're looking at is the same or lower precedence // of what is in the expression stack, we collapse the expression stack. // // This leads to an expression stack that grows under increasing precedence and collapses // under decreasing/sustained precedence // // The end result is a stack that we can fold into binary operations as right associations // safely. let mut expr_stack: Vec = vec![]; let mut idx = 0; let mut last_prec = 1000000; let mut error = None; let (lhs, err) = self.parse_value(spans[0], &SyntaxShape::Any); error = error.or(err); idx += 1; expr_stack.push(lhs); while idx < spans.len() { let (op, err) = self.parse_operator(spans[idx]); error = error.or(err); let op_prec = op.precedence(); idx += 1; if idx == spans.len() { // Handle broken math expr `1 +` etc error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1]))); expr_stack.push(Expression::garbage(spans[idx - 1])); expr_stack.push(Expression::garbage(spans[idx - 1])); break; } let (rhs, err) = self.parse_value(spans[idx], &SyntaxShape::Any); error = error.or(err); if op_prec <= last_prec { while expr_stack.len() > 1 { // Collapse the right associated operations first // so that we can get back to a stack with a lower precedence let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); let (result_ty, err) = self.math_result_type(&mut lhs, &mut op, &mut rhs); error = error.or(err); let op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: op_span, ty: result_ty, }); } } expr_stack.push(op); expr_stack.push(rhs); last_prec = op_prec; idx += 1; } while expr_stack.len() != 1 { let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); let (result_ty, err) = self.math_result_type(&mut lhs, &mut op, &mut rhs); error = error.or(err); let binary_op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: binary_op_span, ty: result_ty, }); } let output = expr_stack .pop() .expect("internal error: expression stack empty"); (output, error) } pub fn parse_expression(&mut self, spans: &[Span]) -> (Expression, Option) { let bytes = self.get_span_contents(spans[0]); match bytes[0] { b'0' | b'1' | b'2' | b'3' | b'4' | b'5' | b'6' | b'7' | b'8' | b'9' | b'(' | b'{' | b'[' | b'$' | b'"' | b'\'' => self.parse_math_expression(spans), _ => self.parse_call(spans), } } pub fn parse_variable(&mut self, span: Span) -> (Option, Option) { let bytes = self.get_span_contents(span); if is_variable(bytes) { if let Some(var_id) = self.find_variable(bytes) { (Some(var_id), None) } else { (None, None) } } else { (None, Some(ParseError::Mismatch("variable".into(), span))) } } pub fn parse_def_predecl(&mut self, spans: &[Span]) { let name = self.get_span_contents(spans[0]); if name == b"def" && spans.len() >= 4 { //FIXME: don't use expect here let (name_expr, ..) = self.parse_string(spans[1]); let name = name_expr .as_string() .expect("internal error: expected def name"); self.enter_scope(); let (sig, ..) = self.parse_signature(spans[2]); let mut signature = sig .as_signature() .expect("internal error: expected param list"); self.exit_scope(); signature.name = name; let decl = Declaration { signature, body: None, }; self.add_decl(decl); } } pub fn parse_def(&mut self, spans: &[Span]) -> (Statement, Option) { let mut error = None; let name = self.get_span_contents(spans[0]); if name == b"def" && spans.len() >= 4 { //FIXME: don't use expect here let (name_expr, err) = self.parse_string(spans[1]); let name = name_expr .as_string() .expect("internal error: expected def name"); error = error.or(err); let decl_id = self .find_decl(name.as_bytes()) .expect("internal error: predeclaration failed to add definition"); self.enter_scope(); let (sig, err) = self.parse_signature(spans[2]); let mut signature = sig .as_signature() .expect("internal error: expected param list"); signature.name = name; error = error.or(err); let (block, err) = self.parse_block_expression(spans[3]); self.exit_scope(); let block_id = block.as_block().expect("internal error: expected block"); error = error.or(err); let declaration = self.get_decl_mut(decl_id); declaration.signature = signature; declaration.body = Some(block_id); let def_decl_id = self .find_decl(b"def") .expect("internal error: missing def command"); let call = Box::new(Call { head: spans[0], decl_id: def_decl_id, positional: vec![name_expr, sig, block], named: vec![], }); ( Statement::Expression(Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, }), error, ) } else { ( Statement::Expression(Expression { expr: Expr::Garbage, span: span(spans), ty: Type::Unknown, }), Some(ParseError::UnknownState( "internal error: let statement unparseable".into(), span(spans), )), ) } } pub fn parse_let(&mut self, spans: &[Span]) -> (Statement, Option) { let name = self.get_span_contents(spans[0]); if name == b"let" { if let Some(decl_id) = self.find_decl(b"let") { let (call, call_span, err) = self.parse_internal_call(spans[0], &spans[1..], decl_id); return ( Statement::Expression(Expression { expr: Expr::Call(call), span: call_span, ty: Type::Unknown, }), err, ); } } ( Statement::Expression(Expression { expr: Expr::Garbage, span: span(spans), ty: Type::Unknown, }), Some(ParseError::UnknownState( "internal error: let statement unparseable".into(), span(spans), )), ) } pub fn parse_statement(&mut self, spans: &[Span]) -> (Statement, Option) { // FIXME: improve errors by checking keyword first if let (decl, None) = self.parse_def(spans) { (decl, None) } else if let (stmt, None) = self.parse_let(spans) { (stmt, None) } else { let (expr, err) = self.parse_expression(spans); (Statement::Expression(expr), err) } } pub fn parse_block( &mut self, lite_block: &LiteBlock, scoped: bool, ) -> (Block, Option) { let mut error = None; if scoped { self.enter_scope(); } let mut block = Block::new(); // Pre-declare any definition so that definitions // that share the same block can see each other for pipeline in &lite_block.block { if pipeline.commands.len() == 1 { self.parse_def_predecl(&pipeline.commands[0].parts); } } for pipeline in &lite_block.block { if pipeline.commands.len() > 1 { let mut output = vec![]; for command in &pipeline.commands { let (expr, err) = self.parse_expression(&command.parts); error = error.or(err); output.push(expr); } block.stmts.push(Statement::Pipeline(Pipeline { expressions: output, })); } else { let (stmt, err) = self.parse_statement(&pipeline.commands[0].parts); error = error.or(err); block.stmts.push(stmt); } } if scoped { self.exit_scope(); } (block, error) } pub fn parse_file( &mut self, fname: &str, contents: &[u8], scoped: bool, ) -> (Block, Option) { let mut error = None; let span_offset = self.next_span_start(); self.add_file(fname.into(), contents); let (output, err) = lex(contents, span_offset, &[], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output, scoped); error = error.or(err); (output, error) } pub fn parse_source(&mut self, source: &[u8], scoped: bool) -> (Block, Option) { let mut error = None; let span_offset = self.next_span_start(); self.add_file("source".into(), source); let (output, err) = lex(source, span_offset, &[], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output, scoped); error = error.or(err); (output, error) } } #[cfg(test)] mod tests { use crate::{ParseError, ParserState, Signature}; use super::*; #[test] pub fn parse_int() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let (block, err) = working_set.parse_source(b"3", true); assert!(err.is_none()); assert!(block.len() == 1); assert!(matches!( block[0], Statement::Expression(Expression { expr: Expr::Int(3), .. }) )); } #[test] pub fn parse_call() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.into()); let (block, err) = working_set.parse_source(b"foo", true); assert!(err.is_none()); assert!(block.len() == 1); match &block[0] { Statement::Expression(Expression { expr: Expr::Call(call), .. }) => { assert_eq!(call.decl_id, 0); } _ => panic!("not a call"), } } #[test] pub fn parse_call_missing_flag_arg() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo --jazz", true); assert!(matches!(err, Some(ParseError::MissingFlagParam(..)))); } #[test] pub fn parse_call_missing_short_flag_arg() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo -j", true); assert!(matches!(err, Some(ParseError::MissingFlagParam(..)))); } #[test] pub fn parse_call_too_many_shortflag_args() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo") .named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')) .named("--math", SyntaxShape::Int, "math!!", Some('m')); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo -mj", true); assert!(matches!( err, Some(ParseError::ShortFlagBatchCantTakeArg(..)) )); } #[test] pub fn parse_call_unknown_shorthand() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j')); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo -mj", true); assert!(matches!(err, Some(ParseError::UnknownFlag(..)))); } #[test] pub fn parse_call_extra_positional() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j')); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo -j 100", true); assert!(matches!(err, Some(ParseError::ExtraPositional(..)))); } #[test] pub fn parse_call_missing_req_positional() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").required("jazz", SyntaxShape::Int, "jazz!!"); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo", true); assert!(matches!(err, Some(ParseError::MissingPositional(..)))); } #[test] pub fn parse_call_missing_req_flag() { let parser_state = ParserState::new(); let mut working_set = ParserWorkingSet::new(&parser_state); let sig = Signature::build("foo").required_named("--jazz", SyntaxShape::Int, "jazz!!", None); working_set.add_decl(sig.into()); let (_, err) = working_set.parse_source(b"foo", true); assert!(matches!(err, Some(ParseError::MissingRequiredFlag(..)))); } }