use crate::{ lex, lite_parse, lite_parse::LiteCommand, parse_keywords::{parse_extern, parse_for, parse_source}, type_check::{math_result_type, type_compatible}, LiteBlock, ParseError, Token, TokenContents, }; use nu_protocol::{ ast::{ Block, Call, CellPath, Expr, Expression, FullCellPath, ImportPattern, ImportPatternHead, ImportPatternMember, Operator, PathMember, Pipeline, RangeInclusion, RangeOperator, }, engine::StateWorkingSet, span, BlockId, Flag, PositionalArg, Signature, Span, Spanned, SyntaxShape, Type, Unit, VarId, CONFIG_VARIABLE_ID, ENV_VARIABLE_ID, IN_VARIABLE_ID, }; use crate::parse_keywords::{ parse_alias, parse_def, parse_def_predecl, parse_hide, parse_let, parse_module, parse_use, }; use log::trace; use std::{ collections::{HashMap, HashSet}, num::ParseIntError, }; #[cfg(feature = "plugin")] use crate::parse_keywords::parse_register; #[derive(Debug, Clone)] pub enum Import {} pub fn garbage(span: Span) -> Expression { Expression::garbage(span) } pub fn garbage_pipeline(spans: &[Span]) -> Pipeline { Pipeline::from_vec(vec![garbage(span(spans))]) } fn is_identifier_byte(b: u8) -> bool { b != b'.' && b != b'[' && b != b'(' && b != b'{' } pub fn is_math_expression_like(bytes: &[u8]) -> bool { if bytes.is_empty() { return false; } let b = bytes[0]; b == b'0' || b == b'1' || b == b'2' || b == b'3' || b == b'4' || b == b'5' || b == b'6' || b == b'7' || b == b'8' || b == b'9' || b == b'(' || b == b'{' || b == b'[' || b == b'$' || b == b'"' || b == b'\'' || b == b'-' } fn is_identifier(bytes: &[u8]) -> bool { bytes.iter().all(|x| is_identifier_byte(*x)) } fn is_variable(bytes: &[u8]) -> bool { if bytes.len() > 1 && bytes[0] == b'$' { is_identifier(&bytes[1..]) } else { is_identifier(bytes) } } pub fn trim_quotes(bytes: &[u8]) -> &[u8] { if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1) || (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1) { &bytes[1..(bytes.len() - 1)] } else { bytes } } pub fn check_call(command: Span, sig: &Signature, call: &Call) -> Option { // Allow the call to pass if they pass in the help flag if call.named.iter().any(|(n, _)| n.item == "help") { return None; } if call.positional.len() < sig.required_positional.len() { // Comparing the types of all signature positional arguments against the parsed // expressions found in the call. If one type is not found then it could be assumed // that that positional argument is missing from the parsed call for argument in &sig.required_positional { let found = call.positional.iter().fold(false, |ac, expr| { if argument.shape.to_type() == expr.ty || argument.shape == SyntaxShape::Any { true } else { ac } }); if !found { if let Some(last) = call.positional.last() { return Some(ParseError::MissingPositional( argument.name.clone(), Span { start: last.span.end, end: last.span.end, }, sig.call_signature(), )); } else { return Some(ParseError::MissingPositional( argument.name.clone(), Span { start: command.end, end: command.end, }, sig.call_signature(), )); } } } let missing = &sig.required_positional[call.positional.len()]; if let Some(last) = call.positional.last() { Some(ParseError::MissingPositional( missing.name.clone(), Span { start: last.span.end, end: last.span.end, }, sig.call_signature(), )) } else { Some(ParseError::MissingPositional( missing.name.clone(), Span { start: command.end, end: command.end, }, sig.call_signature(), )) } } else { for req_flag in sig.named.iter().filter(|x| x.required) { if call.named.iter().all(|(n, _)| n.item != req_flag.long) { return Some(ParseError::MissingRequiredFlag( req_flag.long.clone(), command, )); } } None } } pub fn check_name<'a>( working_set: &mut StateWorkingSet, spans: &'a [Span], ) -> Option<(&'a Span, ParseError)> { if spans.len() == 1 { None } else if spans.len() < 4 { if working_set.get_span_contents(spans[1]) == b"=" { let name = String::from_utf8_lossy(working_set.get_span_contents(spans[0])); Some(( &spans[1], ParseError::AssignmentMismatch( format!("{} missing name", name), "missing name".into(), spans[1], ), )) } else { None } } else if working_set.get_span_contents(spans[2]) != b"=" { let name = String::from_utf8_lossy(working_set.get_span_contents(spans[0])); Some(( &spans[2], ParseError::AssignmentMismatch( format!("{} missing sign", name), "missing equal sign".into(), spans[2], ), )) } else { None } } pub fn parse_external_call( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Expression, Option) { let mut args = vec![]; let head_contents = working_set.get_span_contents(spans[0]); let head_span = if head_contents.starts_with(b"^") { Span { start: spans[0].start + 1, end: spans[0].end, } } else { spans[0] }; let head_contents = working_set.get_span_contents(head_span); let mut error = None; let head = if head_contents.starts_with(b"$") || head_contents.starts_with(b"(") { let (arg, err) = parse_expression(working_set, &[head_span], true); error = error.or(err); Box::new(arg) } else { Box::new(Expression { expr: Expr::String(String::from_utf8_lossy(head_contents).to_string()), span: head_span, ty: Type::String, custom_completion: None, }) }; for span in &spans[1..] { let contents = working_set.get_span_contents(*span); if contents.starts_with(b"$") || contents.starts_with(b"(") { let (arg, err) = parse_expression(working_set, &[*span], true); error = error.or(err); args.push(arg); } else { args.push(Expression { expr: Expr::String(String::from_utf8_lossy(contents).to_string()), span: *span, ty: Type::String, custom_completion: None, }) } } ( Expression { expr: Expr::ExternalCall(head, args), span: span(spans), ty: Type::Unknown, custom_completion: None, }, error, ) } fn parse_long_flag( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, sig: &Signature, ) -> ( Option>, Option, Option, ) { let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents.starts_with(b"--") { // FIXME: only use the first flag you find? let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect(); let long_name = String::from_utf8(split[0].into()); if let Ok(long_name) = long_name { let long_name = long_name[2..].to_string(); if let Some(flag) = sig.get_long_flag(&long_name) { if let Some(arg_shape) = &flag.arg { if split.len() > 1 { // and we also have the argument let long_name_len = long_name.len(); let mut span = arg_span; span.start += long_name_len + 3; //offset by long flag and '=' let (arg, err) = parse_value(working_set, span, arg_shape); ( Some(Spanned { item: long_name, span: Span { start: arg_span.start, end: arg_span.start + long_name_len + 2, }, }), Some(arg), err, ) } else if let Some(arg) = spans.get(*spans_idx + 1) { let (arg, err) = parse_value(working_set, *arg, arg_shape); *spans_idx += 1; ( Some(Spanned { item: long_name, span: arg_span, }), Some(arg), err, ) } else { ( Some(Spanned { item: long_name, span: arg_span, }), None, Some(ParseError::MissingFlagParam( arg_shape.to_string(), arg_span, )), ) } } else { // A flag with no argument ( Some(Spanned { item: long_name, span: arg_span, }), None, None, ) } } else { ( Some(Spanned { item: long_name.clone(), span: arg_span, }), None, Some(ParseError::UnknownFlag( sig.name.clone(), long_name.clone(), arg_span, )), ) } } else { ( Some(Spanned { item: "--".into(), span: arg_span, }), None, Some(ParseError::NonUtf8(arg_span)), ) } } else { (None, None, None) } } fn parse_short_flags( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, positional_idx: usize, sig: &Signature, ) -> (Option>, Option) { let mut error = None; let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents.starts_with(b"-") && arg_contents.len() > 1 { let short_flags = &arg_contents[1..]; let mut found_short_flags = vec![]; let mut unmatched_short_flags = vec![]; for short_flag in short_flags.iter().enumerate() { let short_flag_char = char::from(*short_flag.1); let orig = arg_span; let short_flag_span = Span { start: orig.start + 1 + short_flag.0, end: orig.start + 1 + short_flag.0 + 1, }; if let Some(flag) = sig.get_short_flag(short_flag_char) { // If we require an arg and are in a batch of short flags, error if !found_short_flags.is_empty() && flag.arg.is_some() { error = error.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span))) } found_short_flags.push(flag); } else { unmatched_short_flags.push(short_flag_span); } } if found_short_flags.is_empty() { // check to see if we have a negative number if let Some(positional) = sig.get_positional(positional_idx) { if positional.shape == SyntaxShape::Int || positional.shape == SyntaxShape::Number { if String::from_utf8_lossy(arg_contents).parse::().is_ok() { return (None, None); } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } else if !unmatched_short_flags.is_empty() { if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } (Some(found_short_flags), error) } else { (None, None) } } fn first_kw_idx( working_set: &StateWorkingSet, signature: &Signature, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> (Option, usize) { for idx in (positional_idx + 1)..signature.num_positionals() { if let Some(PositionalArg { shape: SyntaxShape::Keyword(kw, ..), .. }) = signature.get_positional(idx) { #[allow(clippy::needless_range_loop)] for span_idx in spans_idx..spans.len() { let contents = working_set.get_span_contents(spans[span_idx]); if contents == kw { return (Some(idx), span_idx); } } } } (None, spans.len()) } fn calculate_end_span( working_set: &StateWorkingSet, signature: &Signature, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> usize { if signature.rest_positional.is_some() { spans.len() } else { let (kw_pos, kw_idx) = first_kw_idx(working_set, signature, spans, spans_idx, positional_idx); if let Some(kw_pos) = kw_pos { // We found a keyword. Keywords, once found, create a guidepost to // show us where the positionals will lay into the arguments. Because they're // keywords, they get to set this by being present let positionals_between = kw_pos - positional_idx - 1; if positionals_between > (kw_idx - spans_idx) { kw_idx } else { kw_idx - positionals_between } } else { // Make space for the remaining require positionals, if we can if signature.num_positionals_after(positional_idx) == 0 { spans.len() } else if positional_idx < signature.required_positional.len() && spans.len() > (signature.required_positional.len() - positional_idx) { spans.len() - (signature.required_positional.len() - positional_idx - 1) } else { spans_idx + 1 } } } } pub fn parse_multispan_value( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, shape: &SyntaxShape, ) -> (Expression, Option) { let mut error = None; match shape { SyntaxShape::VarWithOptType => { trace!("parsing: var with opt type"); let (arg, err) = parse_var_with_opt_type(working_set, spans, spans_idx); error = error.or(err); (arg, error) } SyntaxShape::RowCondition => { trace!("parsing: row condition"); let (arg, err) = parse_row_condition(working_set, &spans[*spans_idx..]); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::MathExpression => { trace!("parsing: math expression"); let (arg, err) = parse_math_expression(working_set, &spans[*spans_idx..], None); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Expression => { trace!("parsing: expression"); let (arg, err) = parse_expression(working_set, &spans[*spans_idx..], true); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::ImportPattern => { trace!("parsing: import pattern"); let (arg, err) = parse_import_pattern(working_set, &spans[*spans_idx..]); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Keyword(keyword, arg) => { trace!( "parsing: keyword({}) {:?}", String::from_utf8_lossy(keyword), arg ); let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents != keyword { // When keywords mismatch, this is a strong indicator of something going wrong. // We won't often override the current error, but as this is a strong indicator // go ahead and override the current error and tell the user about the missing // keyword/literal. error = Some(ParseError::ExpectedKeyword( String::from_utf8_lossy(keyword).into(), arg_span, )) } *spans_idx += 1; if *spans_idx >= spans.len() { error = error.or_else(|| { Some(ParseError::KeywordMissingArgument( arg.to_string(), String::from_utf8_lossy(keyword).into(), Span { start: spans[*spans_idx - 1].end, end: spans[*spans_idx - 1].end, }, )) }); return ( Expression { expr: Expr::Keyword( keyword.clone(), spans[*spans_idx - 1], Box::new(Expression::garbage(arg_span)), ), span: arg_span, ty: Type::Unknown, custom_completion: None, }, error, ); } let keyword_span = spans[*spans_idx - 1]; let (expr, err) = parse_multispan_value(working_set, spans, spans_idx, arg); error = error.or(err); let ty = expr.ty.clone(); ( Expression { expr: Expr::Keyword(keyword.clone(), keyword_span, Box::new(expr)), span: arg_span, ty, custom_completion: None, }, error, ) } _ => { // All other cases are single-span values let arg_span = spans[*spans_idx]; let (arg, err) = parse_value(working_set, arg_span, shape); error = error.or(err); (arg, error) } } } pub fn parse_internal_call( working_set: &mut StateWorkingSet, command_span: Span, spans: &[Span], decl_id: usize, ) -> (Box, Option) { trace!("parsing: internal call (decl id: {})", decl_id); let mut error = None; let mut call = Call::new(command_span); call.decl_id = decl_id; call.head = command_span; let signature = working_set.get_decl(decl_id).signature(); if signature.creates_scope { working_set.enter_scope(); } // The index into the positional parameter in the definition let mut positional_idx = 0; // The index into the spans of argument data given to parse // Starting at the first argument let mut spans_idx = 0; while spans_idx < spans.len() { let arg_span = spans[spans_idx]; // Check if we're on a long flag, if so, parse let (long_name, arg, err) = parse_long_flag(working_set, spans, &mut spans_idx, &signature); if let Some(long_name) = long_name { // We found a long flag, like --bar error = error.or(err); call.named.push((long_name, arg)); spans_idx += 1; continue; } // Check if we're on a short flag or group of short flags, if so, parse let (short_flags, err) = parse_short_flags( working_set, spans, &mut spans_idx, positional_idx, &signature, ); if let Some(short_flags) = short_flags { error = error.or(err); for flag in short_flags { if let Some(arg_shape) = flag.arg { if let Some(arg) = spans.get(spans_idx + 1) { let (arg, err) = parse_value(working_set, *arg, &arg_shape); error = error.or(err); call.named.push(( Spanned { item: flag.long.clone(), span: spans[spans_idx], }, Some(arg), )); spans_idx += 1; } else { error = error.or_else(|| { Some(ParseError::MissingFlagParam( arg_shape.to_string(), arg_span, )) }) } } else { call.named.push(( Spanned { item: flag.long.clone(), span: spans[spans_idx], }, None, )); } } spans_idx += 1; continue; } // Parse a positional arg if there is one if let Some(positional) = signature.get_positional(positional_idx) { let end = calculate_end_span(working_set, &signature, spans, spans_idx, positional_idx); let end = if spans.len() > spans_idx && end == spans_idx { end + 1 } else { end }; if spans[..end].is_empty() || spans_idx == end { error = error.or_else(|| { Some(ParseError::MissingPositional( positional.name.clone(), Span { start: spans[spans_idx].end, end: spans[spans_idx].end, }, signature.call_signature(), )) }); positional_idx += 1; continue; } let orig_idx = spans_idx; let (arg, err) = parse_multispan_value( working_set, &spans[..end], &mut spans_idx, &positional.shape, ); error = error.or(err); let arg = if !type_compatible(&positional.shape.to_type(), &arg.ty) { let span = span(&spans[orig_idx..spans_idx]); error = error.or_else(|| { Some(ParseError::TypeMismatch( positional.shape.to_type(), arg.ty, arg.span, )) }); Expression::garbage(span) } else { arg }; call.positional.push(arg); positional_idx += 1; } else { call.positional.push(Expression::garbage(arg_span)); error = error.or_else(|| { Some(ParseError::ExtraPositional( signature.call_signature(), arg_span, )) }) } error = error.or(err); spans_idx += 1; } let err = check_call(command_span, &signature, &call); error = error.or(err); if signature.creates_scope { working_set.exit_scope(); } // FIXME: output type unknown (Box::new(call), error) } pub fn parse_call( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases: bool, head: Span, ) -> (Expression, Option) { trace!("parsing: call"); if spans.is_empty() { return ( garbage(head), Some(ParseError::UnknownState( "Encountered command with zero spans".into(), span(spans), )), ); } let mut pos = 0; let cmd_start = pos; let mut name_spans = vec![]; let mut name = vec![]; for word_span in spans[cmd_start..].iter() { // Find the longest group of words that could form a command let bytes = working_set.get_span_contents(*word_span); if is_math_expression_like(bytes) && !working_set .permanent_state .external_exceptions .iter() .any(|x| x == bytes) { break; } name_spans.push(*word_span); let name_part = working_set.get_span_contents(*word_span); if name.is_empty() { name.extend(name_part); } else { name.push(b' '); name.extend(name_part); } if expand_aliases { // If the word is an alias, expand it and re-parse the expression if let Some(alias_id) = working_set.find_alias(&name) { trace!("expanding alias"); let expansion = working_set.get_alias(alias_id); let expansion_span = span(expansion); let orig_span = span(&[spans[cmd_start], spans[pos]]); let mut new_spans: Vec = vec![]; new_spans.extend(&spans[0..cmd_start]); new_spans.extend(expansion); if spans.len() > pos { new_spans.extend(&spans[(pos + 1)..]); } working_set.enter_scope(); working_set.hide_alias(&name); let (mut result, err) = parse_expression(working_set, &new_spans, false); working_set.exit_scope(); result.replace_span(working_set, expansion_span, orig_span); return (result, err); } } pos += 1; } let mut maybe_decl_id = working_set.find_decl(&name); while maybe_decl_id.is_none() { // Find the longest command match if name_spans.len() <= 1 { // Keep the first word even if it does not match -- could be external command break; } name_spans.pop(); pos -= 1; let mut name = vec![]; for name_span in &name_spans { let name_part = working_set.get_span_contents(*name_span); if name.is_empty() { name.extend(name_part); } else { name.push(b' '); name.extend(name_part); } } maybe_decl_id = working_set.find_decl(&name); } if let Some(decl_id) = maybe_decl_id { // Before the internal parsing we check if there is no let or alias declarations // that are missing their name, e.g.: let = 1 or alias = 2 if spans.len() > 1 { let test_equal = working_set.get_span_contents(spans[1]); if test_equal == [b'='] { trace!("incomplete statement"); return ( garbage(span(spans)), Some(ParseError::UnknownState( "Incomplete statement".into(), span(spans), )), ); } } trace!("parsing: internal call"); // parse internal command let (call, err) = parse_internal_call( working_set, span(&spans[cmd_start..pos]), &spans[pos..], decl_id, ); ( Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, // FIXME: calls should have known output types custom_completion: None, }, err, ) } else { // We might be parsing left-unbounded range ("..10") let bytes = working_set.get_span_contents(spans[0]); trace!("parsing: range {:?} ", bytes); if let (Some(b'.'), Some(b'.')) = (bytes.get(0), bytes.get(1)) { trace!("-- found leading range indicator"); let (range_expr, range_err) = parse_range(working_set, spans[0]); if range_err.is_none() { trace!("-- successfully parsed range"); return (range_expr, range_err); } } trace!("parsing: external call"); // Otherwise, try external command parse_external_call(working_set, spans) } } pub fn parse_binary( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { pub fn decode_hex(s: &str) -> Result, ParseIntError> { (0..s.len()) .step_by(2) .map(|i| u8::from_str_radix(&s[i..i + 2], 16)) .collect() } let token = working_set.get_span_contents(span); if let Some(token) = token.strip_prefix(b"0x[") { if let Some(token) = token.strip_suffix(b"]") { let (lexed, err) = lex(token, span.start + 3, &[b',', b'\r', b'\n'], &[], true); let mut hex_value = vec![]; for token in lexed { match token.contents { TokenContents::Item => { let contents = working_set.get_span_contents(token.span); hex_value.extend_from_slice(contents); } TokenContents::Pipe => { return ( garbage(span), Some(ParseError::Expected("binary".into(), span)), ); } TokenContents::Comment | TokenContents::Semicolon | TokenContents::Eol => {} } } if hex_value.len() % 2 != 0 { return ( garbage(span), Some(ParseError::IncorrectValue( "incomplete binary".into(), span, "number of binary digits needs to be a multiple of 2".into(), )), ); } let str = String::from_utf8_lossy(&hex_value).to_string(); match decode_hex(&str) { Ok(v) => { return ( Expression { expr: Expr::Binary(v), span, ty: Type::Binary, custom_completion: None, }, err, ) } Err(x) => { return ( garbage(span), Some(ParseError::IncorrectValue( "not a binary value".into(), span, x.to_string(), )), ) } } } } ( garbage(span), Some(ParseError::Expected("binary".into(), span)), ) } pub fn parse_int(token: &[u8], span: Span) -> (Expression, Option) { if let Some(token) = token.strip_prefix(b"0x") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 16) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Some(token) = token.strip_prefix(b"0b") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 2) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Some(token) = token.strip_prefix(b"0o") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 8) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Ok(x) = String::from_utf8_lossy(token).parse::() { ( Expression { expr: Expr::Int(x), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("int".into(), span)), ) } } pub fn parse_float(token: &[u8], span: Span) -> (Expression, Option) { if let Ok(x) = String::from_utf8_lossy(token).parse::() { ( Expression { expr: Expr::Float(x), span, ty: Type::Float, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("float".into(), span)), ) } } pub fn parse_number(token: &[u8], span: Span) -> (Expression, Option) { if let (x, None) = parse_int(token, span) { (x, None) } else if let (x, None) = parse_float(token, span) { (x, None) } else { ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } pub fn parse_range( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: range"); // Range follows the following syntax: [][][] // where is ".." // and is ".." or "..<" // and one of the or bounds must be present (just '..' is not allowed since it // looks like parent directory) let contents = working_set.get_span_contents(span); let token = if let Ok(s) = String::from_utf8(contents.into()) { s } else { return (garbage(span), Some(ParseError::NonUtf8(span))); }; if !token.contains("..") { return ( garbage(span), Some(ParseError::Expected( "at least one range bound set".into(), span, )), ); } // First, figure out what exact operators are used and determine their positions let dotdot_pos: Vec<_> = token.match_indices("..").map(|(pos, _)| pos).collect(); let (next_op_pos, range_op_pos) = match dotdot_pos.len() { 1 => (None, dotdot_pos[0]), 2 => (Some(dotdot_pos[0]), dotdot_pos[1]), _ => return ( garbage(span), Some(ParseError::Expected( "one range operator ('..' or '..<') and optionally one next operator ('..')" .into(), span, )), ), }; let (inclusion, range_op_str, range_op_span) = if let Some(pos) = token.find("..<") { if pos == range_op_pos { let op_str = "..<"; let op_span = Span::new( span.start + range_op_pos, span.start + range_op_pos + op_str.len(), ); (RangeInclusion::RightExclusive, "..<", op_span) } else { return ( garbage(span), Some(ParseError::Expected( "inclusive operator preceding second range bound".into(), span, )), ); } } else { let op_str = ".."; let op_span = Span::new( span.start + range_op_pos, span.start + range_op_pos + op_str.len(), ); (RangeInclusion::Inclusive, "..", op_span) }; // Now, based on the operator positions, figure out where the bounds & next are located and // parse them // TODO: Actually parse the next number in the range let from = if token.starts_with("..") { // token starts with either next operator, or range operator -- we don't care which one None } else { let from_span = Span::new(span.start, span.start + dotdot_pos[0]); match parse_value(working_set, from_span, &SyntaxShape::Number) { (expression, None) => Some(Box::new(expression)), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } }; let to = if token.ends_with(range_op_str) { None } else { let to_span = Span::new(range_op_span.end, span.end); match parse_value(working_set, to_span, &SyntaxShape::Number) { (expression, None) => Some(Box::new(expression)), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } }; trace!("-- from: {:?} to: {:?}", from, to); if let (None, None) = (&from, &to) { return ( garbage(span), Some(ParseError::Expected( "at least one range bound set".into(), span, )), ); } let (next, next_op_span) = if let Some(pos) = next_op_pos { let next_op_span = Span::new(span.start + pos, span.start + pos + "..".len()); let next_span = Span::new(next_op_span.end, range_op_span.start); match parse_value(working_set, next_span, &SyntaxShape::Number) { (expression, None) => (Some(Box::new(expression)), next_op_span), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } } else { (None, span) }; let range_op = RangeOperator { inclusion, span: range_op_span, next_op_span, }; ( Expression { expr: Expr::Range(from, next, to, range_op), span, ty: Type::Range, custom_completion: None, }, None, ) } pub(crate) fn parse_dollar_expr( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: dollar expression"); let contents = working_set.get_span_contents(span); if contents.starts_with(b"$\"") || contents.starts_with(b"$'") { parse_string_interpolation(working_set, span) } else if let (expr, None) = parse_range(working_set, span) { (expr, None) } else { parse_full_cell_path(working_set, None, span) } } pub fn parse_string_interpolation( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { #[derive(PartialEq, Eq, Debug)] enum InterpolationMode { String, Expression, } let mut error = None; let contents = working_set.get_span_contents(span); let (start, end) = if contents.starts_with(b"$\"") { let end = if contents.ends_with(b"\"") && contents.len() > 2 { span.end - 1 } else { span.end }; (span.start + 2, end) } else if contents.starts_with(b"$'") { let end = if contents.ends_with(b"'") && contents.len() > 2 { span.end - 1 } else { span.end }; (span.start + 2, end) } else { (span.start, span.end) }; let inner_span = Span { start, end }; let contents = working_set.get_span_contents(inner_span).to_vec(); let mut output = vec![]; let mut mode = InterpolationMode::String; let mut token_start = start; let mut delimiter_stack = vec![]; let mut b = start; #[allow(clippy::needless_range_loop)] while b != end { if contents[b - start] == b'(' && mode == InterpolationMode::String { mode = InterpolationMode::Expression; if token_start < b { let span = Span { start: token_start, end: b, }; let str_contents = working_set.get_span_contents(span); output.push(Expression { expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()), span, ty: Type::String, custom_completion: None, }); token_start = b; } } if mode == InterpolationMode::Expression { let byte = contents[b - start]; if let Some(b'\'') = delimiter_stack.last() { if byte == b'\'' { delimiter_stack.pop(); } } else if let Some(b'"') = delimiter_stack.last() { if byte == b'"' { delimiter_stack.pop(); } } else if byte == b'\'' { delimiter_stack.push(b'\'') } else if byte == b'"' { delimiter_stack.push(b'"'); } else if byte == b'(' { delimiter_stack.push(b')'); } else if byte == b')' { if let Some(b')') = delimiter_stack.last() { delimiter_stack.pop(); } if delimiter_stack.is_empty() { mode = InterpolationMode::String; if token_start < b { let span = Span { start: token_start, end: b + 1, }; let (expr, err) = parse_full_cell_path(working_set, None, span); error = error.or(err); output.push(expr); } token_start = b + 1; continue; } } } b += 1; } match mode { InterpolationMode::String => { if token_start < end { let span = Span { start: token_start, end, }; let str_contents = working_set.get_span_contents(span); output.push(Expression { expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()), span, ty: Type::String, custom_completion: None, }); } } InterpolationMode::Expression => { if token_start < end { let span = Span { start: token_start, end, }; let (expr, err) = parse_full_cell_path(working_set, None, span); error = error.or(err); output.push(expr); } } } ( Expression { expr: Expr::StringInterpolation(output), span, ty: Type::String, custom_completion: None, }, error, ) } pub fn parse_variable_expr( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); if contents == b"$true" { return ( Expression { expr: Expr::Bool(true), span, ty: Type::Bool, custom_completion: None, }, None, ); } else if contents == b"$false" { return ( Expression { expr: Expr::Bool(false), span, ty: Type::Bool, custom_completion: None, }, None, ); } else if contents == b"$nothing" { return ( Expression { expr: Expr::Nothing, span, ty: Type::Nothing, custom_completion: None, }, None, ); } else if contents == b"$nu" { return ( Expression { expr: Expr::Var(nu_protocol::NU_VARIABLE_ID), span, ty: Type::Unknown, custom_completion: None, }, None, ); } else if contents == b"$scope" { return ( Expression { expr: Expr::Var(nu_protocol::SCOPE_VARIABLE_ID), span, ty: Type::Unknown, custom_completion: None, }, None, ); } else if contents == b"$in" { return ( Expression { expr: Expr::Var(nu_protocol::IN_VARIABLE_ID), span, ty: Type::Unknown, custom_completion: None, }, None, ); } else if contents == b"$config" { return ( Expression { expr: Expr::Var(nu_protocol::CONFIG_VARIABLE_ID), span, ty: Type::Unknown, custom_completion: None, }, None, ); } else if contents == b"$env" { return ( Expression { expr: Expr::Var(nu_protocol::ENV_VARIABLE_ID), span, ty: Type::Unknown, custom_completion: None, }, None, ); } let (id, err) = parse_variable(working_set, span); if err.is_none() { if let Some(id) = id { ( Expression { expr: Expr::Var(id), span, ty: working_set.get_variable(id).clone(), custom_completion: None, }, None, ) } else { (garbage(span), Some(ParseError::VariableNotFound(span))) } } else { (garbage(span), err) } } pub fn parse_cell_path( working_set: &mut StateWorkingSet, tokens: impl Iterator, mut expect_dot: bool, span: Span, ) -> (Vec, Option) { let mut error = None; let mut tail = vec![]; for path_element in tokens { let bytes = working_set.get_span_contents(path_element.span); if expect_dot { expect_dot = false; if bytes.len() != 1 || bytes[0] != b'.' { error = error.or_else(|| Some(ParseError::Expected('.'.into(), path_element.span))); } } else { expect_dot = true; match parse_int(bytes, path_element.span) { ( Expression { expr: Expr::Int(val), span, .. }, None, ) => tail.push(PathMember::Int { val: val as usize, span, }), _ => { let (result, err) = parse_string(working_set, path_element.span); error = error.or(err); match result { Expression { expr: Expr::String(string), span, .. } => { tail.push(PathMember::String { val: string, span }); } _ => { error = error.or_else(|| Some(ParseError::Expected("string".into(), span))); } } } } } } (tail, error) } pub fn parse_full_cell_path( working_set: &mut StateWorkingSet, implicit_head: Option, span: Span, ) -> (Expression, Option) { let full_cell_span = span; let source = working_set.get_span_contents(span); let mut error = None; let (tokens, err) = lex(source, span.start, &[b'\n', b'\r'], &[b'.'], true); error = error.or(err); let mut tokens = tokens.into_iter().peekable(); if let Some(head) = tokens.peek() { let bytes = working_set.get_span_contents(head.span); let (head, expect_dot) = if bytes.starts_with(b"(") { trace!("parsing: paren-head of full cell path"); let head_span = head.span; let mut start = head.span.start; let mut end = head.span.end; if bytes.starts_with(b"(") { start += 1; } if bytes.ends_with(b")") { end -= 1; } else { error = error .or_else(|| Some(ParseError::Unclosed(")".into(), Span { start: end, end }))); } let span = Span { start, end }; let source = working_set.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b'\r'], &[], true); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = parse_block(working_set, &output, true); error = error.or(err); let block_id = working_set.add_block(output); tokens.next(); ( Expression { expr: Expr::Subexpression(block_id), span: head_span, ty: Type::Unknown, // FIXME custom_completion: None, }, true, ) } else if bytes.starts_with(b"[") { trace!("parsing: table head of full cell path"); let (output, err) = parse_table_expression(working_set, head.span); error = error.or(err); tokens.next(); (output, true) } else if bytes.starts_with(b"{") { trace!("parsing: record head of full cell path"); let (output, err) = parse_record(working_set, head.span); error = error.or(err); tokens.next(); (output, true) } else if bytes.starts_with(b"$") { trace!("parsing: $variable head of full cell path"); let (out, err) = parse_variable_expr(working_set, head.span); error = error.or(err); tokens.next(); (out, true) } else if let Some(var_id) = implicit_head { ( Expression { expr: Expr::Var(var_id), span, ty: Type::Unknown, custom_completion: None, }, false, ) } else { return ( garbage(span), Some(ParseError::Mismatch( "variable or subexpression".into(), String::from_utf8_lossy(bytes).to_string(), span, )), ); }; let (tail, err) = parse_cell_path(working_set, tokens, expect_dot, span); error = error.or(err); if !tail.is_empty() { ( Expression { expr: Expr::FullCellPath(Box::new(FullCellPath { head, tail })), ty: Type::Unknown, span: full_cell_span, custom_completion: None, }, error, ) } else { let ty = head.ty.clone(); ( Expression { expr: Expr::FullCellPath(Box::new(FullCellPath { head, tail })), ty, span: full_cell_span, custom_completion: None, }, error, ) } } else { (garbage(span), error) } } pub fn parse_filepath( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let bytes = trim_quotes(bytes); trace!("parsing: filepath"); if let Ok(token) = String::from_utf8(bytes.into()) { trace!("-- found {}", token); ( Expression { expr: Expr::Filepath(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("filepath".into(), span)), ) } } /// Parse a datetime type, eg '2022-02-02' pub fn parse_datetime( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: datetime"); let bytes = working_set.get_span_contents(span); if bytes.is_empty() || !bytes[0].is_ascii_digit() { return ( garbage(span), Some(ParseError::Mismatch( "datetime".into(), "non-datetime".into(), span, )), ); } let token = String::from_utf8_lossy(bytes).to_string(); if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&token) { return ( Expression { expr: Expr::DateTime(datetime), span, ty: Type::Date, custom_completion: None, }, None, ); } // Just the date let just_date = token.clone() + "T00:00:00+00:00"; if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&just_date) { return ( Expression { expr: Expr::DateTime(datetime), span, ty: Type::Date, custom_completion: None, }, None, ); } // Date and time, assume UTC let datetime = token + "+00:00"; if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&datetime) { return ( Expression { expr: Expr::DateTime(datetime), span, ty: Type::Date, custom_completion: None, }, None, ); } ( garbage(span), Some(ParseError::Mismatch( "datetime".into(), "non-datetime".into(), span, )), ) } /// Parse a duration type, eg '10day' pub fn parse_duration( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: duration"); fn parse_decimal_str_to_number(decimal: &str) -> Option { let string_to_parse = format!("0.{}", decimal); if let Ok(x) = string_to_parse.parse::() { return Some((1_f64 / x) as i64); } None } let bytes = working_set.get_span_contents(span); if bytes.is_empty() || (!bytes[0].is_ascii_digit() && bytes[0] != b'-') { return ( garbage(span), Some(ParseError::Mismatch( "duration".into(), "non-duration unit".into(), span, )), ); } let token = String::from_utf8_lossy(bytes).to_string(); let upper = token.to_uppercase(); let unit_groups = [ (Unit::Nanosecond, "NS", None), (Unit::Microsecond, "US", Some((Unit::Nanosecond, 1000))), (Unit::Millisecond, "MS", Some((Unit::Microsecond, 1000))), (Unit::Second, "SEC", Some((Unit::Millisecond, 1000))), (Unit::Minute, "MIN", Some((Unit::Second, 60))), (Unit::Hour, "HR", Some((Unit::Minute, 60))), (Unit::Day, "DAY", Some((Unit::Minute, 1440))), (Unit::Week, "WK", Some((Unit::Day, 7))), ]; if let Some(unit) = unit_groups.iter().find(|&x| upper.ends_with(x.1)) { let mut lhs = token; for _ in 0..unit.1.len() { lhs.pop(); } let input: Vec<&str> = lhs.split('.').collect(); let (value, unit_to_use) = match &input[..] { [number_str] => (number_str.parse::().ok(), unit.0), [number_str, decimal_part_str] => match unit.2 { Some(unit_to_convert_to) => match ( number_str.parse::(), parse_decimal_str_to_number(decimal_part_str), ) { (Ok(number), Some(decimal_part)) => ( Some( (number * unit_to_convert_to.1) + (unit_to_convert_to.1 / decimal_part), ), unit_to_convert_to.0, ), _ => (None, unit.0), }, None => (None, unit.0), }, _ => (None, unit.0), }; if let Some(x) = value { trace!("-- found {} {:?}", x, unit_to_use); let lhs_span = Span::new(span.start, span.start + lhs.len()); let unit_span = Span::new(span.start + lhs.len(), span.end); return ( Expression { expr: Expr::ValueWithUnit( Box::new(Expression { expr: Expr::Int(x), span: lhs_span, ty: Type::Number, custom_completion: None, }), Spanned { item: unit_to_use, span: unit_span, }, ), span, ty: Type::Duration, custom_completion: None, }, None, ); } } ( garbage(span), Some(ParseError::Mismatch( "duration".into(), "non-duration unit".into(), span, )), ) } /// Parse a unit type, eg '10kb' pub fn parse_filesize( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: duration"); fn parse_decimal_str_to_number(decimal: &str) -> Option { let string_to_parse = format!("0.{}", decimal); if let Ok(x) = string_to_parse.parse::() { return Some((1_f64 / x) as i64); } None } let bytes = working_set.get_span_contents(span); if bytes.is_empty() || (!bytes[0].is_ascii_digit() && bytes[0] != b'-') { return ( garbage(span), Some(ParseError::Mismatch( "filesize".into(), "non-filesize unit".into(), span, )), ); } let token = String::from_utf8_lossy(bytes).to_string(); let upper = token.to_uppercase(); let unit_groups = [ (Unit::Kilobyte, "KB", Some((Unit::Byte, 1000))), (Unit::Megabyte, "MB", Some((Unit::Kilobyte, 1000))), (Unit::Gigabyte, "GB", Some((Unit::Megabyte, 1000))), (Unit::Terabyte, "TB", Some((Unit::Gigabyte, 1000))), (Unit::Petabyte, "PB", Some((Unit::Terabyte, 1000))), (Unit::Kibibyte, "KIB", Some((Unit::Byte, 1024))), (Unit::Mebibyte, "MIB", Some((Unit::Kibibyte, 1024))), (Unit::Gibibyte, "GIB", Some((Unit::Mebibyte, 1024))), (Unit::Tebibyte, "TIB", Some((Unit::Gibibyte, 1024))), (Unit::Pebibyte, "PIB", Some((Unit::Tebibyte, 1024))), (Unit::Byte, "B", None), ]; if let Some(unit) = unit_groups.iter().find(|&x| upper.ends_with(x.1)) { let mut lhs = token; for _ in 0..unit.1.len() { lhs.pop(); } let input: Vec<&str> = lhs.split('.').collect(); let (value, unit_to_use) = match &input[..] { [number_str] => (number_str.parse::().ok(), unit.0), [number_str, decimal_part_str] => match unit.2 { Some(unit_to_convert_to) => match ( number_str.parse::(), parse_decimal_str_to_number(decimal_part_str), ) { (Ok(number), Some(decimal_part)) => ( Some( (number * unit_to_convert_to.1) + (unit_to_convert_to.1 / decimal_part), ), unit_to_convert_to.0, ), _ => (None, unit.0), }, None => (None, unit.0), }, _ => (None, unit.0), }; if let Some(x) = value { trace!("-- found {} {:?}", x, unit_to_use); let lhs_span = Span::new(span.start, span.start + lhs.len()); let unit_span = Span::new(span.start + lhs.len(), span.end); return ( Expression { expr: Expr::ValueWithUnit( Box::new(Expression { expr: Expr::Int(x), span: lhs_span, ty: Type::Number, custom_completion: None, }), Spanned { item: unit_to_use, span: unit_span, }, ), span, ty: Type::Filesize, custom_completion: None, }, None, ); } } ( garbage(span), Some(ParseError::Mismatch( "filesize".into(), "non-filesize unit".into(), span, )), ) } pub fn parse_glob_pattern( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: glob pattern"); let bytes = working_set.get_span_contents(span); let bytes = trim_quotes(bytes); if let Ok(token) = String::from_utf8(bytes.into()) { trace!("-- found {}", token); ( Expression { expr: Expr::GlobPattern(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } } pub fn parse_string( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: string"); let bytes = working_set.get_span_contents(span); let bytes = trim_quotes(bytes); if let Ok(token) = String::from_utf8(bytes.into()) { trace!("-- found {}", token); ( Expression { expr: Expr::String(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } } pub fn parse_string_strict( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: string, with required delimiters"); let bytes = working_set.get_span_contents(span); // Check for unbalanced quotes: if (bytes.starts_with(b"\"") || (bytes.starts_with(b"$\""))) && !bytes.ends_with(b"\"") { return (garbage(span), Some(ParseError::Unclosed("\"".into(), span))); } if (bytes.starts_with(b"\'") || (bytes.starts_with(b"$\""))) && !bytes.ends_with(b"\'") { return (garbage(span), Some(ParseError::Unclosed("\'".into(), span))); } let (bytes, quoted) = if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1) || (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1) { (&bytes[1..(bytes.len() - 1)], true) } else { (bytes, false) }; if let Ok(token) = String::from_utf8(bytes.into()) { trace!("-- found {}", token); if quoted { ( Expression { expr: Expr::String(token), span, ty: Type::String, custom_completion: None, }, None, ) } else if token.contains(' ') { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } else { ( Expression { expr: Expr::String(token), span, ty: Type::String, custom_completion: None, }, None, ) } } else { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } } //TODO: Handle error case for unknown shapes pub fn parse_shape_name( working_set: &StateWorkingSet, bytes: &[u8], span: Span, ) -> (SyntaxShape, Option) { let result = match bytes { b"any" => SyntaxShape::Any, b"binary" => SyntaxShape::Binary, b"block" => SyntaxShape::Block(None), //FIXME: Blocks should have known output types b"cell-path" => SyntaxShape::CellPath, b"duration" => SyntaxShape::Duration, b"path" => SyntaxShape::Filepath, b"expr" => SyntaxShape::Expression, b"filesize" => SyntaxShape::Filesize, b"glob" => SyntaxShape::GlobPattern, b"int" => SyntaxShape::Int, b"math" => SyntaxShape::MathExpression, b"number" => SyntaxShape::Number, b"operator" => SyntaxShape::Operator, b"range" => SyntaxShape::Range, b"cond" => SyntaxShape::RowCondition, b"bool" => SyntaxShape::Boolean, b"signature" => SyntaxShape::Signature, b"string" => SyntaxShape::String, b"variable" => SyntaxShape::Variable, _ => { if bytes.contains(&b'@') { let str = String::from_utf8_lossy(bytes); let split: Vec<_> = str.split('@').collect(); let (shape, err) = parse_shape_name( working_set, split[0].as_bytes(), Span { start: span.start, end: span.start + split[0].len(), }, ); let command_name = trim_quotes(split[1].as_bytes()); return ( SyntaxShape::Custom( Box::new(shape), String::from_utf8_lossy(command_name).to_string(), ), err, ); } else { return (SyntaxShape::Any, Some(ParseError::UnknownType(span))); } } }; (result, None) } pub fn parse_type(_working_set: &StateWorkingSet, bytes: &[u8]) -> Type { match bytes { b"int" => Type::Int, b"float" => Type::Float, b"range" => Type::Range, b"bool" => Type::Bool, b"string" => Type::String, b"block" => Type::Block, b"duration" => Type::Duration, b"date" => Type::Date, b"filesize" => Type::Filesize, b"number" => Type::Number, b"table" => Type::Table, b"error" => Type::Error, b"binary" => Type::Binary, _ => Type::Unknown, } } pub fn parse_import_pattern( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Expression, Option) { let mut error = None; let (head, head_span) = if let Some(head_span) = spans.get(0) { ( working_set.get_span_contents(*head_span).to_vec(), head_span, ) } else { return ( garbage(span(spans)), Some(ParseError::WrongImportPattern(span(spans))), ); }; let maybe_overlay_id = working_set.find_overlay(&head); let (import_pattern, err) = if let Some(tail_span) = spans.get(1) { // FIXME: expand this to handle deeper imports once we support module imports let tail = working_set.get_span_contents(*tail_span); if tail == b"*" { ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_overlay_id, span: *head_span, }, members: vec![ImportPatternMember::Glob { span: *tail_span }], hidden: HashSet::new(), }, None, ) } else if tail.starts_with(b"[") { let (result, err) = parse_list_expression(working_set, *tail_span, &SyntaxShape::String); error = error.or(err); let mut output = vec![]; match result { Expression { expr: Expr::List(list), .. } => { for l in list { let contents = working_set.get_span_contents(l.span); output.push((contents.to_vec(), l.span)); } ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_overlay_id, span: *head_span, }, members: vec![ImportPatternMember::List { names: output }], hidden: HashSet::new(), }, None, ) } _ => ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_overlay_id, span: *head_span, }, members: vec![], hidden: HashSet::new(), }, Some(ParseError::ExportNotFound(result.span)), ), } } else { let tail = trim_quotes(tail); ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_overlay_id, span: *head_span, }, members: vec![ImportPatternMember::Name { name: tail.to_vec(), span: *tail_span, }], hidden: HashSet::new(), }, None, ) } } else { ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_overlay_id, span: *head_span, }, members: vec![], hidden: HashSet::new(), }, None, ) }; ( Expression { expr: Expr::ImportPattern(import_pattern), span: span(&spans[1..]), ty: Type::List(Box::new(Type::String)), custom_completion: None, }, error.or(err), ) } pub fn parse_var_with_opt_type( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(spans[*spans_idx]).to_vec(); if bytes.contains(&b' ') || bytes.contains(&b'"') || bytes.contains(&b'\'') { return ( garbage(spans[*spans_idx]), Some(ParseError::VariableNotValid(spans[*spans_idx])), ); } if bytes.ends_with(b":") { // We end with colon, so the next span should be the type if *spans_idx + 1 < spans.len() { *spans_idx += 1; let type_bytes = working_set.get_span_contents(spans[*spans_idx]); let ty = parse_type(working_set, type_bytes); let id = working_set.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), ty.clone()); ( Expression { expr: Expr::VarDecl(id), span: span(&spans[*spans_idx - 1..*spans_idx + 1]), ty, custom_completion: None, }, None, ) } else { let id = working_set.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), Type::Unknown); ( Expression { expr: Expr::VarDecl(id), span: spans[*spans_idx], ty: Type::Unknown, custom_completion: None, }, Some(ParseError::MissingType(spans[*spans_idx])), ) } } else if bytes == b"$config" || bytes == b"config" { ( Expression { expr: Expr::Var(CONFIG_VARIABLE_ID), span: spans[*spans_idx], ty: Type::Unknown, custom_completion: None, }, None, ) } else { let id = working_set.add_variable(bytes, Type::Unknown); ( Expression { expr: Expr::VarDecl(id), span: span(&spans[*spans_idx..*spans_idx + 1]), ty: Type::Unknown, custom_completion: None, }, None, ) } } pub fn expand_to_cell_path( working_set: &mut StateWorkingSet, expression: &mut Expression, var_id: VarId, ) { if let Expression { expr: Expr::String(_), span, .. } = expression { // Re-parse the string as if it were a cell-path let (new_expression, _err) = parse_full_cell_path(working_set, Some(var_id), *span); *expression = new_expression; } } pub fn parse_row_condition( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Expression, Option) { let var_id = working_set.add_variable(b"$it".to_vec(), Type::Unknown); let (expression, err) = parse_math_expression(working_set, spans, Some(var_id)); let span = span(spans); let block_id = match expression.expr { Expr::Block(block_id) => block_id, _ => { // We have an expression, so let's convert this into a block. let mut block = Block::new(); let mut pipeline = Pipeline::new(); pipeline.expressions.push(expression); block.pipelines.push(pipeline); block.signature.required_positional.push(PositionalArg { name: "$it".into(), desc: "row condition".into(), shape: SyntaxShape::Any, var_id: Some(var_id), }); working_set.add_block(block) } }; ( Expression { ty: Type::Bool, span, expr: Expr::RowCondition(block_id), custom_completion: None, }, err, ) } pub fn parse_signature( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } else { error = error.or_else(|| { Some(ParseError::Expected( "[".into(), Span { start, end: start + 1, }, )) }); } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("]".into(), Span { start: end, end }))); } let (sig, err) = parse_signature_helper(working_set, Span { start, end }); error = error.or(err); ( Expression { expr: Expr::Signature(sig), span, ty: Type::Signature, custom_completion: None, }, error, ) } pub fn parse_signature_helper( working_set: &mut StateWorkingSet, span: Span, ) -> (Box, Option) { enum ParseMode { ArgMode, TypeMode, } enum Arg { Positional(PositionalArg, bool), // bool - required Flag(Flag), } let mut error = None; let source = working_set.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b'\r', b','], &[b':'], false); error = error.or(err); let mut args: Vec = vec![]; let mut rest_arg = None; let mut parse_mode = ParseMode::ArgMode; for token in &output { match token { Token { contents: crate::TokenContents::Item, span, } => { let span = *span; let contents = working_set.get_span_contents(span); if contents == b":" { match parse_mode { ParseMode::ArgMode => { parse_mode = ParseMode::TypeMode; } ParseMode::TypeMode => { // We're seeing two types for the same thing for some reason, error error = error.or_else(|| Some(ParseError::Expected("type".into(), span))); } } } else { match parse_mode { ParseMode::ArgMode => { if contents.starts_with(b"--") && contents.len() > 2 { // Long flag let flags: Vec<_> = contents.split(|x| x == &b'(').map(|x| x.to_vec()).collect(); let long = String::from_utf8_lossy(&flags[0][2..]).to_string(); let variable_name = flags[0][2..].to_vec(); let var_id = working_set.add_variable(variable_name, Type::Unknown); if flags.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: None, required: false, var_id: Some(var_id), })); } else { let short_flag = &flags[1]; let short_flag = if !short_flag.starts_with(b"-") || !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); short_flag } else { &short_flag[1..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); let long = String::from_utf8_lossy(&flags[0][2..]).to_string(); let variable_name = flags[0][2..].to_vec(); let var_id = working_set.add_variable(variable_name, Type::Unknown); if chars.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: Some(chars[0]), required: false, var_id: Some(var_id), })); } else { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } } } else if contents.starts_with(b"-") && contents.len() > 1 { // Short flag let short_flag = &contents[1..]; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() > 1 { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } let mut encoded_var_name = vec![0u8; 4]; let len = chars[0].encode_utf8(&mut encoded_var_name).len(); let variable_name = encoded_var_name[0..len].to_vec(); let var_id = working_set.add_variable(variable_name, Type::Unknown); args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long: String::new(), short: Some(chars[0]), required: false, var_id: Some(var_id), })); } else if contents.starts_with(b"(-") { let short_flag = &contents[2..]; let short_flag = if !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); short_flag } else { &short_flag[..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() == 1 { match args.last_mut() { Some(Arg::Flag(flag)) => { if flag.short.is_some() { error = error.or_else(|| { Some(ParseError::Expected( "one short flag".into(), span, )) }); } else { flag.short = Some(chars[0]); } } _ => { error = error.or_else(|| { Some(ParseError::Expected( "unknown flag".into(), span, )) }); } } } else { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } } else if contents.ends_with(b"?") { let contents: Vec<_> = contents[..(contents.len() - 1)].into(); let name = String::from_utf8_lossy(&contents).to_string(); let var_id = working_set.add_variable(contents, Type::Unknown); // Positional arg, optional args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, false, )) } else if let Some(contents) = contents.strip_prefix(b"...") { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec: Vec = contents.to_vec(); let var_id = working_set.add_variable(contents_vec, Type::Unknown); if rest_arg.is_none() { rest_arg = Some(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, false, )); } else { error = error.or(Some(ParseError::MultipleRestParams(span))) } } else { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec = contents.to_vec(); let var_id = working_set.add_variable(contents_vec, Type::Unknown); // Positional arg, required args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, true, )) } } ParseMode::TypeMode => { if let Some(last) = args.last_mut() { let (syntax_shape, err) = parse_shape_name(working_set, contents, span); error = error.or(err); //TODO check if we're replacing a custom parameter already match last { Arg::Positional(PositionalArg { shape, var_id, .. }, ..) => { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *shape = syntax_shape; } Arg::Flag(Flag { arg, var_id, .. }) => { // Flags with a boolean type are just present/not-present switches if syntax_shape != SyntaxShape::Boolean { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *arg = Some(syntax_shape) } } } } parse_mode = ParseMode::ArgMode; } } } } Token { contents: crate::TokenContents::Comment, span, } => { let contents = working_set.get_span_contents(Span { start: span.start + 1, end: span.end, }); let mut contents = String::from_utf8_lossy(contents).to_string(); contents = contents.trim().into(); if let Some(last) = args.last_mut() { match last { Arg::Flag(flag) => { if !flag.desc.is_empty() { flag.desc.push('\n'); } flag.desc.push_str(&contents); } Arg::Positional(positional, ..) => { if !positional.desc.is_empty() { positional.desc.push('\n'); } positional.desc.push_str(&contents); } } } } _ => {} } } let mut sig = Signature::new(String::new()); if let Some(Arg::Positional(positional, ..)) = rest_arg { if positional.name.is_empty() { error = error.or(Some(ParseError::RestNeedsName(span))) } else if sig.rest_positional.is_none() { sig.rest_positional = Some(PositionalArg { name: positional.name, ..positional }) } else { // Too many rest params error = error.or(Some(ParseError::MultipleRestParams(span))) } } for arg in args { match arg { Arg::Positional(positional, required) => { if required { sig.required_positional.push(positional) } else { sig.optional_positional.push(positional) } } Arg::Flag(flag) => sig.named.push(flag), } } (Box::new(sig), error) } pub fn parse_list_expression( working_set: &mut StateWorkingSet, span: Span, element_shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("]".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, inner_span.start, &[b'\n', b'\r', b','], &[], true); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let mut args = vec![]; let mut contained_type: Option = None; if !output.block.is_empty() { for arg in &output.block[0].commands { let mut spans_idx = 0; while spans_idx < arg.parts.len() { let (arg, err) = parse_multispan_value(working_set, &arg.parts, &mut spans_idx, element_shape); error = error.or(err); if let Some(ref ctype) = contained_type { if *ctype != arg.ty { contained_type = Some(Type::Unknown); } } else { contained_type = Some(arg.ty.clone()); } args.push(arg); spans_idx += 1; } } } ( Expression { expr: Expr::List(args), span, ty: Type::List(Box::new(if let Some(ty) = contained_type { ty } else { Type::Unknown })), custom_completion: None, }, error, ) } pub fn parse_table_expression( working_set: &mut StateWorkingSet, original_span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(original_span); let mut error = None; let mut start = original_span.start; let mut end = original_span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("]".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, start, &[b'\n', b'\r', b','], &[], true); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); match output.block.len() { 0 => ( Expression { expr: Expr::List(vec![]), span: original_span, ty: Type::List(Box::new(Type::Unknown)), custom_completion: None, }, None, ), 1 => { // List parse_list_expression(working_set, original_span, &SyntaxShape::Any) } _ => { let mut table_headers = vec![]; let (headers, err) = parse_value( working_set, output.block[0].commands[0].parts[0], &SyntaxShape::List(Box::new(SyntaxShape::Any)), ); error = error.or(err); if let Expression { expr: Expr::List(headers), .. } = headers { table_headers = headers; } let mut rows = vec![]; for part in &output.block[1].commands[0].parts { let (values, err) = parse_value( working_set, *part, &SyntaxShape::List(Box::new(SyntaxShape::Any)), ); error = error.or(err); if let Expression { expr: Expr::List(values), span, .. } = values { match values.len().cmp(&table_headers.len()) { std::cmp::Ordering::Less => { error = error .or(Some(ParseError::MissingColumns(table_headers.len(), span))) } std::cmp::Ordering::Equal => {} std::cmp::Ordering::Greater => { error = error.or_else(|| { Some(ParseError::ExtraColumns( table_headers.len(), values[table_headers.len()].span, )) }) } } rows.push(values); } } ( Expression { expr: Expr::Table(table_headers, rows), span: original_span, ty: Type::Table, custom_completion: None, }, error, ) } } } pub fn parse_block_expression( working_set: &mut StateWorkingSet, shape: &SyntaxShape, span: Span, ) -> (Expression, Option) { trace!("parsing: block expression"); let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { return ( garbage(span), Some(ParseError::Expected("block".into(), span)), ); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("}".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, start, &[], &[], false); error = error.or(err); working_set.enter_scope(); // Check to see if we have parameters let (signature, amt_to_skip): (Option<(Box, Span)>, usize) = match output.first() { Some(Token { contents: TokenContents::Pipe, span, }) => { // We've found a parameter list let start_point = span.start; let mut token_iter = output.iter().enumerate().skip(1); let mut end_span = None; let mut amt_to_skip = 1; for token in &mut token_iter { if let Token { contents: TokenContents::Pipe, span, } = token.1 { end_span = Some(span); amt_to_skip = token.0; break; } } let end_point = if let Some(span) = end_span { span.end } else { end }; let signature_span = Span { start: start_point, end: end_point, }; let (signature, err) = parse_signature_helper(working_set, signature_span); error = error.or(err); (Some((signature, signature_span)), amt_to_skip) } _ => (None, 0), }; let (output, err) = lite_parse(&output[amt_to_skip..]); error = error.or(err); // TODO: Finish this if let SyntaxShape::Block(Some(v)) = shape { if let Some((sig, sig_span)) = &signature { if sig.num_positionals() != v.len() { error = error.or_else(|| { Some(ParseError::Expected( format!( "{} block parameter{}", v.len(), if v.len() > 1 { "s" } else { "" } ), *sig_span, )) }); } for (expected, PositionalArg { name, shape, .. }) in v.iter().zip(sig.required_positional.iter()) { if expected != shape && *shape != SyntaxShape::Any { error = error.or_else(|| { Some(ParseError::ParameterMismatchType( name.to_owned(), expected.to_string(), shape.to_string(), *sig_span, )) }); } } } else if !v.is_empty() { error = error.or_else(|| { Some(ParseError::Expected( format!( "{} block parameter{}", v.len(), if v.len() > 1 { "s" } else { "" } ), Span { start: span.start + 1, end: span.start + 1, }, )) }); } } let (mut output, err) = parse_block(working_set, &output, false); error = error.or(err); if let Some(signature) = signature { output.signature = signature.0; } else if let Some(last) = working_set.delta.scope.last() { // FIXME: this only supports the top $it. Is this sufficient? if let Some(var_id) = last.get_var(b"$it") { let mut signature = Signature::new(""); signature.required_positional.push(PositionalArg { var_id: Some(*var_id), name: "$it".into(), desc: String::new(), shape: SyntaxShape::Any, }); output.signature = Box::new(signature); } } output.span = Some(span); working_set.exit_scope(); let block_id = working_set.add_block(output); ( Expression { expr: Expr::Block(block_id), span, ty: Type::Block, custom_completion: None, }, error, ) } pub fn parse_value( working_set: &mut StateWorkingSet, span: Span, shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); if bytes.is_empty() { return (garbage(span), Some(ParseError::IncompleteParser(span))); } // First, check the special-cases. These will likely represent specific values as expressions // and may fit a variety of shapes. // // We check variable first because immediately following we check for variables with cell paths // which might result in a value that fits other shapes (and require the variable to already be // declared) if shape == &SyntaxShape::Variable { trace!("parsing: variable"); return parse_variable_expr(working_set, span); } match bytes[0] { b'$' => return parse_dollar_expr(working_set, span), b'(' => { if let (expr, None) = parse_range(working_set, span) { return (expr, None); } else { return parse_full_cell_path(working_set, None, span); } } b'{' => { if !matches!(shape, SyntaxShape::Block(..)) { if let (expr, None) = parse_full_cell_path(working_set, None, span) { return (expr, None); } } if matches!(shape, SyntaxShape::Block(_)) || matches!(shape, SyntaxShape::Any) { return parse_block_expression(working_set, shape, span); } else if matches!(shape, SyntaxShape::Record) { return parse_record(working_set, span); } else { return ( Expression::garbage(span), Some(ParseError::Expected("non-block value".into(), span)), ); } } b'[' => match shape { SyntaxShape::Any | SyntaxShape::List(_) | SyntaxShape::Table | SyntaxShape::Signature => {} _ => { return ( Expression::garbage(span), Some(ParseError::Expected("non-[] value".into(), span)), ); } }, _ => {} } match shape { SyntaxShape::Custom(shape, custom_completion) => { let (mut expression, err) = parse_value(working_set, span, shape); expression.custom_completion = Some(custom_completion.clone()); (expression, err) } SyntaxShape::Number => parse_number(bytes, span), SyntaxShape::Int => parse_int(bytes, span), SyntaxShape::Duration => parse_duration(working_set, span), SyntaxShape::DateTime => parse_datetime(working_set, span), SyntaxShape::Filesize => parse_filesize(working_set, span), SyntaxShape::Range => parse_range(working_set, span), SyntaxShape::Filepath => parse_filepath(working_set, span), SyntaxShape::GlobPattern => parse_glob_pattern(working_set, span), SyntaxShape::String => parse_string(working_set, span), SyntaxShape::Binary => parse_binary(working_set, span), SyntaxShape::Block(_) => { if bytes.starts_with(b"{") { trace!("parsing value as a block expression"); parse_block_expression(working_set, shape, span) } else { ( Expression::garbage(span), Some(ParseError::Expected("block".into(), span)), ) } } SyntaxShape::Signature => { if bytes.starts_with(b"[") { parse_signature(working_set, span) } else { ( Expression::garbage(span), Some(ParseError::Expected("signature".into(), span)), ) } } SyntaxShape::List(elem) => { if bytes.starts_with(b"[") { parse_list_expression(working_set, span, elem) } else { ( Expression::garbage(span), Some(ParseError::Expected("list".into(), span)), ) } } SyntaxShape::Table => { if bytes.starts_with(b"[") { parse_table_expression(working_set, span) } else { ( Expression::garbage(span), Some(ParseError::Expected("table".into(), span)), ) } } SyntaxShape::CellPath => { let source = working_set.get_span_contents(span); let mut error = None; let (tokens, err) = lex(source, span.start, &[b'\n', b'\r'], &[b'.'], true); error = error.or(err); let tokens = tokens.into_iter().peekable(); let (cell_path, err) = parse_cell_path(working_set, tokens, false, span); error = error.or(err); ( Expression { expr: Expr::CellPath(CellPath { members: cell_path }), span, ty: Type::CellPath, custom_completion: None, }, error, ) } SyntaxShape::Boolean => { // Redundant, though we catch bad boolean parses here if bytes == b"$true" || bytes == b"$false" { ( Expression { expr: Expr::Bool(true), span, ty: Type::Bool, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("bool".into(), span)), ) } } SyntaxShape::Any => { if bytes.starts_with(b"[") { //parse_value(working_set, span, &SyntaxShape::Table) parse_full_cell_path(working_set, None, span) } else { let shapes = [ SyntaxShape::Binary, SyntaxShape::Int, SyntaxShape::Number, SyntaxShape::Range, SyntaxShape::DateTime, SyntaxShape::Filesize, SyntaxShape::Duration, SyntaxShape::Block(None), SyntaxShape::String, ]; for shape in shapes.iter() { if let (s, None) = parse_value(working_set, span, shape) { return (s, None); } } ( garbage(span), Some(ParseError::Expected("any shape".into(), span)), ) } } _ => (garbage(span), Some(ParseError::IncompleteParser(span))), } } pub fn parse_operator( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); let operator = match contents { b"==" => Operator::Equal, b"!=" => Operator::NotEqual, b"<" => Operator::LessThan, b"<=" => Operator::LessThanOrEqual, b">" => Operator::GreaterThan, b">=" => Operator::GreaterThanOrEqual, b"=~" => Operator::Contains, b"!~" => Operator::NotContains, b"+" => Operator::Plus, b"-" => Operator::Minus, b"*" => Operator::Multiply, b"/" => Operator::Divide, b"in" => Operator::In, b"not-in" => Operator::NotIn, b"mod" => Operator::Modulo, b"&&" => Operator::And, b"||" => Operator::Or, b"**" => Operator::Pow, _ => { return ( garbage(span), Some(ParseError::Expected("operator".into(), span)), ); } }; ( Expression { expr: Expr::Operator(operator), span, ty: Type::Unknown, custom_completion: None, }, None, ) } pub fn parse_math_expression( working_set: &mut StateWorkingSet, spans: &[Span], lhs_row_var_id: Option, ) -> (Expression, Option) { // As the expr_stack grows, we increase the required precedence to grow larger // If, at any time, the operator we're looking at is the same or lower precedence // of what is in the expression stack, we collapse the expression stack. // // This leads to an expression stack that grows under increasing precedence and collapses // under decreasing/sustained precedence // // The end result is a stack that we can fold into binary operations as right associations // safely. let mut expr_stack: Vec = vec![]; let mut idx = 0; let mut last_prec = 1000000; let mut error = None; let (lhs, err) = parse_value(working_set, spans[0], &SyntaxShape::Any); error = error.or(err); idx += 1; expr_stack.push(lhs); while idx < spans.len() { let (op, err) = parse_operator(working_set, spans[idx]); error = error.or(err); let op_prec = op.precedence(); idx += 1; if idx == spans.len() { // Handle broken math expr `1 +` etc error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1]))); expr_stack.push(Expression::garbage(spans[idx - 1])); expr_stack.push(Expression::garbage(spans[idx - 1])); break; } let (rhs, err) = parse_value(working_set, spans[idx], &SyntaxShape::Any); error = error.or(err); if op_prec <= last_prec && expr_stack.len() > 1 { // Collapse the right associated operations first // so that we can get back to a stack with a lower precedence let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id); } let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs); error = error.or(err); let op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: op_span, ty: result_ty, custom_completion: None, }); } expr_stack.push(op); expr_stack.push(rhs); last_prec = op_prec; idx += 1; } while expr_stack.len() != 1 { let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id); } let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs); error = error.or(err); let binary_op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: binary_op_span, ty: result_ty, custom_completion: None, }); } let output = expr_stack .pop() .expect("internal error: expression stack empty"); (output, error) } pub fn parse_expression( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases: bool, ) -> (Expression, Option) { let mut pos = 0; let mut shorthand = vec![]; while pos < spans.len() { // Check if there is any environment shorthand let name = working_set.get_span_contents(spans[pos]); let split = name.split(|x| *x == b'='); let split: Vec<_> = split.collect(); if split.len() == 2 && !split[0].is_empty() { let point = split[0].len() + 1; let lhs = parse_string_strict( working_set, Span { start: spans[pos].start, end: spans[pos].start + point - 1, }, ); let rhs = if spans[pos].start + point < spans[pos].end { parse_string_strict( working_set, Span { start: spans[pos].start + point, end: spans[pos].end, }, ) } else { ( Expression { expr: Expr::String(String::new()), span: Span { start: 0, end: 0 }, ty: Type::Nothing, custom_completion: None, }, None, ) }; if lhs.1.is_none() && rhs.1.is_none() { shorthand.push((lhs.0, rhs.0)); pos += 1; } else { break; } } else { break; } } if pos == spans.len() { return ( garbage(span(spans)), Some(ParseError::UnknownCommand(spans[0])), ); } let bytes = working_set.get_span_contents(spans[pos]); let (output, err) = if is_math_expression_like(bytes) && !working_set .permanent_state .external_exceptions .iter() .any(|x| x == bytes) { parse_math_expression(working_set, &spans[pos..], None) } else { // For now, check for special parses of certain keywords match bytes { b"def" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline("def".into(), spans[0])), ), b"extern" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline( "extern".into(), spans[0], )), ), b"let" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline("let".into(), spans[0])), ), b"alias" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline( "alias".into(), spans[0], )), ), b"module" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline( "module".into(), spans[0], )), ), b"use" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline("use".into(), spans[0])), ), b"source" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline( "source".into(), spans[0], )), ), b"export" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::UnexpectedKeyword("export".into(), spans[0])), ), b"hide" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline( "hide".into(), spans[0], )), ), #[cfg(feature = "plugin")] b"register" => ( parse_call(working_set, &spans[pos..], expand_aliases, spans[0]).0, Some(ParseError::BuiltinCommandInPipeline( "plugin".into(), spans[0], )), ), b"for" => parse_for(working_set, spans), _ => parse_call(working_set, &spans[pos..], expand_aliases, spans[0]), } }; let with_env = working_set.find_decl(b"with-env"); if !shorthand.is_empty() { if let Some(decl_id) = with_env { let mut block = Block::default(); let ty = output.ty.clone(); block.pipelines = vec![Pipeline { expressions: vec![output], }]; let block_id = working_set.add_block(block); let mut env_vars = vec![]; for sh in shorthand { env_vars.push(sh.0); env_vars.push(sh.1); } let positional = vec![ Expression { expr: Expr::List(env_vars), span: span(&spans[..pos]), ty: Type::Unknown, custom_completion: None, }, Expression { expr: Expr::Block(block_id), span: span(&spans[pos..]), ty, custom_completion: None, }, ]; let expr = Expr::Call(Box::new(Call { head: Span { start: 0, end: 0 }, decl_id, named: vec![], positional, redirect_stdout: true, redirect_stderr: false, })); ( Expression { expr, custom_completion: None, span: span(spans), ty: Type::Unknown, }, err, ) } else { (output, err) } } else { (output, err) } } pub fn parse_variable( working_set: &mut StateWorkingSet, span: Span, ) -> (Option, Option) { let bytes = working_set.get_span_contents(span); if is_variable(bytes) { if let Some(var_id) = working_set.find_variable(bytes) { (Some(var_id), None) } else { (None, None) } } else { (None, Some(ParseError::Expected("variable".into(), span))) } } pub fn parse_builtin_commands( working_set: &mut StateWorkingSet, lite_command: &LiteCommand, ) -> (Pipeline, Option) { let name = working_set.get_span_contents(lite_command.parts[0]); match name { b"def" | b"def-env" => parse_def(working_set, lite_command), b"extern" => parse_extern(working_set, lite_command), b"let" => parse_let(working_set, &lite_command.parts), b"for" => { let (expr, err) = parse_for(working_set, &lite_command.parts); (Pipeline::from_vec(vec![expr]), err) } b"alias" => parse_alias(working_set, &lite_command.parts), b"module" => parse_module(working_set, &lite_command.parts), b"use" => parse_use(working_set, &lite_command.parts), b"source" => parse_source(working_set, &lite_command.parts), b"export" => ( garbage_pipeline(&lite_command.parts), Some(ParseError::UnexpectedKeyword( "export".into(), lite_command.parts[0], )), ), b"hide" => parse_hide(working_set, &lite_command.parts), #[cfg(feature = "plugin")] b"register" => parse_register(working_set, &lite_command.parts), _ => { let (expr, err) = parse_expression(working_set, &lite_command.parts, true); (Pipeline::from_vec(vec![expr]), err) } } } pub fn parse_record( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { error = error.or_else(|| { Some(ParseError::Expected( "{".into(), Span { start, end: start + 1, }, )) }); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("}".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (tokens, err) = lex(source, start, &[b'\n', b'\r', b','], &[b':'], true); error = error.or(err); let mut output = vec![]; let mut idx = 0; while idx < tokens.len() { let (field, err) = parse_value(working_set, tokens[idx].span, &SyntaxShape::Any); error = error.or(err); idx += 1; if idx == tokens.len() { return ( garbage(span), Some(ParseError::Expected("record".into(), span)), ); } let colon = working_set.get_span_contents(tokens[idx].span); idx += 1; if idx == tokens.len() || colon != b":" { //FIXME: need better error return ( garbage(span), Some(ParseError::Expected("record".into(), span)), ); } let (value, err) = parse_value(working_set, tokens[idx].span, &SyntaxShape::Any); error = error.or(err); idx += 1; output.push((field, value)); } ( Expression { expr: Expr::Record(output), span, ty: Type::Unknown, //FIXME: but we don't know the contents of the fields, do we? custom_completion: None, }, error, ) } pub fn parse_block( working_set: &mut StateWorkingSet, lite_block: &LiteBlock, scoped: bool, ) -> (Block, Option) { trace!("parsing block: {:?}", lite_block); if scoped { working_set.enter_scope(); } let mut error = None; // Pre-declare any definition so that definitions // that share the same block can see each other for pipeline in &lite_block.block { if pipeline.commands.len() == 1 { if let Some(err) = parse_def_predecl(working_set, &pipeline.commands[0].parts) { error = error.or(Some(err)); } } } let block: Block = lite_block .block .iter() .enumerate() .map(|(idx, pipeline)| { if pipeline.commands.len() > 1 { let mut output = pipeline .commands .iter() .map(|command| { let (expr, err) = parse_expression(working_set, &command.parts, true); if error.is_none() { error = err; } expr }) .collect::>(); for expr in output.iter_mut().skip(1) { if expr.has_in_variable(working_set) { *expr = wrap_expr_with_collect(working_set, expr); } } Pipeline { expressions: output, } } else { let (mut pipeline, err) = parse_builtin_commands(working_set, &pipeline.commands[0]); if idx == 0 { if let Some(let_decl_id) = working_set.find_decl(b"let") { if let Some(let_env_decl_id) = working_set.find_decl(b"let-env") { for expr in pipeline.expressions.iter_mut() { if let Expression { expr: Expr::Call(call), .. } = expr { if call.decl_id == let_decl_id || call.decl_id == let_env_decl_id { // Do an expansion if let Some(Expression { expr: Expr::Keyword(_, _, expr), .. }) = call.positional.get_mut(1) { if expr.has_in_variable(working_set) { *expr = Box::new(wrap_expr_with_collect( working_set, expr, )); } } continue; } } } } } } if error.is_none() { error = err; } pipeline } }) .into(); if scoped { working_set.exit_scope(); } (block, error) } pub fn discover_captures_in_block( working_set: &StateWorkingSet, block: &Block, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Vec { let mut output = vec![]; for flag in &block.signature.named { if let Some(var_id) = flag.var_id { seen.push(var_id); } } for positional in &block.signature.required_positional { if let Some(var_id) = positional.var_id { seen.push(var_id); } } for positional in &block.signature.optional_positional { if let Some(var_id) = positional.var_id { seen.push(var_id); } } for positional in &block.signature.rest_positional { if let Some(var_id) = positional.var_id { seen.push(var_id); } } for pipeline in &block.pipelines { let result = discover_captures_in_pipeline(working_set, pipeline, seen, seen_blocks); output.extend(&result); } output } fn discover_captures_in_pipeline( working_set: &StateWorkingSet, pipeline: &Pipeline, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Vec { let mut output = vec![]; for expr in &pipeline.expressions { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } output } pub fn discover_captures_in_expr( working_set: &StateWorkingSet, expr: &Expression, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Vec { let mut output = vec![]; match &expr.expr { Expr::BinaryOp(lhs, _, rhs) => { let lhs_result = discover_captures_in_expr(working_set, lhs, seen, seen_blocks); let rhs_result = discover_captures_in_expr(working_set, rhs, seen, seen_blocks); output.extend(&lhs_result); output.extend(&rhs_result); } Expr::Block(block_id) => { let block = working_set.get_block(*block_id); let results = { let mut seen = vec![]; discover_captures_in_block(working_set, block, &mut seen, seen_blocks) }; seen_blocks.insert(*block_id, results.clone()); for var_id in results.into_iter() { if !seen.contains(&var_id) { output.push(var_id) } } } Expr::Binary(_) => {} Expr::Bool(_) => {} Expr::Call(call) => { let decl = working_set.get_decl(call.decl_id); if let Some(block_id) = decl.get_block_id() { match seen_blocks.get(&block_id) { Some(capture_list) => { output.extend(capture_list); } None => { let block = working_set.get_block(block_id); if !block.captures.is_empty() { output.extend(&block.captures); } else { let mut seen = vec![]; seen_blocks.insert(block_id, output.clone()); let result = discover_captures_in_block( working_set, block, &mut seen, seen_blocks, ); output.extend(&result); seen_blocks.insert(block_id, result); } } } } for named in &call.named { if let Some(arg) = &named.1 { let result = discover_captures_in_expr(working_set, arg, seen, seen_blocks); output.extend(&result); } } for positional in &call.positional { let result = discover_captures_in_expr(working_set, positional, seen, seen_blocks); output.extend(&result); } } Expr::CellPath(_) => {} Expr::DateTime(_) => {} Expr::ExternalCall(head, exprs) => { let result = discover_captures_in_expr(working_set, head, seen, seen_blocks); output.extend(&result); for expr in exprs { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } } Expr::Filepath(_) => {} Expr::Float(_) => {} Expr::FullCellPath(cell_path) => { let result = discover_captures_in_expr(working_set, &cell_path.head, seen, seen_blocks); output.extend(&result); } Expr::ImportPattern(_) => {} Expr::Garbage => {} Expr::Nothing => {} Expr::GlobPattern(_) => {} Expr::Int(_) => {} Expr::Keyword(_, _, expr) => { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } Expr::List(exprs) => { for expr in exprs { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } } Expr::Operator(_) => {} Expr::Range(expr1, expr2, expr3, _) => { if let Some(expr) = expr1 { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } if let Some(expr) = expr2 { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } if let Some(expr) = expr3 { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } } Expr::Record(fields) => { for (field_name, field_value) in fields { output.extend(&discover_captures_in_expr( working_set, field_name, seen, seen_blocks, )); output.extend(&discover_captures_in_expr( working_set, field_value, seen, seen_blocks, )); } } Expr::Signature(sig) => { // Something with a declaration, similar to a var decl, will introduce more VarIds into the stack at eval for pos in &sig.required_positional { if let Some(var_id) = pos.var_id { seen.push(var_id); } } for pos in &sig.optional_positional { if let Some(var_id) = pos.var_id { seen.push(var_id); } } if let Some(rest) = &sig.rest_positional { if let Some(var_id) = rest.var_id { seen.push(var_id); } } for named in &sig.named { if let Some(var_id) = named.var_id { seen.push(var_id); } } } Expr::String(_) => {} Expr::StringInterpolation(exprs) => { for expr in exprs { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } } Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => { let block = working_set.get_block(*block_id); let results = { let mut seen = vec![]; discover_captures_in_block(working_set, block, &mut seen, seen_blocks) }; seen_blocks.insert(*block_id, results.clone()); for var_id in results.into_iter() { if !seen.contains(&var_id) { output.push(var_id) } } } Expr::Table(headers, values) => { for header in headers { let result = discover_captures_in_expr(working_set, header, seen, seen_blocks); output.extend(&result); } for row in values { for cell in row { let result = discover_captures_in_expr(working_set, cell, seen, seen_blocks); output.extend(&result); } } } Expr::ValueWithUnit(expr, _) => { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks); output.extend(&result); } Expr::Var(var_id) => { if (*var_id > ENV_VARIABLE_ID || *var_id == IN_VARIABLE_ID) && !seen.contains(var_id) { output.push(*var_id); } } Expr::VarDecl(var_id) => { seen.push(*var_id); } } output } fn wrap_expr_with_collect(working_set: &mut StateWorkingSet, expr: &Expression) -> Expression { let span = expr.span; if let Some(decl_id) = working_set.find_decl(b"collect") { let mut output = vec![]; let var_id = working_set.next_var_id(); let mut signature = Signature::new(""); signature.required_positional.push(PositionalArg { var_id: Some(var_id), name: "$in".into(), desc: String::new(), shape: SyntaxShape::Any, }); let mut expr = expr.clone(); expr.replace_in_variable(working_set, var_id); let block = Block { pipelines: vec![Pipeline { expressions: vec![expr], }], signature: Box::new(signature), ..Default::default() }; let block_id = working_set.add_block(block); output.push(Expression { expr: Expr::Block(block_id), span, ty: Type::Unknown, custom_completion: None, }); // The containing, synthetic call to `collect`. // We don't want to have a real span as it will confuse flattening // The args are where we'll get the real info Expression { expr: Expr::Call(Box::new(Call { head: Span::new(0, 0), named: vec![], positional: output, decl_id, redirect_stdout: true, redirect_stderr: false, })), span, ty: Type::String, custom_completion: None, } } else { Expression::garbage(span) } } // Parses a vector of u8 to create an AST Block. If a file name is given, then // the name is stored in the working set. When parsing a source without a file // name, the source of bytes is stored as "source" pub fn parse( working_set: &mut StateWorkingSet, fname: Option<&str>, contents: &[u8], scoped: bool, ) -> (Block, Option) { trace!("starting top-level parse"); let mut error = None; let span_offset = working_set.next_span_start(); let name = match fname { Some(fname) => fname.to_string(), None => "source".to_string(), }; working_set.add_file(name, contents); let (output, err) = lex(contents, span_offset, &[], &[], false); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (mut output, err) = parse_block(working_set, &output, scoped); error = error.or(err); let mut seen = vec![]; let mut seen_blocks = HashMap::new(); let captures = discover_captures_in_block(working_set, &output, &mut seen, &mut seen_blocks); output.captures = captures; // Also check other blocks that might have been imported for (block_idx, block) in working_set.delta.blocks.iter().enumerate() { let block_id = block_idx + working_set.permanent_state.num_blocks(); if !seen_blocks.contains_key(&block_id) { let captures = discover_captures_in_block(working_set, block, &mut seen, &mut seen_blocks); seen_blocks.insert(block_id, captures); } } for (block_id, captures) in seen_blocks.into_iter() { // In theory, we should only be updating captures where we have new information // the only place where this is possible would be blocks that are newly created // by our working set delta. If we ever tried to modify the permanent state, we'd // panic (again, in theory, this shouldn't be possible) let block = working_set.get_block(block_id); let block_captures_empty = block.captures.is_empty(); if !captures.is_empty() && block_captures_empty { let block = working_set.get_block_mut(block_id); block.captures = captures; } } (output, error) }