use crate::{ lex, parse_mut, type_check::{math_result_type, type_compatible}, ParseError, Token, TokenContents, }; use nu_protocol::{ ast::{ Argument, Assignment, Bits, Block, Boolean, Call, CellPath, Comparison, Expr, Expression, FullCellPath, ImportPattern, ImportPatternHead, ImportPatternMember, Math, Operator, PathMember, Pipeline, PipelineElement, RangeInclusion, RangeOperator, Redirection, }, engine::StateWorkingSet, span, BlockId, Flag, PositionalArg, Signature, Span, Spanned, SyntaxShape, Type, Unit, VarId, ENV_VARIABLE_ID, IN_VARIABLE_ID, }; use crate::parse_keywords::{ parse_alias, parse_def, parse_def_predecl, parse_export_in_block, parse_extern, parse_for, parse_hide, parse_let, parse_module, parse_overlay, parse_source, parse_use, }; use itertools::Itertools; use log::trace; use std::{ collections::{HashMap, HashSet}, num::ParseIntError, }; #[cfg(feature = "plugin")] use crate::parse_keywords::parse_register; #[derive(Debug, Clone)] pub enum Import {} pub fn garbage(span: Span) -> Expression { Expression::garbage(span) } pub fn garbage_pipeline(spans: &[Span]) -> Pipeline { Pipeline::from_vec(vec![garbage(span(spans))]) } fn is_identifier_byte(b: u8) -> bool { b != b'.' && b != b'[' && b != b'(' && b != b'{' && b != b'+' && b != b'-' && b != b'*' && b != b'^' && b != b'/' && b != b'=' && b != b'!' && b != b'<' && b != b'>' && b != b'&' && b != b'|' } pub fn is_math_expression_like( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> bool { let bytes = working_set.get_span_contents(span); if bytes.is_empty() { return false; } if bytes == b"true" || bytes == b"false" || bytes == b"null" || bytes == b"not" { return true; } let b = bytes[0]; if b == b'(' || b == b'{' || b == b'[' || b == b'$' || b == b'"' || b == b'\'' || b == b'`' || b == b'-' { return true; } if parse_number(bytes, span).1.is_none() { return true; } if parse_filesize(working_set, span).1.is_none() { return true; } if parse_duration(working_set, span).1.is_none() { return true; } if parse_datetime(working_set, span).1.is_none() { return true; } if parse_binary(working_set, span).1.is_none() { return true; } if parse_range(working_set, span, expand_aliases_denylist) .1 .is_none() { return true; } false } fn is_identifier(bytes: &[u8]) -> bool { bytes.iter().all(|x| is_identifier_byte(*x)) } fn is_variable(bytes: &[u8]) -> bool { if bytes.len() > 1 && bytes[0] == b'$' { is_identifier(&bytes[1..]) } else { is_identifier(bytes) } } pub fn trim_quotes(bytes: &[u8]) -> &[u8] { if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1) || (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1) || (bytes.starts_with(b"`") && bytes.ends_with(b"`") && bytes.len() > 1) { &bytes[1..(bytes.len() - 1)] } else { bytes } } pub fn trim_quotes_str(s: &str) -> &str { if (s.starts_with('"') && s.ends_with('"') && s.len() > 1) || (s.starts_with('\'') && s.ends_with('\'') && s.len() > 1) || (s.starts_with('`') && s.ends_with('`') && s.len() > 1) { &s[1..(s.len() - 1)] } else { s } } pub fn check_call(command: Span, sig: &Signature, call: &Call) -> Option { // Allow the call to pass if they pass in the help flag if call.named_iter().any(|(n, _, _)| n.item == "help") { return None; } if call.positional_len() < sig.required_positional.len() { // Comparing the types of all signature positional arguments against the parsed // expressions found in the call. If one type is not found then it could be assumed // that that positional argument is missing from the parsed call for argument in &sig.required_positional { let found = call.positional_iter().fold(false, |ac, expr| { if argument.shape.to_type() == expr.ty || argument.shape == SyntaxShape::Any { true } else { ac } }); if !found { if let Some(last) = call.positional_iter().last() { return Some(ParseError::MissingPositional( argument.name.clone(), Span { start: last.span.end, end: last.span.end, }, sig.call_signature(), )); } else { return Some(ParseError::MissingPositional( argument.name.clone(), Span { start: command.end, end: command.end, }, sig.call_signature(), )); } } } let missing = &sig.required_positional[call.positional_len()]; if let Some(last) = call.positional_iter().last() { Some(ParseError::MissingPositional( missing.name.clone(), Span { start: last.span.end, end: last.span.end, }, sig.call_signature(), )) } else { Some(ParseError::MissingPositional( missing.name.clone(), Span { start: command.end, end: command.end, }, sig.call_signature(), )) } } else { for req_flag in sig.named.iter().filter(|x| x.required) { if call.named_iter().all(|(n, _, _)| n.item != req_flag.long) { return Some(ParseError::MissingRequiredFlag( req_flag.long.clone(), command, )); } } None } } pub fn check_name<'a>( working_set: &mut StateWorkingSet, spans: &'a [Span], ) -> Option<(&'a Span, ParseError)> { let command_len = if !spans.is_empty() { if working_set.get_span_contents(spans[0]) == b"export" { 2 } else { 1 } } else { return None; }; if spans.len() == 1 { None } else if spans.len() < command_len + 3 { if working_set.get_span_contents(spans[command_len]) == b"=" { let name = String::from_utf8_lossy(working_set.get_span_contents(span(&spans[..command_len]))); Some(( &spans[command_len], ParseError::AssignmentMismatch( format!("{} missing name", name), "missing name".into(), spans[command_len], ), )) } else { None } } else if working_set.get_span_contents(spans[command_len + 1]) != b"=" { let name = String::from_utf8_lossy(working_set.get_span_contents(span(&spans[..command_len]))); Some(( &spans[command_len + 1], ParseError::AssignmentMismatch( format!("{} missing sign", name), "missing equal sign".into(), spans[command_len + 1], ), )) } else { None } } pub fn parse_external_call( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases_denylist: &[usize], is_subexpression: bool, ) -> (Expression, Option) { trace!("parse external"); let mut args = vec![]; let head_contents = working_set.get_span_contents(spans[0]); let head_span = if head_contents.starts_with(b"^") { Span { start: spans[0].start + 1, end: spans[0].end, } } else { spans[0] }; let head_contents = working_set.get_span_contents(head_span).to_vec(); let mut error = None; let head = if head_contents.starts_with(b"$") || head_contents.starts_with(b"(") { // the expression is inside external_call, so it's a subexpression let (arg, err) = parse_expression(working_set, &[head_span], expand_aliases_denylist, true); error = error.or(err); Box::new(arg) } else { let (contents, err) = unescape_unquote_string(&head_contents, head_span); error = error.or(err); Box::new(Expression { expr: Expr::String(contents), span: head_span, ty: Type::String, custom_completion: None, }) }; for span in &spans[1..] { let contents = working_set.get_span_contents(*span); if contents.starts_with(b"$") || contents.starts_with(b"(") { let (arg, err) = parse_dollar_expr(working_set, *span, expand_aliases_denylist); error = error.or(err); args.push(arg); } else if contents.starts_with(b"[") { let (arg, err) = parse_list_expression( working_set, *span, &SyntaxShape::Any, expand_aliases_denylist, ); error = error.or(err); args.push(arg); } else { // Eval stage trims the quotes, so we don't have to do the same thing when parsing. let contents = if contents.starts_with(b"\"") { let (contents, err) = unescape_string(contents, *span); error = error.or(err); String::from_utf8_lossy(&contents).to_string() } else { String::from_utf8_lossy(contents).to_string() }; args.push(Expression { expr: Expr::String(contents), span: *span, ty: Type::String, custom_completion: None, }) } } ( Expression { expr: Expr::ExternalCall(head, args, is_subexpression), span: span(spans), ty: Type::Any, custom_completion: None, }, error, ) } fn parse_long_flag( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, sig: &Signature, expand_aliases_denylist: &[usize], ) -> ( Option>, Option, Option, ) { let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents.starts_with(b"--") { // FIXME: only use the first flag you find? let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect(); let long_name = String::from_utf8(split[0].into()); if let Ok(long_name) = long_name { let long_name = long_name[2..].to_string(); if let Some(flag) = sig.get_long_flag(&long_name) { if let Some(arg_shape) = &flag.arg { if split.len() > 1 { // and we also have the argument let long_name_len = long_name.len(); let mut span = arg_span; span.start += long_name_len + 3; //offset by long flag and '=' let (arg, err) = parse_value(working_set, span, arg_shape, expand_aliases_denylist); ( Some(Spanned { item: long_name, span: Span { start: arg_span.start, end: arg_span.start + long_name_len + 2, }, }), Some(arg), err, ) } else if let Some(arg) = spans.get(*spans_idx + 1) { let (arg, err) = parse_value(working_set, *arg, arg_shape, expand_aliases_denylist); *spans_idx += 1; ( Some(Spanned { item: long_name, span: arg_span, }), Some(arg), err, ) } else { ( Some(Spanned { item: long_name, span: arg_span, }), None, Some(ParseError::MissingFlagParam( arg_shape.to_string(), arg_span, )), ) } } else { // A flag with no argument ( Some(Spanned { item: long_name, span: arg_span, }), None, None, ) } } else { ( Some(Spanned { item: long_name.clone(), span: arg_span, }), None, Some(ParseError::UnknownFlag( sig.name.clone(), long_name.clone(), arg_span, )), ) } } else { ( Some(Spanned { item: "--".into(), span: arg_span, }), None, Some(ParseError::NonUtf8(arg_span)), ) } } else { (None, None, None) } } fn parse_short_flags( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, positional_idx: usize, sig: &Signature, ) -> (Option>, Option) { let mut error = None; let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents.starts_with(b"-") && arg_contents.len() > 1 { let short_flags = &arg_contents[1..]; let mut found_short_flags = vec![]; let mut unmatched_short_flags = vec![]; for short_flag in short_flags.iter().enumerate() { let short_flag_char = char::from(*short_flag.1); let orig = arg_span; let short_flag_span = Span { start: orig.start + 1 + short_flag.0, end: orig.start + 1 + short_flag.0 + 1, }; if let Some(flag) = sig.get_short_flag(short_flag_char) { // If we require an arg and are in a batch of short flags, error if !found_short_flags.is_empty() && flag.arg.is_some() { error = error.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span))) } found_short_flags.push(flag); } else { unmatched_short_flags.push(short_flag_span); } } if found_short_flags.is_empty() { // check to see if we have a negative number if let Some(positional) = sig.get_positional(positional_idx) { if positional.shape == SyntaxShape::Int || positional.shape == SyntaxShape::Number { if String::from_utf8_lossy(arg_contents).parse::().is_ok() { return (None, None); } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } else if !unmatched_short_flags.is_empty() { if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents)), *first, )) }); } } (Some(found_short_flags), error) } else { (None, None) } } fn first_kw_idx( working_set: &StateWorkingSet, signature: &Signature, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> (Option, usize) { for idx in (positional_idx + 1)..signature.num_positionals() { if let Some(PositionalArg { shape: SyntaxShape::Keyword(kw, ..), .. }) = signature.get_positional(idx) { #[allow(clippy::needless_range_loop)] for span_idx in spans_idx..spans.len() { let contents = working_set.get_span_contents(spans[span_idx]); if contents == kw { return (Some(idx), span_idx); } } } } (None, spans.len()) } fn calculate_end_span( working_set: &StateWorkingSet, signature: &Signature, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> usize { if signature.rest_positional.is_some() { spans.len() } else { let (kw_pos, kw_idx) = first_kw_idx(working_set, signature, spans, spans_idx, positional_idx); if let Some(kw_pos) = kw_pos { // We found a keyword. Keywords, once found, create a guidepost to // show us where the positionals will lay into the arguments. Because they're // keywords, they get to set this by being present let positionals_between = kw_pos - positional_idx - 1; if positionals_between > (kw_idx - spans_idx) { kw_idx } else { kw_idx - positionals_between } } else { // Make space for the remaining require positionals, if we can if signature.num_positionals_after(positional_idx) == 0 { spans.len() } else if positional_idx < signature.required_positional.len() && spans.len() > (signature.required_positional.len() - positional_idx) { spans.len() - (signature.required_positional.len() - positional_idx - 1) } else { spans_idx + 1 } } } } pub fn parse_multispan_value( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, shape: &SyntaxShape, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let mut error = None; match shape { SyntaxShape::VarWithOptType => { trace!("parsing: var with opt type"); let (arg, err) = parse_var_with_opt_type(working_set, spans, spans_idx, false); error = error.or(err); (arg, error) } SyntaxShape::RowCondition => { trace!("parsing: row condition"); let (arg, err) = parse_row_condition(working_set, &spans[*spans_idx..], expand_aliases_denylist); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::MathExpression => { trace!("parsing: math expression"); let (arg, err) = parse_math_expression( working_set, &spans[*spans_idx..], None, expand_aliases_denylist, ); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Expression => { trace!("parsing: expression"); // is it subexpression? // Not sure, but let's make it not, so the behavior is the same as previous version of nushell. let (arg, err) = parse_expression( working_set, &spans[*spans_idx..], expand_aliases_denylist, false, ); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::ImportPattern => { trace!("parsing: import pattern"); let (arg, err) = parse_import_pattern(working_set, &spans[*spans_idx..], expand_aliases_denylist); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Keyword(keyword, arg) => { trace!( "parsing: keyword({}) {:?}", String::from_utf8_lossy(keyword), arg ); let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents != keyword { // When keywords mismatch, this is a strong indicator of something going wrong. // We won't often override the current error, but as this is a strong indicator // go ahead and override the current error and tell the user about the missing // keyword/literal. error = Some(ParseError::ExpectedKeyword( String::from_utf8_lossy(keyword).into(), arg_span, )) } *spans_idx += 1; if *spans_idx >= spans.len() { error = error.or_else(|| { Some(ParseError::KeywordMissingArgument( arg.to_string(), String::from_utf8_lossy(keyword).into(), Span { start: spans[*spans_idx - 1].end, end: spans[*spans_idx - 1].end, }, )) }); return ( Expression { expr: Expr::Keyword( keyword.clone(), spans[*spans_idx - 1], Box::new(Expression::garbage(arg_span)), ), span: arg_span, ty: Type::Any, custom_completion: None, }, error, ); } let keyword_span = spans[*spans_idx - 1]; let (expr, err) = parse_multispan_value(working_set, spans, spans_idx, arg, expand_aliases_denylist); error = error.or(err); let ty = expr.ty.clone(); ( Expression { expr: Expr::Keyword(keyword.clone(), keyword_span, Box::new(expr)), span: arg_span, ty, custom_completion: None, }, error, ) } _ => { // All other cases are single-span values let arg_span = spans[*spans_idx]; let (arg, err) = parse_value(working_set, arg_span, shape, expand_aliases_denylist); error = error.or(err); (arg, error) } } } pub struct ParsedInternalCall { pub call: Box, pub output: Type, pub error: Option, } pub fn parse_internal_call( working_set: &mut StateWorkingSet, command_span: Span, spans: &[Span], decl_id: usize, expand_aliases_denylist: &[usize], ) -> ParsedInternalCall { trace!("parsing: internal call (decl id: {})", decl_id); let mut error = None; let mut call = Call::new(command_span); call.decl_id = decl_id; call.head = command_span; let decl = working_set.get_decl(decl_id); let signature = decl.signature(); let output = signature.output_type.clone(); working_set.type_scope.add_type(output.clone()); if signature.creates_scope { working_set.enter_scope(); } // The index into the positional parameter in the definition let mut positional_idx = 0; // The index into the spans of argument data given to parse // Starting at the first argument let mut spans_idx = 0; while spans_idx < spans.len() { let arg_span = spans[spans_idx]; // Check if we're on a long flag, if so, parse let (long_name, arg, err) = parse_long_flag( working_set, spans, &mut spans_idx, &signature, expand_aliases_denylist, ); if let Some(long_name) = long_name { // We found a long flag, like --bar error = error.or(err); call.add_named((long_name, None, arg)); spans_idx += 1; continue; } // Check if we're on a short flag or group of short flags, if so, parse let (short_flags, err) = parse_short_flags( working_set, spans, &mut spans_idx, positional_idx, &signature, ); if let Some(mut short_flags) = short_flags { if short_flags.is_empty() { short_flags.push(Flag { long: "".to_string(), short: Some('a'), arg: None, required: false, desc: "".to_string(), var_id: None, default_value: None, }) } error = error.or(err); for flag in short_flags { if let Some(arg_shape) = flag.arg { if let Some(arg) = spans.get(spans_idx + 1) { let (arg, err) = parse_value(working_set, *arg, &arg_shape, expand_aliases_denylist); error = error.or(err); if flag.long.is_empty() { if let Some(short) = flag.short { call.add_named(( Spanned { item: String::new(), span: spans[spans_idx], }, Some(Spanned { item: short.to_string(), span: spans[spans_idx], }), Some(arg), )); } } else { call.add_named(( Spanned { item: flag.long.clone(), span: spans[spans_idx], }, None, Some(arg), )); } spans_idx += 1; } else { error = error.or_else(|| { Some(ParseError::MissingFlagParam( arg_shape.to_string(), arg_span, )) }) } } else if flag.long.is_empty() { if let Some(short) = flag.short { call.add_named(( Spanned { item: String::new(), span: spans[spans_idx], }, Some(Spanned { item: short.to_string(), span: spans[spans_idx], }), None, )); } } else { call.add_named(( Spanned { item: flag.long.clone(), span: spans[spans_idx], }, None, None, )); } } spans_idx += 1; continue; } // Parse a positional arg if there is one if let Some(positional) = signature.get_positional(positional_idx) { let end = calculate_end_span(working_set, &signature, spans, spans_idx, positional_idx); let end = if spans.len() > spans_idx && end == spans_idx { end + 1 } else { end }; if spans[..end].is_empty() || spans_idx == end { error = error.or_else(|| { Some(ParseError::MissingPositional( positional.name.clone(), Span { start: spans[spans_idx].end, end: spans[spans_idx].end, }, signature.call_signature(), )) }); positional_idx += 1; continue; } let orig_idx = spans_idx; let (arg, err) = parse_multispan_value( working_set, &spans[..end], &mut spans_idx, &positional.shape, expand_aliases_denylist, ); error = error.or(err); let arg = if !type_compatible(&positional.shape.to_type(), &arg.ty) { let span = span(&spans[orig_idx..spans_idx]); error = error.or_else(|| { Some(ParseError::TypeMismatch( positional.shape.to_type(), arg.ty, arg.span, )) }); Expression::garbage(span) } else { arg }; call.add_positional(arg); positional_idx += 1; } else { call.add_positional(Expression::garbage(arg_span)); error = error.or_else(|| { Some(ParseError::ExtraPositional( signature.call_signature(), arg_span, )) }) } error = error.or(err); spans_idx += 1; } let err = check_call(command_span, &signature, &call); error = error.or(err); if signature.creates_scope { working_set.exit_scope(); } ParsedInternalCall { call: Box::new(call), output, error, } } pub fn parse_call( working_set: &mut StateWorkingSet, spans: &[Span], head: Span, expand_aliases_denylist: &[usize], is_subexpression: bool, ) -> (Expression, Option) { trace!("parsing: call"); if spans.is_empty() { return ( garbage(head), Some(ParseError::UnknownState( "Encountered command with zero spans".into(), span(spans), )), ); } let mut pos = 0; let cmd_start = pos; let mut name_spans = vec![]; let mut name = vec![]; for word_span in spans[cmd_start..].iter() { // Find the longest group of words that could form a command if is_math_expression_like(working_set, *word_span, expand_aliases_denylist) { let bytes = working_set.get_span_contents(*word_span); if bytes != b"true" && bytes != b"false" && bytes != b"null" && bytes != b"not" { break; } } name_spans.push(*word_span); let name_part = working_set.get_span_contents(*word_span); if name.is_empty() { name.extend(name_part); } else { name.push(b' '); name.extend(name_part); } // If the word is an alias, expand it and re-parse the expression if let Some(alias_id) = working_set.find_alias(&name) { if !expand_aliases_denylist.contains(&alias_id) { trace!("expanding alias"); let expansion = working_set.get_alias(alias_id); let expansion_span = span(expansion); let orig_span = span(&[spans[cmd_start], spans[pos]]); let mut new_spans: Vec = vec![]; new_spans.extend(&spans[0..cmd_start]); new_spans.extend(expansion); // TODO: This seems like it should be `pos + 1`. `pos` starts as 0 if spans.len() > pos { new_spans.extend(&spans[(pos + 1)..]); } let mut expand_aliases_denylist = expand_aliases_denylist.to_vec(); expand_aliases_denylist.push(alias_id); let lite_command = LiteCommand { comments: vec![], parts: new_spans.clone(), }; let (mut result, err) = parse_builtin_commands( working_set, &lite_command, &expand_aliases_denylist, is_subexpression, ); let result = result.elements.remove(0); // If this is the first element in a pipeline, we know it has to be an expression if let PipelineElement::Expression(_, mut result) = result { result.replace_span(working_set, expansion_span, orig_span); return (result, err); } else { panic!("Internal error: first element of pipeline not an expression") } } } pos += 1; } let input = working_set.type_scope.get_previous(); let mut maybe_decl_id = working_set.find_decl(&name, input); while maybe_decl_id.is_none() { // Find the longest command match if name_spans.len() <= 1 { // Keep the first word even if it does not match -- could be external command break; } name_spans.pop(); pos -= 1; let mut name = vec![]; for name_span in &name_spans { let name_part = working_set.get_span_contents(*name_span); if name.is_empty() { name.extend(name_part); } else { name.push(b' '); name.extend(name_part); } } maybe_decl_id = working_set.find_decl(&name, input); } if let Some(decl_id) = maybe_decl_id { // Before the internal parsing we check if there is no let or alias declarations // that are missing their name, e.g.: let = 1 or alias = 2 if spans.len() > 1 { let test_equal = working_set.get_span_contents(spans[1]); if test_equal == [b'='] { trace!("incomplete statement"); return ( garbage(span(spans)), Some(ParseError::UnknownState( "Incomplete statement".into(), span(spans), )), ); } } trace!("parsing: internal call"); // parse internal command let parsed_call = parse_internal_call( working_set, span(&spans[cmd_start..pos]), &spans[pos..], decl_id, expand_aliases_denylist, ); ( Expression { expr: Expr::Call(parsed_call.call), span: span(spans), ty: parsed_call.output, custom_completion: None, }, parsed_call.error, ) } else { // We might be parsing left-unbounded range ("..10") let bytes = working_set.get_span_contents(spans[0]); trace!("parsing: range {:?} ", bytes); if let (Some(b'.'), Some(b'.')) = (bytes.first(), bytes.get(1)) { trace!("-- found leading range indicator"); let (range_expr, range_err) = parse_range(working_set, spans[0], expand_aliases_denylist); if range_err.is_none() { trace!("-- successfully parsed range"); return (range_expr, range_err); } } trace!("parsing: external call"); // Otherwise, try external command parse_external_call( working_set, spans, expand_aliases_denylist, is_subexpression, ) } } pub fn parse_binary( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let (hex_value, err) = parse_binary_with_base(working_set, span, 16, 2, b"0x[", b"]"); if err.is_some() { let (octal_value, err) = parse_binary_with_base(working_set, span, 8, 3, b"0o[", b"]"); if err.is_some() { return parse_binary_with_base(working_set, span, 2, 8, b"0b[", b"]"); } return (octal_value, err); } (hex_value, err) } fn parse_binary_with_base( working_set: &mut StateWorkingSet, span: Span, base: u32, min_digits_per_byte: usize, prefix: &[u8], suffix: &[u8], ) -> (Expression, Option) { let token = working_set.get_span_contents(span); if let Some(token) = token.strip_prefix(prefix) { if let Some(token) = token.strip_suffix(suffix) { let (lexed, err) = lex( token, span.start + prefix.len(), &[b',', b'\r', b'\n'], &[], true, ); let mut binary_value = vec![]; for token in lexed { match token.contents { TokenContents::Item => { let contents = working_set.get_span_contents(token.span); binary_value.extend_from_slice(contents); } TokenContents::Pipe => { return ( garbage(span), Some(ParseError::Expected("binary".into(), span)), ); } TokenContents::Comment | TokenContents::Semicolon | TokenContents::Eol | TokenContents::OutGreaterThan | TokenContents::ErrGreaterThan | TokenContents::OutErrGreaterThan => {} } } let required_padding = (min_digits_per_byte - binary_value.len() % min_digits_per_byte) % min_digits_per_byte; if required_padding != 0 { binary_value = { let mut tail = binary_value; let mut binary_value: Vec = vec![b'0'; required_padding]; binary_value.append(&mut tail); binary_value }; } let str = String::from_utf8_lossy(&binary_value).to_string(); match decode_with_base(&str, base, min_digits_per_byte) { Ok(v) => { return ( Expression { expr: Expr::Binary(v), span, ty: Type::Binary, custom_completion: None, }, err, ) } Err(x) => { return ( garbage(span), Some(ParseError::IncorrectValue( "not a binary value".into(), span, x.to_string(), )), ) } } } } ( garbage(span), Some(ParseError::Expected("binary".into(), span)), ) } fn decode_with_base(s: &str, base: u32, digits_per_byte: usize) -> Result, ParseIntError> { s.chars() .chunks(digits_per_byte) .into_iter() .map(|chunk| { let str: String = chunk.collect(); u8::from_str_radix(&str, base) }) .collect() } pub fn parse_int(token: &[u8], span: Span) -> (Expression, Option) { if let Some(token) = token.strip_prefix(b"0x") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 16) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Some(token) = token.strip_prefix(b"0b") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 2) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Some(token) = token.strip_prefix(b"0o") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 8) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Ok(x) = String::from_utf8_lossy(token).parse::() { ( Expression { expr: Expr::Int(x), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("int".into(), span)), ) } } pub fn parse_float(token: &[u8], span: Span) -> (Expression, Option) { if let Ok(x) = String::from_utf8_lossy(token).parse::() { ( Expression { expr: Expr::Float(x), span, ty: Type::Float, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("float".into(), span)), ) } } pub fn parse_number(token: &[u8], span: Span) -> (Expression, Option) { if let (x, None) = parse_int(token, span) { (x, None) } else if let (x, None) = parse_float(token, span) { (x, None) } else { ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } pub fn parse_range( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { trace!("parsing: range"); // Range follows the following syntax: [][][] // where is ".." // and is ".." or "..<" // and one of the or bounds must be present (just '..' is not allowed since it // looks like parent directory) let contents = working_set.get_span_contents(span); let token = if let Ok(s) = String::from_utf8(contents.into()) { s } else { return (garbage(span), Some(ParseError::NonUtf8(span))); }; if !token.contains("..") { return ( garbage(span), Some(ParseError::Expected( "at least one range bound set".into(), span, )), ); } // First, figure out what exact operators are used and determine their positions let dotdot_pos: Vec<_> = token.match_indices("..").map(|(pos, _)| pos).collect(); let (next_op_pos, range_op_pos) = match dotdot_pos.len() { 1 => (None, dotdot_pos[0]), 2 => (Some(dotdot_pos[0]), dotdot_pos[1]), _ => return ( garbage(span), Some(ParseError::Expected( "one range operator ('..' or '..<') and optionally one next operator ('..')" .into(), span, )), ), }; let (inclusion, range_op_str, range_op_span) = if let Some(pos) = token.find("..<") { if pos == range_op_pos { let op_str = "..<"; let op_span = Span::new( span.start + range_op_pos, span.start + range_op_pos + op_str.len(), ); (RangeInclusion::RightExclusive, "..<", op_span) } else { return ( garbage(span), Some(ParseError::Expected( "inclusive operator preceding second range bound".into(), span, )), ); } } else { let op_str = ".."; let op_span = Span::new( span.start + range_op_pos, span.start + range_op_pos + op_str.len(), ); (RangeInclusion::Inclusive, "..", op_span) }; // Now, based on the operator positions, figure out where the bounds & next are located and // parse them // TODO: Actually parse the next number in the range let from = if token.starts_with("..") { // token starts with either next operator, or range operator -- we don't care which one None } else { let from_span = Span::new(span.start, span.start + dotdot_pos[0]); match parse_value( working_set, from_span, &SyntaxShape::Number, expand_aliases_denylist, ) { (expression, None) => Some(Box::new(expression)), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } }; let to = if token.ends_with(range_op_str) { None } else { let to_span = Span::new(range_op_span.end, span.end); match parse_value( working_set, to_span, &SyntaxShape::Number, expand_aliases_denylist, ) { (expression, None) => Some(Box::new(expression)), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } }; trace!("-- from: {:?} to: {:?}", from, to); if let (None, None) = (&from, &to) { return ( garbage(span), Some(ParseError::Expected( "at least one range bound set".into(), span, )), ); } let (next, next_op_span) = if let Some(pos) = next_op_pos { let next_op_span = Span::new(span.start + pos, span.start + pos + "..".len()); let next_span = Span::new(next_op_span.end, range_op_span.start); match parse_value( working_set, next_span, &SyntaxShape::Number, expand_aliases_denylist, ) { (expression, None) => (Some(Box::new(expression)), next_op_span), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } } else { (None, span) }; let range_op = RangeOperator { inclusion, span: range_op_span, next_op_span, }; ( Expression { expr: Expr::Range(from, next, to, range_op), span, ty: Type::Range, custom_completion: None, }, None, ) } pub(crate) fn parse_dollar_expr( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { trace!("parsing: dollar expression"); let contents = working_set.get_span_contents(span); if contents.starts_with(b"$\"") || contents.starts_with(b"$'") { parse_string_interpolation(working_set, span, expand_aliases_denylist) } else if let (expr, None) = parse_range(working_set, span, expand_aliases_denylist) { (expr, None) } else { parse_full_cell_path(working_set, None, span, expand_aliases_denylist) } } pub fn parse_string_interpolation( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { #[derive(PartialEq, Eq, Debug)] enum InterpolationMode { String, Expression, } let mut error = None; let contents = working_set.get_span_contents(span); let mut double_quote = false; let (start, end) = if contents.starts_with(b"$\"") { double_quote = true; let end = if contents.ends_with(b"\"") && contents.len() > 2 { span.end - 1 } else { span.end }; (span.start + 2, end) } else if contents.starts_with(b"$'") { let end = if contents.ends_with(b"'") && contents.len() > 2 { span.end - 1 } else { span.end }; (span.start + 2, end) } else { (span.start, span.end) }; let inner_span = Span { start, end }; let contents = working_set.get_span_contents(inner_span).to_vec(); let mut output = vec![]; let mut mode = InterpolationMode::String; let mut token_start = start; let mut delimiter_stack = vec![]; let mut b = start; while b != end { if contents[b - start] == b'(' && (if double_quote && (b - start) > 0 { contents[b - start - 1] != b'\\' } else { true }) && mode == InterpolationMode::String { mode = InterpolationMode::Expression; if token_start < b { let span = Span { start: token_start, end: b, }; let str_contents = working_set.get_span_contents(span); let str_contents = if double_quote { let (str_contents, err) = unescape_string(str_contents, span); error = error.or(err); str_contents } else { str_contents.to_vec() }; output.push(Expression { expr: Expr::String(String::from_utf8_lossy(&str_contents).to_string()), span, ty: Type::String, custom_completion: None, }); token_start = b; } } if mode == InterpolationMode::Expression { let byte = contents[b - start]; if let Some(b'\'') = delimiter_stack.last() { if byte == b'\'' { delimiter_stack.pop(); } } else if let Some(b'"') = delimiter_stack.last() { if byte == b'"' { delimiter_stack.pop(); } } else if let Some(b'`') = delimiter_stack.last() { if byte == b'`' { delimiter_stack.pop(); } } else if byte == b'\'' { delimiter_stack.push(b'\'') } else if byte == b'"' { delimiter_stack.push(b'"'); } else if byte == b'`' { delimiter_stack.push(b'`') } else if byte == b'(' { delimiter_stack.push(b')'); } else if byte == b')' { if let Some(b')') = delimiter_stack.last() { delimiter_stack.pop(); } if delimiter_stack.is_empty() { mode = InterpolationMode::String; if token_start < b { let span = Span { start: token_start, end: b + 1, }; let (expr, err) = parse_full_cell_path(working_set, None, span, expand_aliases_denylist); error = error.or(err); output.push(expr); } token_start = b + 1; continue; } } } b += 1; } match mode { InterpolationMode::String => { if token_start < end { let span = Span { start: token_start, end, }; let str_contents = working_set.get_span_contents(span); let str_contents = if double_quote { let (str_contents, err) = unescape_string(str_contents, span); error = error.or(err); str_contents } else { str_contents.to_vec() }; output.push(Expression { expr: Expr::String(String::from_utf8_lossy(&str_contents).to_string()), span, ty: Type::String, custom_completion: None, }); } } InterpolationMode::Expression => { if token_start < end { let span = Span { start: token_start, end, }; let (expr, err) = parse_full_cell_path(working_set, None, span, expand_aliases_denylist); error = error.or(err); output.push(expr); } } } ( Expression { expr: Expr::StringInterpolation(output), span, ty: Type::String, custom_completion: None, }, error, ) } pub fn parse_variable_expr( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); if contents == b"$nothing" { return ( Expression { expr: Expr::Nothing, span, ty: Type::Nothing, custom_completion: None, }, None, ); } else if contents == b"$nu" { return ( Expression { expr: Expr::Var(nu_protocol::NU_VARIABLE_ID), span, ty: Type::Any, custom_completion: None, }, None, ); } else if contents == b"$in" { return ( Expression { expr: Expr::Var(nu_protocol::IN_VARIABLE_ID), span, ty: Type::Any, custom_completion: None, }, None, ); } else if contents == b"$env" { return ( Expression { expr: Expr::Var(nu_protocol::ENV_VARIABLE_ID), span, ty: Type::Any, custom_completion: None, }, None, ); } let (id, err) = parse_variable(working_set, span); if err.is_none() { if let Some(id) = id { ( Expression { expr: Expr::Var(id), span, ty: working_set.get_variable(id).ty.clone(), custom_completion: None, }, None, ) } else { (garbage(span), Some(ParseError::VariableNotFound(span))) } } else { (garbage(span), err) } } pub fn parse_cell_path( working_set: &mut StateWorkingSet, tokens: impl Iterator, mut expect_dot: bool, expand_aliases_denylist: &[usize], span: Span, ) -> (Vec, Option) { let mut error = None; let mut tail = vec![]; for path_element in tokens { let bytes = working_set.get_span_contents(path_element.span); if expect_dot { expect_dot = false; if bytes.len() != 1 || bytes[0] != b'.' { error = error.or_else(|| Some(ParseError::Expected('.'.into(), path_element.span))); } } else { expect_dot = true; match parse_int(bytes, path_element.span) { ( Expression { expr: Expr::Int(val), span, .. }, None, ) => tail.push(PathMember::Int { val: val as usize, span, }), _ => { let (result, err) = parse_string(working_set, path_element.span, expand_aliases_denylist); error = error.or(err); match result { Expression { expr: Expr::String(string), span, .. } => { tail.push(PathMember::String { val: string, span }); } _ => { error = error.or_else(|| Some(ParseError::Expected("string".into(), span))); } } } } } } (tail, error) } pub fn parse_full_cell_path( working_set: &mut StateWorkingSet, implicit_head: Option, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let full_cell_span = span; let source = working_set.get_span_contents(span); let mut error = None; let (tokens, err) = lex(source, span.start, &[b'\n', b'\r'], &[b'.'], true); error = error.or(err); let mut tokens = tokens.into_iter().peekable(); if let Some(head) = tokens.peek() { let bytes = working_set.get_span_contents(head.span); let (head, expect_dot) = if bytes.starts_with(b"(") { trace!("parsing: paren-head of full cell path"); let head_span = head.span; let mut start = head.span.start; let mut end = head.span.end; if bytes.starts_with(b"(") { start += 1; } if bytes.ends_with(b")") { end -= 1; } else { error = error .or_else(|| Some(ParseError::Unclosed(")".into(), Span { start: end, end }))); } let span = Span { start, end }; let source = working_set.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b'\r'], &[], true); error = error.or(err); // Creating a Type scope to parse the new block. This will keep track of // the previous input type found in that block let (output, err) = parse_block(working_set, &output, true, expand_aliases_denylist, true); working_set .type_scope .add_type(working_set.type_scope.get_last_output()); let ty = output .pipelines .last() .and_then(|Pipeline { elements, .. }| elements.last()) .map(|element| match element { PipelineElement::Expression(_, expr) if matches!( expr, Expression { expr: Expr::BinaryOp(..), .. } ) => { expr.ty.clone() } _ => working_set.type_scope.get_last_output(), }) .unwrap_or_else(|| working_set.type_scope.get_last_output()); error = error.or(err); let block_id = working_set.add_block(output); tokens.next(); ( Expression { expr: Expr::Subexpression(block_id), span: head_span, ty, custom_completion: None, }, true, ) } else if bytes.starts_with(b"[") { trace!("parsing: table head of full cell path"); let (output, err) = parse_table_expression(working_set, head.span, expand_aliases_denylist); error = error.or(err); tokens.next(); (output, true) } else if bytes.starts_with(b"{") { trace!("parsing: record head of full cell path"); let (output, err) = parse_record(working_set, head.span, expand_aliases_denylist); error = error.or(err); tokens.next(); (output, true) } else if bytes.starts_with(b"$") { trace!("parsing: $variable head of full cell path"); let (out, err) = parse_variable_expr(working_set, head.span); error = error.or(err); tokens.next(); (out, true) } else if let Some(var_id) = implicit_head { ( Expression { expr: Expr::Var(var_id), span: Span::new(0, 0), ty: Type::Any, custom_completion: None, }, false, ) } else { return ( garbage(span), Some(ParseError::Mismatch( "variable or subexpression".into(), String::from_utf8_lossy(bytes).to_string(), span, )), ); }; let (tail, err) = parse_cell_path( working_set, tokens, expect_dot, expand_aliases_denylist, span, ); error = error.or(err); if !tail.is_empty() { ( Expression { ty: head.ty.clone(), // FIXME. How to access the last type of tail? expr: Expr::FullCellPath(Box::new(FullCellPath { head, tail })), span: full_cell_span, custom_completion: None, }, error, ) } else { let ty = head.ty.clone(); ( Expression { expr: Expr::FullCellPath(Box::new(FullCellPath { head, tail })), ty, span: full_cell_span, custom_completion: None, }, error, ) } } else { (garbage(span), error) } } pub fn parse_directory( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let (token, err) = unescape_unquote_string(bytes, span); trace!("parsing: directory"); if err.is_none() { trace!("-- found {}", token); ( Expression { expr: Expr::Directory(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("directory".into(), span)), ) } } pub fn parse_filepath( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let (token, err) = unescape_unquote_string(bytes, span); trace!("parsing: filepath"); if err.is_none() { trace!("-- found {}", token); ( Expression { expr: Expr::Filepath(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("filepath".into(), span)), ) } } /// Parse a datetime type, eg '2022-02-02' pub fn parse_datetime( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: datetime"); let bytes = working_set.get_span_contents(span); if bytes.is_empty() || !bytes[0].is_ascii_digit() { return ( garbage(span), Some(ParseError::Mismatch( "datetime".into(), "non-datetime".into(), span, )), ); } let token = String::from_utf8_lossy(bytes).to_string(); if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&token) { return ( Expression { expr: Expr::DateTime(datetime), span, ty: Type::Date, custom_completion: None, }, None, ); } // Just the date let just_date = token.clone() + "T00:00:00+00:00"; if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&just_date) { return ( Expression { expr: Expr::DateTime(datetime), span, ty: Type::Date, custom_completion: None, }, None, ); } // Date and time, assume UTC let datetime = token + "+00:00"; if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&datetime) { return ( Expression { expr: Expr::DateTime(datetime), span, ty: Type::Date, custom_completion: None, }, None, ); } ( garbage(span), Some(ParseError::Mismatch( "datetime".into(), "non-datetime".into(), span, )), ) } /// Parse a duration type, eg '10day' pub fn parse_duration( working_set: &StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: duration"); let bytes = working_set.get_span_contents(span); match parse_duration_bytes(bytes, span) { Some(expression) => (expression, None), None => ( garbage(span), Some(ParseError::Mismatch( "duration".into(), "non-duration unit".into(), span, )), ), } } // Borrowed from libm at https://github.com/rust-lang/libm/blob/master/src/math/modf.rs pub fn modf(x: f64) -> (f64, f64) { let rv2: f64; let mut u = x.to_bits(); let e = ((u >> 52 & 0x7ff) as i32) - 0x3ff; /* no fractional part */ if e >= 52 { rv2 = x; if e == 0x400 && (u << 12) != 0 { /* nan */ return (x, rv2); } u &= 1 << 63; return (f64::from_bits(u), rv2); } /* no integral part*/ if e < 0 { u &= 1 << 63; rv2 = f64::from_bits(u); return (x, rv2); } let mask = ((!0) >> 12) >> e; if (u & mask) == 0 { rv2 = x; u &= 1 << 63; return (f64::from_bits(u), rv2); } u &= !mask; rv2 = f64::from_bits(u); (x - rv2, rv2) } pub fn parse_duration_bytes(num_with_unit_bytes: &[u8], span: Span) -> Option { if num_with_unit_bytes.is_empty() || (!num_with_unit_bytes[0].is_ascii_digit() && num_with_unit_bytes[0] != b'-') { return None; } let num_with_unit = String::from_utf8_lossy(num_with_unit_bytes).to_string(); let uppercase_num_with_unit = num_with_unit.to_uppercase(); let unit_groups = [ (Unit::Nanosecond, "NS", None), (Unit::Microsecond, "US", Some((Unit::Nanosecond, 1000))), (Unit::Millisecond, "MS", Some((Unit::Microsecond, 1000))), (Unit::Second, "SEC", Some((Unit::Millisecond, 1000))), (Unit::Minute, "MIN", Some((Unit::Second, 60))), (Unit::Hour, "HR", Some((Unit::Minute, 60))), (Unit::Day, "DAY", Some((Unit::Minute, 1440))), (Unit::Week, "WK", Some((Unit::Day, 7))), ]; if let Some(unit) = unit_groups .iter() .find(|&x| uppercase_num_with_unit.ends_with(x.1)) { let mut lhs = num_with_unit; for _ in 0..unit.1.len() { lhs.pop(); } let (decimal_part, number_part) = modf(match lhs.parse::() { Ok(x) => x, Err(_) => return None, }); let (num, unit_to_use) = match unit.2 { Some(unit_to_convert_to) => ( Some( ((number_part * unit_to_convert_to.1 as f64) + (decimal_part * unit_to_convert_to.1 as f64)) as i64, ), unit_to_convert_to.0, ), None => (Some(number_part as i64), unit.0), }; if let Some(x) = num { trace!("-- found {} {:?}", x, unit_to_use); let lhs_span = Span::new(span.start, span.start + lhs.len()); let unit_span = Span::new(span.start + lhs.len(), span.end); return Some(Expression { expr: Expr::ValueWithUnit( Box::new(Expression { expr: Expr::Int(x), span: lhs_span, ty: Type::Number, custom_completion: None, }), Spanned { item: unit_to_use, span: unit_span, }, ), span, ty: Type::Duration, custom_completion: None, }); } } None } /// Parse a unit type, eg '10kb' pub fn parse_filesize( working_set: &StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: filesize"); let bytes = working_set.get_span_contents(span); match parse_filesize_bytes(bytes, span) { Some(expression) => (expression, None), None => ( garbage(span), Some(ParseError::Mismatch( "filesize".into(), "non-filesize unit".into(), span, )), ), } } pub fn parse_filesize_bytes(num_with_unit_bytes: &[u8], span: Span) -> Option { if num_with_unit_bytes.is_empty() || (!num_with_unit_bytes[0].is_ascii_digit() && num_with_unit_bytes[0] != b'-') { return None; } let num_with_unit = String::from_utf8_lossy(num_with_unit_bytes).to_string(); let uppercase_num_with_unit = num_with_unit.to_uppercase(); let unit_groups = [ (Unit::Kilobyte, "KB", Some((Unit::Byte, 1000))), (Unit::Megabyte, "MB", Some((Unit::Kilobyte, 1000))), (Unit::Gigabyte, "GB", Some((Unit::Megabyte, 1000))), (Unit::Terabyte, "TB", Some((Unit::Gigabyte, 1000))), (Unit::Petabyte, "PB", Some((Unit::Terabyte, 1000))), (Unit::Exabyte, "EB", Some((Unit::Petabyte, 1000))), (Unit::Zettabyte, "ZB", Some((Unit::Exabyte, 1000))), (Unit::Kibibyte, "KIB", Some((Unit::Byte, 1024))), (Unit::Mebibyte, "MIB", Some((Unit::Kibibyte, 1024))), (Unit::Gibibyte, "GIB", Some((Unit::Mebibyte, 1024))), (Unit::Tebibyte, "TIB", Some((Unit::Gibibyte, 1024))), (Unit::Pebibyte, "PIB", Some((Unit::Tebibyte, 1024))), (Unit::Exbibyte, "EIB", Some((Unit::Pebibyte, 1024))), (Unit::Zebibyte, "ZIB", Some((Unit::Exbibyte, 1024))), (Unit::Byte, "B", None), ]; if let Some(unit) = unit_groups .iter() .find(|&x| uppercase_num_with_unit.ends_with(x.1)) { let mut lhs = num_with_unit; for _ in 0..unit.1.len() { lhs.pop(); } let (decimal_part, number_part) = modf(match lhs.parse::() { Ok(x) => x, Err(_) => return None, }); let (num, unit_to_use) = match unit.2 { Some(unit_to_convert_to) => ( Some( ((number_part * unit_to_convert_to.1 as f64) + (decimal_part * unit_to_convert_to.1 as f64)) as i64, ), unit_to_convert_to.0, ), None => (Some(number_part as i64), unit.0), }; if let Some(x) = num { trace!("-- found {} {:?}", x, unit_to_use); let lhs_span = Span::new(span.start, span.start + lhs.len()); let unit_span = Span::new(span.start + lhs.len(), span.end); return Some(Expression { expr: Expr::ValueWithUnit( Box::new(Expression { expr: Expr::Int(x), span: lhs_span, ty: Type::Number, custom_completion: None, }), Spanned { item: unit_to_use, span: unit_span, }, ), span, ty: Type::Filesize, custom_completion: None, }); } } None } pub fn parse_glob_pattern( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let (token, err) = unescape_unquote_string(bytes, span); trace!("parsing: glob pattern"); if err.is_none() { trace!("-- found {}", token); ( Expression { expr: Expr::GlobPattern(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } } pub fn unescape_string(bytes: &[u8], span: Span) -> (Vec, Option) { let mut output = Vec::new(); let mut idx = 0; let mut err = None; while idx < bytes.len() { if bytes[idx] == b'\\' { // We're in an escape idx += 1; match bytes.get(idx) { Some(b'"') => { output.push(b'"'); idx += 1; } Some(b'\'') => { output.push(b'\''); idx += 1; } Some(b'\\') => { output.push(b'\\'); idx += 1; } Some(b'/') => { output.push(b'/'); idx += 1; } Some(b'(') => { output.push(b'('); idx += 1; } Some(b')') => { output.push(b')'); idx += 1; } Some(b'{') => { output.push(b'{'); idx += 1; } Some(b'}') => { output.push(b'}'); idx += 1; } Some(b'$') => { output.push(b'$'); idx += 1; } Some(b'^') => { output.push(b'^'); idx += 1; } Some(b'#') => { output.push(b'#'); idx += 1; } Some(b'|') => { output.push(b'|'); idx += 1; } Some(b'~') => { output.push(b'~'); idx += 1; } Some(b'a') => { output.push(0x7); idx += 1; } Some(b'b') => { output.push(0x8); idx += 1; } Some(b'e') => { output.push(0x1b); idx += 1; } Some(b'f') => { output.push(0xc); idx += 1; } Some(b'n') => { output.push(b'\n'); idx += 1; } Some(b'r') => { output.push(b'\r'); idx += 1; } Some(b't') => { output.push(b'\t'); idx += 1; } Some(b'u') => { match ( bytes.get(idx + 1), bytes.get(idx + 2), bytes.get(idx + 3), bytes.get(idx + 4), ) { (Some(h1), Some(h2), Some(h3), Some(h4)) => { let s = String::from_utf8(vec![*h1, *h2, *h3, *h4]); if let Ok(s) = s { let int = u32::from_str_radix(&s, 16); if let Ok(int) = int { let result = char::from_u32(int); if let Some(result) = result { let mut buffer = vec![0; 4]; let result = result.encode_utf8(&mut buffer); for elem in result.bytes() { output.push(elem); } idx += 5; continue; } } } err = Some(ParseError::Expected( "unicode hex value".into(), Span { start: (span.start + idx), end: span.end, }, )); } _ => { err = Some(ParseError::Expected( "unicode hex value".into(), Span { start: (span.start + idx), end: span.end, }, )); } } idx += 5; } _ => { err = Some(ParseError::Expected( "supported escape character".into(), Span { start: (span.start + idx), end: span.end, }, )); } } } else { output.push(bytes[idx]); idx += 1; } } (output, err) } pub fn unescape_unquote_string(bytes: &[u8], span: Span) -> (String, Option) { if bytes.starts_with(b"\"") { // Needs unescaping let bytes = trim_quotes(bytes); let (bytes, err) = unescape_string(bytes, span); if let Ok(token) = String::from_utf8(bytes) { (token, err) } else { ( String::new(), Some(ParseError::Expected("string".into(), span)), ) } } else { let bytes = trim_quotes(bytes); if let Ok(token) = String::from_utf8(bytes.into()) { (token, None) } else { ( String::new(), Some(ParseError::Expected("string".into(), span)), ) } } } pub fn parse_string( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { trace!("parsing: string"); let bytes = working_set.get_span_contents(span); // Check for bare word interpolation if bytes[0] != b'\'' && bytes[0] != b'"' && bytes[0] != b'`' && bytes.contains(&b'(') { return parse_string_interpolation(working_set, span, expand_aliases_denylist); } let (s, err) = unescape_unquote_string(bytes, span); ( Expression { expr: Expr::String(s), span, ty: Type::String, custom_completion: None, }, err, ) } pub fn parse_string_strict( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { trace!("parsing: string, with required delimiters"); let bytes = working_set.get_span_contents(span); // Check for unbalanced quotes: { let bytes = if bytes.starts_with(b"$") { &bytes[1..] } else { bytes }; if bytes.starts_with(b"\"") && (bytes.len() == 1 || !bytes.ends_with(b"\"")) { return (garbage(span), Some(ParseError::Unclosed("\"".into(), span))); } if bytes.starts_with(b"\'") && (bytes.len() == 1 || !bytes.ends_with(b"\'")) { return (garbage(span), Some(ParseError::Unclosed("\'".into(), span))); } } let (bytes, quoted) = if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1) || (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1) { (&bytes[1..(bytes.len() - 1)], true) } else if (bytes.starts_with(b"$\"") && bytes.ends_with(b"\"") && bytes.len() > 2) || (bytes.starts_with(b"$\'") && bytes.ends_with(b"\'") && bytes.len() > 2) { (&bytes[2..(bytes.len() - 1)], true) } else { (bytes, false) }; if let Ok(token) = String::from_utf8(bytes.into()) { trace!("-- found {}", token); if quoted { ( Expression { expr: Expr::String(token), span, ty: Type::String, custom_completion: None, }, None, ) } else if token.contains(' ') { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } else { ( Expression { expr: Expr::String(token), span, ty: Type::String, custom_completion: None, }, None, ) } } else { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } } //TODO: Handle error case for unknown shapes pub fn parse_shape_name( working_set: &StateWorkingSet, bytes: &[u8], span: Span, ) -> (SyntaxShape, Option) { let result = match bytes { b"any" => SyntaxShape::Any, b"binary" => SyntaxShape::Binary, b"block" => SyntaxShape::Block, //FIXME: Blocks should have known output types b"closure" => SyntaxShape::Closure(None), //FIXME: Blocks should have known output types b"cell-path" => SyntaxShape::CellPath, b"duration" => SyntaxShape::Duration, b"path" => SyntaxShape::Filepath, b"directory" => SyntaxShape::Directory, b"expr" => SyntaxShape::Expression, b"filesize" => SyntaxShape::Filesize, b"glob" => SyntaxShape::GlobPattern, b"int" => SyntaxShape::Int, b"math" => SyntaxShape::MathExpression, b"number" => SyntaxShape::Number, b"operator" => SyntaxShape::Operator, b"range" => SyntaxShape::Range, b"cond" => SyntaxShape::RowCondition, b"bool" => SyntaxShape::Boolean, b"signature" => SyntaxShape::Signature, b"string" => SyntaxShape::String, b"variable" => SyntaxShape::Variable, b"record" => SyntaxShape::Record, b"list" => SyntaxShape::List(Box::new(SyntaxShape::Any)), b"table" => SyntaxShape::Table, b"error" => SyntaxShape::Error, _ => { if bytes.contains(&b'@') { let str = String::from_utf8_lossy(bytes); let split: Vec<_> = str.split('@').collect(); let (shape, err) = parse_shape_name( working_set, split[0].as_bytes(), Span { start: span.start, end: span.start + split[0].len(), }, ); let command_name = trim_quotes(split[1].as_bytes()); let decl_id = working_set.find_decl(command_name, &Type::Any); if let Some(decl_id) = decl_id { return (SyntaxShape::Custom(Box::new(shape), decl_id), err); } else { return ( shape, Some(ParseError::UnknownCommand(Span { start: span.start + split[0].len() + 1, end: span.end, })), ); } } else { return (SyntaxShape::Any, Some(ParseError::UnknownType(span))); } } }; (result, None) } pub fn parse_type(_working_set: &StateWorkingSet, bytes: &[u8]) -> Type { match bytes { b"int" => Type::Int, b"float" => Type::Float, b"range" => Type::Range, b"bool" => Type::Bool, b"string" => Type::String, b"block" => Type::Block, b"duration" => Type::Duration, b"date" => Type::Date, b"filesize" => Type::Filesize, b"number" => Type::Number, b"table" => Type::Table(vec![]), //FIXME b"error" => Type::Error, b"binary" => Type::Binary, _ => Type::Any, } } pub fn parse_import_pattern( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let mut error = None; let (head, head_span) = if let Some(head_span) = spans.get(0) { ( working_set.get_span_contents(*head_span).to_vec(), head_span, ) } else { return ( garbage(span(spans)), Some(ParseError::WrongImportPattern(span(spans))), ); }; let maybe_module_id = working_set.find_module(&head); let (import_pattern, err) = if let Some(tail_span) = spans.get(1) { // FIXME: expand this to handle deeper imports once we support module imports let tail = working_set.get_span_contents(*tail_span); if tail == b"*" { ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_module_id, span: *head_span, }, members: vec![ImportPatternMember::Glob { span: *tail_span }], hidden: HashSet::new(), }, None, ) } else if tail.starts_with(b"[") { let (result, err) = parse_list_expression( working_set, *tail_span, &SyntaxShape::String, expand_aliases_denylist, ); error = error.or(err); let mut output = vec![]; match result { Expression { expr: Expr::List(list), .. } => { for expr in list { let contents = working_set.get_span_contents(expr.span); output.push((trim_quotes(contents).to_vec(), expr.span)); } ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_module_id, span: *head_span, }, members: vec![ImportPatternMember::List { names: output }], hidden: HashSet::new(), }, None, ) } _ => ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_module_id, span: *head_span, }, members: vec![], hidden: HashSet::new(), }, Some(ParseError::ExportNotFound(result.span)), ), } } else { let tail = trim_quotes(tail); ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_module_id, span: *head_span, }, members: vec![ImportPatternMember::Name { name: tail.to_vec(), span: *tail_span, }], hidden: HashSet::new(), }, None, ) } } else { ( ImportPattern { head: ImportPatternHead { name: head, id: maybe_module_id, span: *head_span, }, members: vec![], hidden: HashSet::new(), }, None, ) }; ( Expression { expr: Expr::ImportPattern(import_pattern), span: span(&spans[1..]), ty: Type::List(Box::new(Type::String)), custom_completion: None, }, error.or(err), ) } pub fn parse_var_with_opt_type( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, mutable: bool, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(spans[*spans_idx]).to_vec(); if bytes.contains(&b' ') || bytes.contains(&b'"') || bytes.contains(&b'\'') || bytes.contains(&b'`') { return ( garbage(spans[*spans_idx]), Some(ParseError::VariableNotValid(spans[*spans_idx])), ); } if bytes.ends_with(b":") { // We end with colon, so the next span should be the type if *spans_idx + 1 < spans.len() { *spans_idx += 1; let type_bytes = working_set.get_span_contents(spans[*spans_idx]); let ty = parse_type(working_set, type_bytes); let var_name = bytes[0..(bytes.len() - 1)].to_vec(); if !is_variable(&var_name) { return ( garbage(spans[*spans_idx]), Some(ParseError::Expected( "valid variable name".into(), spans[*spans_idx], )), ); } let id = working_set.add_variable(var_name, spans[*spans_idx - 1], ty.clone(), mutable); ( Expression { expr: Expr::VarDecl(id), span: span(&spans[*spans_idx - 1..*spans_idx + 1]), ty, custom_completion: None, }, None, ) } else { let var_name = bytes[0..(bytes.len() - 1)].to_vec(); if !is_variable(&var_name) { return ( garbage(spans[*spans_idx]), Some(ParseError::Expected( "valid variable name".into(), spans[*spans_idx], )), ); } let id = working_set.add_variable(var_name, spans[*spans_idx], Type::Any, mutable); ( Expression { expr: Expr::VarDecl(id), span: spans[*spans_idx], ty: Type::Any, custom_completion: None, }, Some(ParseError::MissingType(spans[*spans_idx])), ) } } else { let var_name = bytes; if !is_variable(&var_name) { return ( garbage(spans[*spans_idx]), Some(ParseError::Expected( "valid variable name".into(), spans[*spans_idx], )), ); } let id = working_set.add_variable( var_name, span(&spans[*spans_idx..*spans_idx + 1]), Type::Any, mutable, ); ( Expression { expr: Expr::VarDecl(id), span: span(&spans[*spans_idx..*spans_idx + 1]), ty: Type::Any, custom_completion: None, }, None, ) } } pub fn expand_to_cell_path( working_set: &mut StateWorkingSet, expression: &mut Expression, var_id: VarId, expand_aliases_denylist: &[usize], ) { if let Expression { expr: Expr::String(_), span, .. } = expression { // Re-parse the string as if it were a cell-path let (new_expression, _err) = parse_full_cell_path(working_set, Some(var_id), *span, expand_aliases_denylist); *expression = new_expression; } } pub fn parse_row_condition( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let var_id = working_set.add_variable(b"$it".to_vec(), span(spans), Type::Any, false); let (expression, err) = parse_math_expression(working_set, spans, Some(var_id), expand_aliases_denylist); let span = span(spans); let block_id = match expression.expr { Expr::Block(block_id) => block_id, Expr::Closure(block_id) => block_id, _ => { // We have an expression, so let's convert this into a block. let mut block = Block::new(); let mut pipeline = Pipeline::new(); pipeline .elements .push(PipelineElement::Expression(None, expression)); block.pipelines.push(pipeline); block.signature.required_positional.push(PositionalArg { name: "$it".into(), desc: "row condition".into(), shape: SyntaxShape::Any, var_id: Some(var_id), default_value: None, }); working_set.add_block(block) } }; ( Expression { ty: Type::Bool, span, expr: Expr::RowCondition(block_id), custom_completion: None, }, err, ) } pub fn parse_signature( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; let mut has_paren = false; if bytes.starts_with(b"[") { start += 1; } else if bytes.starts_with(b"(") { has_paren = true; start += 1; } else { error = error.or_else(|| { Some(ParseError::Expected( "[ or (".into(), Span { start, end: start + 1, }, )) }); } if (has_paren && bytes.ends_with(b")")) || (!has_paren && bytes.ends_with(b"]")) { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "] or )".into(), Span { start: end, end }, )) }); } let (sig, err) = parse_signature_helper(working_set, Span { start, end }, expand_aliases_denylist); error = error.or(err); ( Expression { expr: Expr::Signature(sig), span, ty: Type::Signature, custom_completion: None, }, error, ) } pub fn parse_signature_helper( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Box, Option) { #[allow(clippy::enum_variant_names)] enum ParseMode { ArgMode, TypeMode, DefaultValueMode, } #[derive(Debug)] enum Arg { Positional(PositionalArg, bool), // bool - required RestPositional(PositionalArg), Flag(Flag), } let mut error = None; let source = working_set.get_span_contents(span); let (output, err) = lex( source, span.start, &[b'\n', b'\r', b','], &[b':', b'='], false, ); error = error.or(err); let mut args: Vec = vec![]; let mut parse_mode = ParseMode::ArgMode; for token in &output { match token { Token { contents: crate::TokenContents::Item, span, } => { let span = *span; let contents = working_set.get_span_contents(span); if contents == b":" { match parse_mode { ParseMode::ArgMode => { parse_mode = ParseMode::TypeMode; } ParseMode::TypeMode | ParseMode::DefaultValueMode => { // We're seeing two types for the same thing for some reason, error error = error.or_else(|| Some(ParseError::Expected("type".into(), span))); } } } else if contents == b"=" { match parse_mode { ParseMode::ArgMode | ParseMode::TypeMode => { parse_mode = ParseMode::DefaultValueMode; } ParseMode::DefaultValueMode => { // We're seeing two default values for some reason, error error = error.or_else(|| { Some(ParseError::Expected("default value".into(), span)) }); } } } else { match parse_mode { ParseMode::ArgMode => { if contents.starts_with(b"--") && contents.len() > 2 { // Long flag let flags: Vec<_> = contents.split(|x| x == &b'(').map(|x| x.to_vec()).collect(); let long = String::from_utf8_lossy(&flags[0][2..]).to_string(); let mut variable_name = flags[0][2..].to_vec(); // Replace the '-' in a variable name with '_' (0..variable_name.len()).for_each(|idx| { if variable_name[idx] == b'-' { variable_name[idx] = b'_'; } }); if !is_variable(&variable_name) { error = error.or_else(|| { Some(ParseError::Expected( "valid variable name".into(), span, )) }) } let var_id = working_set.add_variable(variable_name, span, Type::Any, false); if flags.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: None, required: false, var_id: Some(var_id), default_value: None, })); } else if flags.len() >= 3 { error = error.or_else(|| { Some(ParseError::Expected("one short flag".into(), span)) }); } else { let short_flag = &flags[1]; let short_flag = if !short_flag.starts_with(b"-") || !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); short_flag } else { &short_flag[1..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); let long = String::from_utf8_lossy(&flags[0][2..]).to_string(); let mut variable_name = flags[0][2..].to_vec(); (0..variable_name.len()).for_each(|idx| { if variable_name[idx] == b'-' { variable_name[idx] = b'_'; } }); if !is_variable(&variable_name) { error = error.or_else(|| { Some(ParseError::Expected( "valid variable name".into(), span, )) }) } let var_id = working_set.add_variable( variable_name, span, Type::Any, false, ); if chars.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: Some(chars[0]), required: false, var_id: Some(var_id), default_value: None, })); } else { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } } } else if contents.starts_with(b"-") && contents.len() > 1 { // Short flag let short_flag = &contents[1..]; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() > 1 { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } let mut encoded_var_name = vec![0u8; 4]; let len = chars[0].encode_utf8(&mut encoded_var_name).len(); let variable_name = encoded_var_name[0..len].to_vec(); if !is_variable(&variable_name) { error = error.or_else(|| { Some(ParseError::Expected( "valid variable name".into(), span, )) }) } let var_id = working_set.add_variable(variable_name, span, Type::Any, false); args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long: String::new(), short: Some(chars[0]), required: false, var_id: Some(var_id), default_value: None, })); } else if contents.starts_with(b"(-") { let short_flag = &contents[2..]; let short_flag = if !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); short_flag } else { &short_flag[..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() == 1 { match args.last_mut() { Some(Arg::Flag(flag)) => { if flag.short.is_some() { error = error.or_else(|| { Some(ParseError::Expected( "one short flag".into(), span, )) }); } else { flag.short = Some(chars[0]); } } _ => { error = error.or_else(|| { Some(ParseError::Expected( "unknown flag".into(), span, )) }); } } } else { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } } else if contents.ends_with(b"?") { let contents: Vec<_> = contents[..(contents.len() - 1)].into(); let name = String::from_utf8_lossy(&contents).to_string(); if !is_variable(&contents) { error = error.or_else(|| { Some(ParseError::Expected( "valid variable name".into(), span, )) }) } let var_id = working_set.add_variable(contents, span, Type::Any, false); // Positional arg, optional args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), default_value: None, }, false, )) } else if let Some(contents) = contents.strip_prefix(b"...") { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec: Vec = contents.to_vec(); if !is_variable(&contents_vec) { error = error.or_else(|| { Some(ParseError::Expected( "valid variable name".into(), span, )) }) } let var_id = working_set.add_variable(contents_vec, span, Type::Any, false); args.push(Arg::RestPositional(PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), default_value: None, })); } else { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec = contents.to_vec(); if !is_variable(&contents_vec) { error = error.or_else(|| { Some(ParseError::Expected( "valid variable name".into(), span, )) }) } let var_id = working_set.add_variable(contents_vec, span, Type::Any, false); // Positional arg, required args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), default_value: None, }, true, )) } } ParseMode::TypeMode => { if let Some(last) = args.last_mut() { let (syntax_shape, err) = parse_shape_name(working_set, contents, span); error = error.or(err); //TODO check if we're replacing a custom parameter already match last { Arg::Positional(PositionalArg { shape, var_id, .. }, ..) => { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *shape = syntax_shape; } Arg::RestPositional(PositionalArg { shape, var_id, .. }) => { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *shape = syntax_shape; } Arg::Flag(Flag { arg, var_id, .. }) => { // Flags with a boolean type are just present/not-present switches if syntax_shape != SyntaxShape::Boolean { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *arg = Some(syntax_shape) } } } } parse_mode = ParseMode::ArgMode; } ParseMode::DefaultValueMode => { if let Some(last) = args.last_mut() { let (expression, err) = parse_value( working_set, span, &SyntaxShape::Any, expand_aliases_denylist, ); error = error.or(err); //TODO check if we're replacing a custom parameter already match last { Arg::Positional( PositionalArg { shape, var_id, default_value, .. }, required, ) => { let var_id = var_id.expect("internal error: all custom parameters must have var_ids"); let var_type = &working_set.get_variable(var_id).ty; match var_type { Type::Any => { working_set.set_variable_type( var_id, expression.ty.clone(), ); } t => { if t != &expression.ty { error = error.or_else(|| { Some(ParseError::AssignmentMismatch( "Default value wrong type".into(), format!("default value not {}", t), expression.span, )) }) } } } *shape = expression.ty.to_shape(); *default_value = Some(expression); *required = false; } Arg::RestPositional(..) => { error = error.or_else(|| { Some(ParseError::AssignmentMismatch( "Rest parameter given default value".into(), "can't have default value".into(), expression.span, )) }) } Arg::Flag(Flag { arg, var_id, default_value, .. }) => { let var_id = var_id.expect("internal error: all custom parameters must have var_ids"); let var_type = &working_set.get_variable(var_id).ty; let expression_ty = expression.ty.clone(); let expression_span = expression.span; *default_value = Some(expression); // Flags with a boolean type are just present/not-present switches if var_type != &Type::Bool { match var_type { Type::Any => { *arg = Some(expression_ty.to_shape()); working_set .set_variable_type(var_id, expression_ty); } t => { if t != &expression_ty { error = error.or_else(|| { Some(ParseError::AssignmentMismatch( "Default value wrong type".into(), format!("default value not {}", t), expression_span, )) }) } } } } } } } parse_mode = ParseMode::ArgMode; } } } } Token { contents: crate::TokenContents::Comment, span, } => { let contents = working_set.get_span_contents(Span { start: span.start + 1, end: span.end, }); let mut contents = String::from_utf8_lossy(contents).to_string(); contents = contents.trim().into(); if let Some(last) = args.last_mut() { match last { Arg::Flag(flag) => { if !flag.desc.is_empty() { flag.desc.push('\n'); } flag.desc.push_str(&contents); } Arg::Positional(positional, ..) => { if !positional.desc.is_empty() { positional.desc.push('\n'); } positional.desc.push_str(&contents); } Arg::RestPositional(positional) => { if !positional.desc.is_empty() { positional.desc.push('\n'); } positional.desc.push_str(&contents); } } } } _ => {} } } let mut sig = Signature::new(String::new()); for arg in args { match arg { Arg::Positional(positional, required) => { if required { if !sig.optional_positional.is_empty() { error = error.or_else(|| { Some(ParseError::RequiredAfterOptional( positional.name.clone(), span, )) }) } sig.required_positional.push(positional) } else { sig.optional_positional.push(positional) } } Arg::Flag(flag) => sig.named.push(flag), Arg::RestPositional(positional) => { if positional.name.is_empty() { error = error.or(Some(ParseError::RestNeedsName(span))) } else if sig.rest_positional.is_none() { sig.rest_positional = Some(PositionalArg { name: positional.name, ..positional }) } else { // Too many rest params error = error.or(Some(ParseError::MultipleRestParams(span))) } } } } (Box::new(sig), error) } pub fn parse_list_expression( working_set: &mut StateWorkingSet, span: Span, element_shape: &SyntaxShape, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("]".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, inner_span.start, &[b'\n', b'\r', b','], &[], true); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let mut args = vec![]; let mut contained_type: Option = None; if !output.block.is_empty() { for arg in &output.block[0].commands { let mut spans_idx = 0; if let LiteElement::Command(_, command) = arg { while spans_idx < command.parts.len() { let (arg, err) = parse_multispan_value( working_set, &command.parts, &mut spans_idx, element_shape, expand_aliases_denylist, ); error = error.or(err); if let Some(ref ctype) = contained_type { if *ctype != arg.ty { contained_type = Some(Type::Any); } } else { contained_type = Some(arg.ty.clone()); } args.push(arg); spans_idx += 1; } } } } ( Expression { expr: Expr::List(args), span, ty: Type::List(Box::new(if let Some(ty) = contained_type { ty } else { Type::Any })), custom_completion: None, }, error, ) } pub fn parse_table_expression( working_set: &mut StateWorkingSet, original_span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let bytes = working_set.get_span_contents(original_span); let mut error = None; let mut start = original_span.start; let mut end = original_span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("]".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, start, &[b'\n', b'\r', b','], &[], true); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); match output.block.len() { 0 => ( Expression { expr: Expr::List(vec![]), span: original_span, ty: Type::List(Box::new(Type::Any)), custom_completion: None, }, None, ), 1 => { // List parse_list_expression( working_set, original_span, &SyntaxShape::Any, expand_aliases_denylist, ) } _ => { match &output.block[0].commands[0] { LiteElement::Command(_, command) | LiteElement::Redirection(_, _, command) => { let mut table_headers = vec![]; let (headers, err) = parse_value( working_set, command.parts[0], &SyntaxShape::List(Box::new(SyntaxShape::Any)), expand_aliases_denylist, ); error = error.or(err); if let Expression { expr: Expr::List(headers), .. } = headers { table_headers = headers; } match &output.block[1].commands[0] { LiteElement::Command(_, command) | LiteElement::Redirection(_, _, command) => { let mut rows = vec![]; for part in &command.parts { let (values, err) = parse_value( working_set, *part, &SyntaxShape::List(Box::new(SyntaxShape::Any)), expand_aliases_denylist, ); error = error.or(err); if let Expression { expr: Expr::List(values), span, .. } = values { match values.len().cmp(&table_headers.len()) { std::cmp::Ordering::Less => { error = error.or(Some(ParseError::MissingColumns( table_headers.len(), span, ))) } std::cmp::Ordering::Equal => {} std::cmp::Ordering::Greater => { error = error.or_else(|| { Some(ParseError::ExtraColumns( table_headers.len(), values[table_headers.len()].span, )) }) } } rows.push(values); } } ( Expression { expr: Expr::Table(table_headers, rows), span: original_span, ty: Type::Table(vec![]), //FIXME custom_completion: None, }, error, ) } } } } } } } pub fn parse_block_expression( working_set: &mut StateWorkingSet, shape: &SyntaxShape, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { trace!("parsing: block expression"); let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { return ( garbage(span), Some(ParseError::Expected("block".into(), span)), ); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("}".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, start, &[], &[], false); error = error.or(err); working_set.enter_scope(); // Check to see if we have parameters let (signature, amt_to_skip): (Option<(Box, Span)>, usize) = match output.first() { Some(Token { contents: TokenContents::Pipe, span, }) => { error = error.or_else(|| { Some(ParseError::Expected( "block but found closure".into(), *span, )) }); (None, 0) } _ => (None, 0), }; // TODO: Finish this if let SyntaxShape::Closure(Some(v)) = shape { if let Some((sig, sig_span)) = &signature { if sig.num_positionals() > v.len() { error = error.or_else(|| { Some(ParseError::Expected( format!( "{} block parameter{}", v.len(), if v.len() > 1 { "s" } else { "" } ), *sig_span, )) }); } for (expected, PositionalArg { name, shape, .. }) in v.iter().zip(sig.required_positional.iter()) { if expected != shape && *shape != SyntaxShape::Any { error = error.or_else(|| { Some(ParseError::ParameterMismatchType( name.to_owned(), expected.to_string(), shape.to_string(), *sig_span, )) }); } } } } let (mut output, err) = parse_block( working_set, &output[amt_to_skip..], false, expand_aliases_denylist, false, ); error = error.or(err); if let Some(signature) = signature { output.signature = signature.0; } else if let Some(last) = working_set.delta.scope.last() { // FIXME: this only supports the top $it. Is this sufficient? if let Some(var_id) = last.get_var(b"$it") { let mut signature = Signature::new(""); signature.required_positional.push(PositionalArg { var_id: Some(*var_id), name: "$it".into(), desc: String::new(), shape: SyntaxShape::Any, default_value: None, }); output.signature = Box::new(signature); } } output.span = Some(span); working_set.exit_scope(); let block_id = working_set.add_block(output); ( Expression { expr: Expr::Block(block_id), span, ty: Type::Block, custom_completion: None, }, error, ) } pub fn parse_closure_expression( working_set: &mut StateWorkingSet, shape: &SyntaxShape, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { trace!("parsing: closure expression"); let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { return ( garbage(span), Some(ParseError::Expected("block".into(), span)), ); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("}".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (output, err) = lex(source, start, &[], &[], false); error = error.or(err); working_set.enter_scope(); // Check to see if we have parameters let (signature, amt_to_skip): (Option<(Box, Span)>, usize) = match output.first() { Some(Token { contents: TokenContents::Pipe, span, }) => { // We've found a parameter list let start_point = span.start; let mut token_iter = output.iter().enumerate().skip(1); let mut end_span = None; let mut amt_to_skip = 1; for token in &mut token_iter { if let Token { contents: TokenContents::Pipe, span, } = token.1 { end_span = Some(span); amt_to_skip = token.0; break; } } let end_point = if let Some(span) = end_span { span.end } else { end }; let signature_span = Span { start: start_point, end: end_point, }; let (signature, err) = parse_signature_helper(working_set, signature_span, expand_aliases_denylist); error = error.or(err); (Some((signature, signature_span)), amt_to_skip) } Some(Token { contents: TokenContents::Item, span, }) => { let contents = working_set.get_span_contents(*span); if contents == b"||" { ( Some((Box::new(Signature::new("closure".to_string())), *span)), 1, ) } else { (None, 0) } } _ => (None, 0), }; // TODO: Finish this if let SyntaxShape::Closure(Some(v)) = shape { if let Some((sig, sig_span)) = &signature { if sig.num_positionals() > v.len() { error = error.or_else(|| { Some(ParseError::Expected( format!( "{} block parameter{}", v.len(), if v.len() > 1 { "s" } else { "" } ), *sig_span, )) }); } for (expected, PositionalArg { name, shape, .. }) in v.iter().zip(sig.required_positional.iter()) { if expected != shape && *shape != SyntaxShape::Any { error = error.or_else(|| { Some(ParseError::ParameterMismatchType( name.to_owned(), expected.to_string(), shape.to_string(), *sig_span, )) }); } } } } let (mut output, err) = parse_block( working_set, &output[amt_to_skip..], false, expand_aliases_denylist, false, ); error = error.or(err); if let Some(signature) = signature { output.signature = signature.0; } else if let Some(last) = working_set.delta.scope.last() { // FIXME: this only supports the top $it. Is this sufficient? if let Some(var_id) = last.get_var(b"$it") { let mut signature = Signature::new(""); signature.required_positional.push(PositionalArg { var_id: Some(*var_id), name: "$it".into(), desc: String::new(), shape: SyntaxShape::Any, default_value: None, }); output.signature = Box::new(signature); } } output.span = Some(span); working_set.exit_scope(); let block_id = working_set.add_block(output); ( Expression { expr: Expr::Closure(block_id), span, ty: Type::Closure, custom_completion: None, }, error, ) } pub fn parse_value( working_set: &mut StateWorkingSet, span: Span, shape: &SyntaxShape, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); if bytes.is_empty() { return (garbage(span), Some(ParseError::IncompleteParser(span))); } // First, check the special-cases. These will likely represent specific values as expressions // and may fit a variety of shapes. // // We check variable first because immediately following we check for variables with cell paths // which might result in a value that fits other shapes (and require the variable to already be // declared) if shape == &SyntaxShape::Variable { trace!("parsing: variable"); return parse_variable_expr(working_set, span); } // Check for reserved keyword values match bytes { b"true" => { if matches!(shape, SyntaxShape::Boolean) || matches!(shape, SyntaxShape::Any) { return ( Expression { expr: Expr::Bool(true), span, ty: Type::Bool, custom_completion: None, }, None, ); } else { return ( Expression::garbage(span), Some(ParseError::Expected("non-boolean value".into(), span)), ); } } b"false" => { if matches!(shape, SyntaxShape::Boolean) || matches!(shape, SyntaxShape::Any) { return ( Expression { expr: Expr::Bool(false), span, ty: Type::Bool, custom_completion: None, }, None, ); } else { return ( Expression::garbage(span), Some(ParseError::Expected("non-boolean value".into(), span)), ); } } b"null" => { return ( Expression { expr: Expr::Nothing, span, ty: Type::Nothing, custom_completion: None, }, None, ); } _ => {} } match bytes[0] { b'$' => return parse_dollar_expr(working_set, span, expand_aliases_denylist), b'(' => { if let (expr, None) = parse_range(working_set, span, expand_aliases_denylist) { return (expr, None); } else if matches!(shape, SyntaxShape::Signature) { return parse_signature(working_set, span, expand_aliases_denylist); } else { return parse_full_cell_path(working_set, None, span, expand_aliases_denylist); } } b'{' => { if !matches!(shape, SyntaxShape::Closure(..)) && !matches!(shape, SyntaxShape::Block) { if let (expr, None) = parse_full_cell_path(working_set, None, span, expand_aliases_denylist) { return (expr, None); } } if matches!(shape, SyntaxShape::Closure(_)) || matches!(shape, SyntaxShape::Any) { return parse_closure_expression(working_set, shape, span, expand_aliases_denylist); } else if matches!(shape, SyntaxShape::Block) { return parse_block_expression(working_set, shape, span, expand_aliases_denylist); } else if matches!(shape, SyntaxShape::Record) { return parse_record(working_set, span, expand_aliases_denylist); } else { return ( Expression::garbage(span), Some(ParseError::Expected("non-block value".into(), span)), ); } } b'[' => match shape { SyntaxShape::Any | SyntaxShape::List(_) | SyntaxShape::Table | SyntaxShape::Signature => {} _ => { return ( Expression::garbage(span), Some(ParseError::Expected("non-[] value".into(), span)), ); } }, _ => {} } match shape { SyntaxShape::Custom(shape, custom_completion) => { let (mut expression, err) = parse_value(working_set, span, shape, expand_aliases_denylist); expression.custom_completion = Some(*custom_completion); (expression, err) } SyntaxShape::Number => parse_number(bytes, span), SyntaxShape::Int => parse_int(bytes, span), SyntaxShape::Duration => parse_duration(working_set, span), SyntaxShape::DateTime => parse_datetime(working_set, span), SyntaxShape::Filesize => parse_filesize(working_set, span), SyntaxShape::Range => parse_range(working_set, span, expand_aliases_denylist), SyntaxShape::Filepath => parse_filepath(working_set, span), SyntaxShape::Directory => parse_directory(working_set, span), SyntaxShape::GlobPattern => parse_glob_pattern(working_set, span), SyntaxShape::String => parse_string(working_set, span, expand_aliases_denylist), SyntaxShape::Binary => parse_binary(working_set, span), SyntaxShape::Signature => { if bytes.starts_with(b"[") { parse_signature(working_set, span, expand_aliases_denylist) } else { ( Expression::garbage(span), Some(ParseError::Expected("signature".into(), span)), ) } } SyntaxShape::List(elem) => { if bytes.starts_with(b"[") { parse_list_expression(working_set, span, elem, expand_aliases_denylist) } else { ( Expression::garbage(span), Some(ParseError::Expected("list".into(), span)), ) } } SyntaxShape::Table => { if bytes.starts_with(b"[") { parse_table_expression(working_set, span, expand_aliases_denylist) } else { ( Expression::garbage(span), Some(ParseError::Expected("table".into(), span)), ) } } SyntaxShape::CellPath => { let source = working_set.get_span_contents(span); let mut error = None; let (tokens, err) = lex(source, span.start, &[b'\n', b'\r'], &[b'.'], true); error = error.or(err); let tokens = tokens.into_iter().peekable(); let (cell_path, err) = parse_cell_path(working_set, tokens, false, expand_aliases_denylist, span); error = error.or(err); ( Expression { expr: Expr::CellPath(CellPath { members: cell_path }), span, ty: Type::CellPath, custom_completion: None, }, error, ) } SyntaxShape::Boolean => { // Redundant, though we catch bad boolean parses here if bytes == b"true" || bytes == b"false" { ( Expression { expr: Expr::Bool(true), span, ty: Type::Bool, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("bool".into(), span)), ) } } SyntaxShape::Any => { if bytes.starts_with(b"[") { //parse_value(working_set, span, &SyntaxShape::Table) parse_full_cell_path(working_set, None, span, expand_aliases_denylist) } else { let shapes = [ SyntaxShape::Binary, SyntaxShape::Int, SyntaxShape::Number, SyntaxShape::Range, SyntaxShape::DateTime, SyntaxShape::Filesize, SyntaxShape::Duration, SyntaxShape::Record, SyntaxShape::Closure(None), SyntaxShape::Block, SyntaxShape::String, ]; for shape in shapes.iter() { if let (s, None) = parse_value(working_set, span, shape, expand_aliases_denylist) { return (s, None); } } ( garbage(span), Some(ParseError::Expected("any shape".into(), span)), ) } } _ => (garbage(span), Some(ParseError::IncompleteParser(span))), } } pub fn parse_operator( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); let operator = match contents { b"=" => Operator::Assignment(Assignment::Assign), b"+=" => Operator::Assignment(Assignment::PlusAssign), b"-=" => Operator::Assignment(Assignment::MinusAssign), b"*=" => Operator::Assignment(Assignment::MultiplyAssign), b"/=" => Operator::Assignment(Assignment::DivideAssign), b"==" => Operator::Comparison(Comparison::Equal), b"!=" => Operator::Comparison(Comparison::NotEqual), b"<" => Operator::Comparison(Comparison::LessThan), b"<=" => Operator::Comparison(Comparison::LessThanOrEqual), b">" => Operator::Comparison(Comparison::GreaterThan), b">=" => Operator::Comparison(Comparison::GreaterThanOrEqual), b"=~" => Operator::Comparison(Comparison::RegexMatch), b"!~" => Operator::Comparison(Comparison::NotRegexMatch), b"+" => Operator::Math(Math::Plus), b"++" => Operator::Math(Math::Append), b"-" => Operator::Math(Math::Minus), b"*" => Operator::Math(Math::Multiply), b"/" => Operator::Math(Math::Divide), b"//" => Operator::Math(Math::FloorDivision), b"in" => Operator::Comparison(Comparison::In), b"not-in" => Operator::Comparison(Comparison::NotIn), b"mod" => Operator::Math(Math::Modulo), b"bit-or" => Operator::Bits(Bits::BitOr), b"bit-xor" => Operator::Bits(Bits::BitXor), b"bit-and" => Operator::Bits(Bits::BitAnd), b"bit-shl" => Operator::Bits(Bits::ShiftLeft), b"bit-shr" => Operator::Bits(Bits::ShiftRight), b"starts-with" => Operator::Comparison(Comparison::StartsWith), b"ends-with" => Operator::Comparison(Comparison::EndsWith), b"&&" | b"and" => Operator::Boolean(Boolean::And), b"||" | b"or" => Operator::Boolean(Boolean::Or), b"xor" => Operator::Boolean(Boolean::Xor), b"**" => Operator::Math(Math::Pow), _ => { return ( garbage(span), Some(ParseError::Expected("operator".into(), span)), ); } }; ( Expression { expr: Expr::Operator(operator), span, ty: Type::Any, custom_completion: None, }, None, ) } pub fn parse_math_expression( working_set: &mut StateWorkingSet, spans: &[Span], lhs_row_var_id: Option, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { // As the expr_stack grows, we increase the required precedence to grow larger // If, at any time, the operator we're looking at is the same or lower precedence // of what is in the expression stack, we collapse the expression stack. // // This leads to an expression stack that grows under increasing precedence and collapses // under decreasing/sustained precedence // // The end result is a stack that we can fold into binary operations as right associations // safely. let mut expr_stack: Vec = vec![]; let mut idx = 0; let mut last_prec = 1000000; let mut error = None; let first_span = working_set.get_span_contents(spans[0]); if first_span == b"not" { if spans.len() > 1 { let (remainder, err) = parse_math_expression( working_set, &spans[1..], lhs_row_var_id, expand_aliases_denylist, ); return ( Expression { expr: Expr::UnaryNot(Box::new(remainder)), span: span(spans), ty: Type::Bool, custom_completion: None, }, err, ); } else { return ( garbage(spans[0]), Some(ParseError::Expected( "expression".into(), Span { start: spans[0].end, end: spans[0].end, }, )), ); } } let (mut lhs, err) = parse_value( working_set, spans[0], &SyntaxShape::Any, expand_aliases_denylist, ); error = error.or(err); idx += 1; if idx >= spans.len() { // We already found the one part of our expression, so let's expand if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id, expand_aliases_denylist); } } expr_stack.push(lhs); while idx < spans.len() { let (op, err) = parse_operator(working_set, spans[idx]); error = error.or(err); let op_prec = op.precedence(); idx += 1; if idx == spans.len() { // Handle broken math expr `1 +` etc error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1]))); expr_stack.push(Expression::garbage(spans[idx - 1])); expr_stack.push(Expression::garbage(spans[idx - 1])); break; } let (rhs, err) = parse_value( working_set, spans[idx], &SyntaxShape::Any, expand_aliases_denylist, ); error = error.or(err); while op_prec <= last_prec && expr_stack.len() > 1 { // Collapse the right associated operations first // so that we can get back to a stack with a lower precedence let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); last_prec = op.precedence(); if last_prec < op_prec { expr_stack.push(op); expr_stack.push(rhs); break; } let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id, expand_aliases_denylist); } let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs); error = error.or(err); let op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: op_span, ty: result_ty, custom_completion: None, }); } expr_stack.push(op); expr_stack.push(rhs); last_prec = op_prec; idx += 1; } while expr_stack.len() != 1 { let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id, expand_aliases_denylist); } let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs); error = error.or(err); let binary_op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: binary_op_span, ty: result_ty, custom_completion: None, }); } let output = expr_stack .pop() .expect("internal error: expression stack empty"); (output, error) } pub fn parse_expression( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases_denylist: &[usize], is_subexpression: bool, ) -> (Expression, Option) { let mut pos = 0; let mut shorthand = vec![]; while pos < spans.len() { // Check if there is any environment shorthand let name = working_set.get_span_contents(spans[pos]); let split = name.splitn(2, |x| *x == b'='); let split: Vec<_> = split.collect(); if split.len() == 2 && !split[0].is_empty() { let point = split[0].len() + 1; let lhs = parse_string_strict( working_set, Span { start: spans[pos].start, end: spans[pos].start + point - 1, }, ); let rhs = if spans[pos].start + point < spans[pos].end { let rhs_span = Span { start: spans[pos].start + point, end: spans[pos].end, }; if working_set.get_span_contents(rhs_span).starts_with(b"$") { parse_dollar_expr(working_set, rhs_span, expand_aliases_denylist) } else { parse_string_strict(working_set, rhs_span) } } else { ( Expression { expr: Expr::String(String::new()), span: Span { start: 0, end: 0 }, ty: Type::Nothing, custom_completion: None, }, None, ) }; if lhs.1.is_none() && rhs.1.is_none() { shorthand.push((lhs.0, rhs.0)); pos += 1; } else { break; } } else { break; } } if pos == spans.len() { return ( garbage(span(spans)), Some(ParseError::UnknownCommand(spans[0])), ); } let (output, err) = if is_math_expression_like(working_set, spans[pos], expand_aliases_denylist) { parse_math_expression(working_set, &spans[pos..], None, expand_aliases_denylist) } else { let bytes = working_set.get_span_contents(spans[pos]); // For now, check for special parses of certain keywords match bytes { b"def" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline("def".into(), spans[0])), ), b"extern" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "extern".into(), spans[0], )), ), b"for" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline("for".into(), spans[0])), ), b"let" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::LetInPipeline( String::from_utf8_lossy(match spans.len() { 1 | 2 | 3 => b"value", _ => working_set.get_span_contents(spans[3]), }) .to_string(), String::from_utf8_lossy(match spans.len() { 1 => b"variable", _ => working_set.get_span_contents(spans[1]), }) .to_string(), spans[0], )), ), b"mut" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::MutInPipeline( String::from_utf8_lossy(match spans.len() { 1 | 2 | 3 => b"value", _ => working_set.get_span_contents(spans[3]), }) .to_string(), String::from_utf8_lossy(match spans.len() { 1 => b"variable", _ => working_set.get_span_contents(spans[1]), }) .to_string(), spans[0], )), ), b"alias" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "alias".into(), spans[0], )), ), b"module" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "module".into(), spans[0], )), ), b"use" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline("use".into(), spans[0])), ), b"overlay" => { if spans.len() > 1 && working_set.get_span_contents(spans[1]) == b"list" { // whitelist 'overlay list' parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) } else { ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "overlay".into(), spans[0], )), ) } } b"source" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "source".into(), spans[0], )), ), b"export" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::UnexpectedKeyword("export".into(), spans[0])), ), b"hide" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "hide".into(), spans[0], )), ), #[cfg(feature = "plugin")] b"register" => ( parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ) .0, Some(ParseError::BuiltinCommandInPipeline( "plugin".into(), spans[0], )), ), _ => parse_call( working_set, &spans[pos..], spans[0], expand_aliases_denylist, is_subexpression, ), } }; let with_env = working_set.find_decl(b"with-env", &Type::Any); if !shorthand.is_empty() { if let Some(decl_id) = with_env { let mut block = Block::default(); let ty = output.ty.clone(); block.pipelines = vec![Pipeline::from_vec(vec![output])]; let block_id = working_set.add_block(block); let mut env_vars = vec![]; for sh in shorthand { env_vars.push(sh.0); env_vars.push(sh.1); } let arguments = vec![ Argument::Positional(Expression { expr: Expr::List(env_vars), span: span(&spans[..pos]), ty: Type::Any, custom_completion: None, }), Argument::Positional(Expression { expr: Expr::Closure(block_id), span: span(&spans[pos..]), ty: Type::Closure, custom_completion: None, }), ]; let expr = Expr::Call(Box::new(Call { head: Span { start: 0, end: 0 }, decl_id, arguments, redirect_stdout: true, redirect_stderr: false, })); ( Expression { expr, custom_completion: None, span: span(spans), ty, }, err, ) } else { (output, err) } } else { (output, err) } } pub fn parse_variable( working_set: &mut StateWorkingSet, span: Span, ) -> (Option, Option) { let bytes = working_set.get_span_contents(span); if is_variable(bytes) { if let Some(var_id) = working_set.find_variable(bytes) { let input = working_set.get_variable(var_id).ty.clone(); working_set.type_scope.add_type(input); (Some(var_id), None) } else { (None, None) } } else { ( None, Some(ParseError::Expected("valid variable name".into(), span)), ) } } pub fn parse_builtin_commands( working_set: &mut StateWorkingSet, lite_command: &LiteCommand, expand_aliases_denylist: &[usize], is_subexpression: bool, ) -> (Pipeline, Option) { let name = working_set.get_span_contents(lite_command.parts[0]); match name { b"def" | b"def-env" => parse_def(working_set, lite_command, expand_aliases_denylist), b"extern" => parse_extern(working_set, lite_command, expand_aliases_denylist), b"let" => parse_let(working_set, &lite_command.parts, expand_aliases_denylist), b"mut" => parse_mut(working_set, &lite_command.parts, expand_aliases_denylist), b"for" => { let (expr, err) = parse_for(working_set, &lite_command.parts, expand_aliases_denylist); (Pipeline::from_vec(vec![expr]), err) } b"alias" => parse_alias(working_set, &lite_command.parts, expand_aliases_denylist), b"module" => parse_module(working_set, &lite_command.parts, expand_aliases_denylist), b"use" => { let (pipeline, _, err) = parse_use(working_set, &lite_command.parts, expand_aliases_denylist); (pipeline, err) } b"overlay" => parse_overlay(working_set, &lite_command.parts, expand_aliases_denylist), b"source" | b"source-env" => { parse_source(working_set, &lite_command.parts, expand_aliases_denylist) } b"export" => parse_export_in_block(working_set, lite_command, expand_aliases_denylist), b"hide" => parse_hide(working_set, &lite_command.parts, expand_aliases_denylist), #[cfg(feature = "plugin")] b"register" => parse_register(working_set, &lite_command.parts, expand_aliases_denylist), _ => { let (expr, err) = parse_expression( working_set, &lite_command.parts, expand_aliases_denylist, is_subexpression, ); (Pipeline::from_vec(vec![expr]), err) } } } pub fn parse_record( working_set: &mut StateWorkingSet, span: Span, expand_aliases_denylist: &[usize], ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { error = error.or_else(|| { Some(ParseError::Expected( "{".into(), Span { start, end: start + 1, }, )) }); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| Some(ParseError::Unclosed("}".into(), Span { start: end, end }))); } let inner_span = Span { start, end }; let source = working_set.get_span_contents(inner_span); let (tokens, err) = lex(source, start, &[b'\n', b'\r', b','], &[b':'], true); error = error.or(err); let mut output = vec![]; let mut idx = 0; while idx < tokens.len() { let (field, err) = parse_value( working_set, tokens[idx].span, &SyntaxShape::Any, expand_aliases_denylist, ); error = error.or(err); idx += 1; if idx == tokens.len() { return ( garbage(span), Some(ParseError::Expected("record".into(), span)), ); } let colon = working_set.get_span_contents(tokens[idx].span); idx += 1; if idx == tokens.len() || colon != b":" { //FIXME: need better error return ( garbage(span), Some(ParseError::Expected("record".into(), span)), ); } let (value, err) = parse_value( working_set, tokens[idx].span, &SyntaxShape::Any, expand_aliases_denylist, ); error = error.or(err); idx += 1; output.push((field, value)); } ( Expression { expr: Expr::Record(output), span, ty: Type::Any, //FIXME: but we don't know the contents of the fields, do we? custom_completion: None, }, error, ) } pub fn parse_block( working_set: &mut StateWorkingSet, tokens: &[Token], scoped: bool, expand_aliases_denylist: &[usize], is_subexpression: bool, ) -> (Block, Option) { let mut error = None; let (lite_block, err) = lite_parse(tokens); error = error.or(err); trace!("parsing block: {:?}", lite_block); if scoped { working_set.enter_scope(); } working_set.type_scope.enter_scope(); // Pre-declare any definition so that definitions // that share the same block can see each other for pipeline in &lite_block.block { if pipeline.commands.len() == 1 { match &pipeline.commands[0] { LiteElement::Command(_, command) | LiteElement::Redirection(_, _, command) => { if let Some(err) = parse_def_predecl(working_set, &command.parts, expand_aliases_denylist) { error = error.or(Some(err)); } } } } } let block: Block = lite_block .block .iter() .enumerate() .map(|(idx, pipeline)| { if pipeline.commands.len() > 1 { let mut output = pipeline .commands .iter() .map(|command| match command { LiteElement::Command(span, command) => { let (expr, err) = parse_expression( working_set, &command.parts, expand_aliases_denylist, is_subexpression, ); working_set.type_scope.add_type(expr.ty.clone()); if error.is_none() { error = err; } PipelineElement::Expression(*span, expr) } LiteElement::Redirection(span, redirection, command) => { let (expr, err) = parse_string( working_set, command.parts[0], expand_aliases_denylist, ); working_set.type_scope.add_type(expr.ty.clone()); if error.is_none() { error = err; } PipelineElement::Redirection(*span, redirection.clone(), expr) } }) .collect::>(); if is_subexpression { for element in output.iter_mut().skip(1) { if element.has_in_variable(working_set) { *element = wrap_element_with_collect(working_set, element); } } } else { for element in output.iter_mut() { if element.has_in_variable(working_set) { *element = wrap_element_with_collect(working_set, element); } } } Pipeline { elements: output } } else { match &pipeline.commands[0] { LiteElement::Command(_, command) | LiteElement::Redirection(_, _, command) => { let (mut pipeline, err) = parse_builtin_commands( working_set, command, expand_aliases_denylist, is_subexpression, ); if idx == 0 { if let Some(let_decl_id) = working_set.find_decl(b"let", &Type::Any) { if let Some(let_env_decl_id) = working_set.find_decl(b"let-env", &Type::Any) { for element in pipeline.elements.iter_mut() { if let PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) = element { if call.decl_id == let_decl_id || call.decl_id == let_env_decl_id { // Do an expansion if let Some(Expression { expr: Expr::Keyword(_, _, expr), .. }) = call.positional_iter_mut().nth(1) { if expr.has_in_variable(working_set) { *expr = Box::new(wrap_expr_with_collect( working_set, expr, )); } } continue; } else if element.has_in_variable(working_set) && !is_subexpression { *element = wrap_element_with_collect(working_set, element); } } else if element.has_in_variable(working_set) && !is_subexpression { *element = wrap_element_with_collect(working_set, element); } } } } } if error.is_none() { error = err; } pipeline } } } }) .into(); if scoped { working_set.exit_scope(); } working_set.type_scope.exit_scope(); (block, error) } pub fn discover_captures_in_closure( working_set: &StateWorkingSet, block: &Block, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Result, ParseError> { let mut output = vec![]; for flag in &block.signature.named { if let Some(var_id) = flag.var_id { seen.push(var_id); } } for positional in &block.signature.required_positional { if let Some(var_id) = positional.var_id { seen.push(var_id); } } for positional in &block.signature.optional_positional { if let Some(var_id) = positional.var_id { seen.push(var_id); } } for positional in &block.signature.rest_positional { if let Some(var_id) = positional.var_id { seen.push(var_id); } } for pipeline in &block.pipelines { let result = discover_captures_in_pipeline(working_set, pipeline, seen, seen_blocks)?; output.extend(&result); } Ok(output) } fn discover_captures_in_pipeline( working_set: &StateWorkingSet, pipeline: &Pipeline, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Result, ParseError> { let mut output = vec![]; for element in &pipeline.elements { let result = discover_captures_in_pipeline_element(working_set, element, seen, seen_blocks)?; output.extend(&result); } Ok(output) } // Closes over captured variables pub fn discover_captures_in_pipeline_element( working_set: &StateWorkingSet, element: &PipelineElement, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Result, ParseError> { match element { PipelineElement::Expression(_, expression) | PipelineElement::Redirection(_, _, expression) | PipelineElement::And(_, expression) | PipelineElement::Or(_, expression) => { discover_captures_in_expr(working_set, expression, seen, seen_blocks) } } } // Closes over captured variables pub fn discover_captures_in_expr( working_set: &StateWorkingSet, expr: &Expression, seen: &mut Vec, seen_blocks: &mut HashMap>, ) -> Result, ParseError> { let mut output: Vec<(VarId, Span)> = vec![]; match &expr.expr { Expr::BinaryOp(lhs, _, rhs) => { let lhs_result = discover_captures_in_expr(working_set, lhs, seen, seen_blocks)?; let rhs_result = discover_captures_in_expr(working_set, rhs, seen, seen_blocks)?; output.extend(&lhs_result); output.extend(&rhs_result); } Expr::UnaryNot(expr) => { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } Expr::Closure(block_id) => { let block = working_set.get_block(*block_id); let results = { let mut seen = vec![]; let results = discover_captures_in_closure(working_set, block, &mut seen, seen_blocks)?; for (var_id, span) in results.iter() { if !seen.contains(var_id) { if let Some(variable) = working_set.get_variable_if_possible(*var_id) { if variable.mutable { return Err(ParseError::CaptureOfMutableVar(*span)); } } } } results }; seen_blocks.insert(*block_id, results.clone()); for (var_id, span) in results.into_iter() { if !seen.contains(&var_id) { output.push((var_id, span)) } } } Expr::Block(block_id) => { let block = working_set.get_block(*block_id); // FIXME: is this correct? let results = { let mut seen = vec![]; discover_captures_in_closure(working_set, block, &mut seen, seen_blocks)? }; seen_blocks.insert(*block_id, results.clone()); for (var_id, span) in results.into_iter() { if !seen.contains(&var_id) { output.push((var_id, span)) } } } Expr::Binary(_) => {} Expr::Bool(_) => {} Expr::Call(call) => { let decl = working_set.get_decl(call.decl_id); if let Some(block_id) = decl.get_block_id() { match seen_blocks.get(&block_id) { Some(capture_list) => { output.extend(capture_list); } None => { let block = working_set.get_block(block_id); if !block.captures.is_empty() { output.extend(block.captures.iter().map(|var_id| (*var_id, call.head))); } else { let mut seen = vec![]; seen_blocks.insert(block_id, output.clone()); let result = discover_captures_in_closure( working_set, block, &mut seen, seen_blocks, )?; output.extend(&result); seen_blocks.insert(block_id, result); } } } } for named in call.named_iter() { if let Some(arg) = &named.2 { let result = discover_captures_in_expr(working_set, arg, seen, seen_blocks)?; output.extend(&result); } } for positional in call.positional_iter() { let result = discover_captures_in_expr(working_set, positional, seen, seen_blocks)?; output.extend(&result); } } Expr::CellPath(_) => {} Expr::DateTime(_) => {} Expr::ExternalCall(head, exprs, _) => { let result = discover_captures_in_expr(working_set, head, seen, seen_blocks)?; output.extend(&result); for expr in exprs { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } } Expr::Filepath(_) => {} Expr::Directory(_) => {} Expr::Float(_) => {} Expr::FullCellPath(cell_path) => { let result = discover_captures_in_expr(working_set, &cell_path.head, seen, seen_blocks)?; output.extend(&result); } Expr::ImportPattern(_) => {} Expr::Overlay(_) => {} Expr::Garbage => {} Expr::Nothing => {} Expr::GlobPattern(_) => {} Expr::Int(_) => {} Expr::Keyword(_, _, expr) => { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } Expr::List(exprs) => { for expr in exprs { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } } Expr::Operator(_) => {} Expr::Range(expr1, expr2, expr3, _) => { if let Some(expr) = expr1 { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } if let Some(expr) = expr2 { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } if let Some(expr) = expr3 { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } } Expr::Record(fields) => { for (field_name, field_value) in fields { output.extend(&discover_captures_in_expr( working_set, field_name, seen, seen_blocks, )?); output.extend(&discover_captures_in_expr( working_set, field_value, seen, seen_blocks, )?); } } Expr::Signature(sig) => { // Something with a declaration, similar to a var decl, will introduce more VarIds into the stack at eval for pos in &sig.required_positional { if let Some(var_id) = pos.var_id { seen.push(var_id); } } for pos in &sig.optional_positional { if let Some(var_id) = pos.var_id { seen.push(var_id); } } if let Some(rest) = &sig.rest_positional { if let Some(var_id) = rest.var_id { seen.push(var_id); } } for named in &sig.named { if let Some(var_id) = named.var_id { seen.push(var_id); } } } Expr::String(_) => {} Expr::StringInterpolation(exprs) => { for expr in exprs { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } } Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => { let block = working_set.get_block(*block_id); let results = { let mut seen = vec![]; discover_captures_in_closure(working_set, block, &mut seen, seen_blocks)? }; seen_blocks.insert(*block_id, results.clone()); for (var_id, span) in results.into_iter() { if !seen.contains(&var_id) { output.push((var_id, span)) } } } Expr::Table(headers, values) => { for header in headers { let result = discover_captures_in_expr(working_set, header, seen, seen_blocks)?; output.extend(&result); } for row in values { for cell in row { let result = discover_captures_in_expr(working_set, cell, seen, seen_blocks)?; output.extend(&result); } } } Expr::ValueWithUnit(expr, _) => { let result = discover_captures_in_expr(working_set, expr, seen, seen_blocks)?; output.extend(&result); } Expr::Var(var_id) => { if (*var_id > ENV_VARIABLE_ID || *var_id == IN_VARIABLE_ID) && !seen.contains(var_id) { output.push((*var_id, expr.span)); } } Expr::VarDecl(var_id) => { seen.push(*var_id); } } Ok(output) } fn wrap_element_with_collect( working_set: &mut StateWorkingSet, element: &PipelineElement, ) -> PipelineElement { match element { PipelineElement::Expression(span, expression) => { PipelineElement::Expression(*span, wrap_expr_with_collect(working_set, expression)) } PipelineElement::Redirection(span, redirection, expression) => { PipelineElement::Redirection( *span, redirection.clone(), wrap_expr_with_collect(working_set, expression), ) } PipelineElement::And(span, expression) => { PipelineElement::And(*span, wrap_expr_with_collect(working_set, expression)) } PipelineElement::Or(span, expression) => { PipelineElement::Or(*span, wrap_expr_with_collect(working_set, expression)) } } } fn wrap_expr_with_collect(working_set: &mut StateWorkingSet, expr: &Expression) -> Expression { let span = expr.span; if let Some(decl_id) = working_set.find_decl(b"collect", &Type::Any) { let mut output = vec![]; let var_id = working_set.next_var_id(); let mut signature = Signature::new(""); signature.required_positional.push(PositionalArg { var_id: Some(var_id), name: "$in".into(), desc: String::new(), shape: SyntaxShape::Any, default_value: None, }); let mut expr = expr.clone(); expr.replace_in_variable(working_set, var_id); let block = Block { pipelines: vec![Pipeline::from_vec(vec![expr])], signature: Box::new(signature), ..Default::default() }; let block_id = working_set.add_block(block); output.push(Argument::Positional(Expression { expr: Expr::Closure(block_id), span, ty: Type::Any, custom_completion: None, })); output.push(Argument::Named(( Spanned { item: "keep-env".to_string(), span: Span::new(0, 0), }, None, None, ))); // The containing, synthetic call to `collect`. // We don't want to have a real span as it will confuse flattening // The args are where we'll get the real info Expression { expr: Expr::Call(Box::new(Call { head: Span::new(0, 0), arguments: output, decl_id, redirect_stdout: true, redirect_stderr: false, })), span, ty: Type::String, custom_completion: None, } } else { Expression::garbage(span) } } #[derive(Debug)] pub struct LiteCommand { pub comments: Vec, pub parts: Vec, } impl Default for LiteCommand { fn default() -> Self { Self::new() } } impl LiteCommand { pub fn new() -> Self { Self { comments: vec![], parts: vec![], } } pub fn push(&mut self, span: Span) { self.parts.push(span); } pub fn is_empty(&self) -> bool { self.parts.is_empty() } } // Note: the Span is the span of the connector not the whole element #[derive(Debug)] pub enum LiteElement { Command(Option, LiteCommand), Redirection(Span, Redirection, LiteCommand), } #[derive(Debug)] pub struct LitePipeline { pub commands: Vec, } impl Default for LitePipeline { fn default() -> Self { Self::new() } } impl LitePipeline { pub fn new() -> Self { Self { commands: vec![] } } pub fn push(&mut self, element: LiteElement) { self.commands.push(element); } pub fn is_empty(&self) -> bool { self.commands.is_empty() } } #[derive(Debug)] pub struct LiteBlock { pub block: Vec, } impl Default for LiteBlock { fn default() -> Self { Self::new() } } impl LiteBlock { pub fn new() -> Self { Self { block: vec![] } } pub fn push(&mut self, pipeline: LitePipeline) { self.block.push(pipeline); } pub fn is_empty(&self) -> bool { self.block.is_empty() } } pub fn lite_parse(tokens: &[Token]) -> (LiteBlock, Option) { let mut block = LiteBlock::new(); let mut curr_pipeline = LitePipeline::new(); let mut curr_command = LiteCommand::new(); let mut last_token = TokenContents::Eol; let mut last_connector = TokenContents::Pipe; let mut last_connector_span: Option = None; if tokens.is_empty() { return (LiteBlock::new(), None); } let mut curr_comment: Option> = None; for token in tokens.iter() { match &token.contents { TokenContents::Item => { // If we have a comment, go ahead and attach it if let Some(curr_comment) = curr_comment.take() { curr_command.comments = curr_comment; } curr_command.push(token.span); last_token = TokenContents::Item; } TokenContents::OutGreaterThan | TokenContents::ErrGreaterThan | TokenContents::OutErrGreaterThan => { if !curr_command.is_empty() { match last_connector { TokenContents::OutGreaterThan => { curr_pipeline.push(LiteElement::Redirection( token.span, Redirection::Stdout, curr_command, )); } TokenContents::ErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( token.span, Redirection::Stderr, curr_command, )); } TokenContents::OutErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( token.span, Redirection::StdoutAndStderr, curr_command, )); } _ => { curr_pipeline .push(LiteElement::Command(last_connector_span, curr_command)); } } curr_command = LiteCommand::new(); } last_token = token.contents; last_connector = token.contents; last_connector_span = Some(token.span); } TokenContents::Pipe => { if !curr_command.is_empty() { match last_connector { TokenContents::OutGreaterThan => { curr_pipeline.push(LiteElement::Redirection( token.span, Redirection::Stdout, curr_command, )); } TokenContents::ErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( token.span, Redirection::Stderr, curr_command, )); } TokenContents::OutErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( token.span, Redirection::StdoutAndStderr, curr_command, )); } _ => { curr_pipeline .push(LiteElement::Command(last_connector_span, curr_command)); } } curr_command = LiteCommand::new(); } last_token = TokenContents::Pipe; last_connector = TokenContents::Pipe; last_connector_span = Some(token.span); } TokenContents::Eol => { if last_token != TokenContents::Pipe && last_token != TokenContents::OutGreaterThan { if !curr_command.is_empty() { match last_connector { TokenContents::OutGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span.expect( "internal error: redirection missing span information", ), Redirection::Stdout, curr_command, )); } TokenContents::ErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span.expect( "internal error: redirection missing span information", ), Redirection::Stderr, curr_command, )); } TokenContents::OutErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span.expect( "internal error: redirection missing span information", ), Redirection::StdoutAndStderr, curr_command, )); } _ => { curr_pipeline .push(LiteElement::Command(last_connector_span, curr_command)); } } curr_command = LiteCommand::new(); } if !curr_pipeline.is_empty() { block.push(curr_pipeline); curr_pipeline = LitePipeline::new(); } } if last_token == TokenContents::Eol { // Clear out the comment as we're entering a new comment curr_comment = None; } last_token = TokenContents::Eol; } TokenContents::Semicolon => { if !curr_command.is_empty() { match last_connector { TokenContents::OutGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span .expect("internal error: redirection missing span information"), Redirection::Stdout, curr_command, )); } TokenContents::ErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span .expect("internal error: redirection missing span information"), Redirection::Stderr, curr_command, )); } TokenContents::OutErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span .expect("internal error: redirection missing span information"), Redirection::StdoutAndStderr, curr_command, )); } _ => { curr_pipeline .push(LiteElement::Command(last_connector_span, curr_command)); } } curr_command = LiteCommand::new(); } if !curr_pipeline.is_empty() { block.push(curr_pipeline); curr_pipeline = LitePipeline::new(); last_connector = TokenContents::Pipe; last_connector_span = None; } last_token = TokenContents::Semicolon; } TokenContents::Comment => { // Comment is beside something if last_token != TokenContents::Eol { curr_command.comments.push(token.span); curr_comment = None; } else { // Comment precedes something if let Some(curr_comment) = &mut curr_comment { curr_comment.push(token.span); } else { curr_comment = Some(vec![token.span]); } } last_token = TokenContents::Comment; } } } if !curr_command.is_empty() { match last_connector { TokenContents::OutGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span .expect("internal error: redirection missing span information"), Redirection::Stdout, curr_command, )); } TokenContents::ErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span .expect("internal error: redirection missing span information"), Redirection::Stderr, curr_command, )); } TokenContents::OutErrGreaterThan => { curr_pipeline.push(LiteElement::Redirection( last_connector_span .expect("internal error: redirection missing span information"), Redirection::StdoutAndStderr, curr_command, )); } _ => { curr_pipeline.push(LiteElement::Command(last_connector_span, curr_command)); } } } if !curr_pipeline.is_empty() { block.push(curr_pipeline); } if last_token == TokenContents::Pipe { ( block, Some(ParseError::UnexpectedEof( "pipeline missing end".into(), tokens[tokens.len() - 1].span, )), ) } else { (block, None) } } // Parses a vector of u8 to create an AST Block. If a file name is given, then // the name is stored in the working set. When parsing a source without a file // name, the source of bytes is stored as "source" pub fn parse( working_set: &mut StateWorkingSet, fname: Option<&str>, contents: &[u8], scoped: bool, expand_aliases_denylist: &[usize], ) -> (Block, Option) { trace!("starting top-level parse"); let mut error = None; let span_offset = working_set.next_span_start(); let name = match fname { Some(fname) => fname.to_string(), None => "source".to_string(), }; working_set.add_file(name, contents); let (output, err) = lex(contents, span_offset, &[], &[], false); error = error.or(err); let (mut output, err) = parse_block(working_set, &output, scoped, expand_aliases_denylist, false); error = error.or(err); let mut seen = vec![]; let mut seen_blocks = HashMap::new(); let captures = discover_captures_in_closure(working_set, &output, &mut seen, &mut seen_blocks); match captures { Ok(captures) => output.captures = captures.into_iter().map(|(var_id, _)| var_id).collect(), Err(err) => error = Some(err), } // Also check other blocks that might have been imported for (block_idx, block) in working_set.delta.blocks.iter().enumerate() { let block_id = block_idx + working_set.permanent_state.num_blocks(); if !seen_blocks.contains_key(&block_id) { let captures = discover_captures_in_closure(working_set, block, &mut seen, &mut seen_blocks); match captures { Ok(captures) => { seen_blocks.insert(block_id, captures); } Err(err) => error = Some(err), } } } for (block_id, captures) in seen_blocks.into_iter() { // In theory, we should only be updating captures where we have new information // the only place where this is possible would be blocks that are newly created // by our working set delta. If we ever tried to modify the permanent state, we'd // panic (again, in theory, this shouldn't be possible) let block = working_set.get_block(block_id); let block_captures_empty = block.captures.is_empty(); if !captures.is_empty() && block_captures_empty { let block = working_set.get_block_mut(block_id); block.captures = captures.into_iter().map(|(var_id, _)| var_id).collect(); } } (output, error) }