use std::ops::{Index, IndexMut}; use crate::{ lex, lite_parse, parser_state::{Type, VarId}, signature::Flag, DeclId, LiteBlock, ParseError, ParserWorkingSet, Signature, Span, }; /// The syntactic shapes that values must match to be passed into a command. You can think of this as the type-checking that occurs when you call a function. #[derive(Debug, Clone, PartialEq, Eq)] pub enum SyntaxShape { /// A specific match to a word or symbol Literal(Vec), /// Any syntactic form is allowed Any, /// Strings and string-like bare words are allowed String, /// A dotted path to navigate the table ColumnPath, /// A dotted path to navigate the table (including variable) FullColumnPath, /// Only a numeric (integer or decimal) value is allowed Number, /// A range is allowed (eg, `1..3`) Range, /// Only an integer value is allowed Int, /// A filepath is allowed FilePath, /// A glob pattern is allowed, eg `foo*` GlobPattern, /// A block is allowed, eg `{start this thing}` Block, /// A table is allowed, eg `[[first, second]; [1, 2]]` Table, /// A table is allowed, eg `[first second]` List(Box), /// A filesize value is allowed, eg `10kb` Filesize, /// A duration value is allowed, eg `19day` Duration, /// An operator Operator, /// A math expression which expands shorthand forms on the lefthand side, eg `foo > 1` /// The shorthand allows us to more easily reach columns inside of the row being passed in RowCondition, /// A general math expression, eg `1 + 2` MathExpression, /// A variable name Variable, /// A general expression, eg `1 + 2` or `foo --bar` Expression, } #[derive(Debug, Clone, PartialEq, Eq)] pub enum Operator { Equal, NotEqual, LessThan, GreaterThan, LessThanOrEqual, GreaterThanOrEqual, Contains, NotContains, Plus, Minus, Multiply, Divide, In, NotIn, Modulo, And, Or, Pow, } #[derive(Debug, Clone)] pub struct Call { /// identifier of the declaration to call pub decl_id: DeclId, pub positional: Vec, pub named: Vec<(String, Option)>, } impl Default for Call { fn default() -> Self { Self::new() } } impl Call { pub fn new() -> Call { Self { decl_id: 0, positional: vec![], named: vec![], } } } #[derive(Debug, Clone)] pub enum Expr { Int(i64), Var(VarId), Call(Box), ExternalCall(Vec, Vec>), Operator(Operator), BinaryOp(Box, Box, Box), //lhs, op, rhs Subexpression(Box), Block(Box), List(Vec), Table(Vec, Vec>), Literal(Vec), String(String), // FIXME: improve this in the future? Garbage, } #[derive(Debug, Clone)] pub struct Expression { pub expr: Expr, pub span: Span, } impl Expression { pub fn garbage(span: Span) -> Expression { Expression { expr: Expr::Garbage, span, //ty: Type::Unknown, } } pub fn precedence(&self) -> usize { match &self.expr { Expr::Operator(operator) => { // Higher precedence binds tighter match operator { Operator::Pow => 100, Operator::Multiply | Operator::Divide | Operator::Modulo => 95, Operator::Plus | Operator::Minus => 90, Operator::NotContains | Operator::Contains | Operator::LessThan | Operator::LessThanOrEqual | Operator::GreaterThan | Operator::GreaterThanOrEqual | Operator::Equal | Operator::NotEqual | Operator::In | Operator::NotIn => 80, Operator::And => 50, Operator::Or => 40, // TODO: should we have And and Or be different precedence? } } _ => 0, } } } #[derive(Debug, Clone)] pub enum Import {} #[derive(Debug, Clone)] pub struct Block { pub stmts: Vec, } impl Block { pub fn len(&self) -> usize { self.stmts.len() } pub fn is_empty(&self) -> bool { self.stmts.is_empty() } } impl Index for Block { type Output = Statement; fn index(&self, index: usize) -> &Self::Output { &self.stmts[index] } } impl IndexMut for Block { fn index_mut(&mut self, index: usize) -> &mut Self::Output { &mut self.stmts[index] } } impl Default for Block { fn default() -> Self { Self::new() } } impl Block { pub fn new() -> Self { Self { stmts: vec![] } } } #[derive(Debug, Clone)] pub struct VarDecl { var_id: VarId, expression: Expression, } #[derive(Debug, Clone)] pub enum Statement { Pipeline(Pipeline), VarDecl(VarDecl), Import(Import), Expression(Expression), None, } #[derive(Debug, Clone)] pub struct Pipeline {} impl Default for Pipeline { fn default() -> Self { Self::new() } } impl Pipeline { pub fn new() -> Self { Self {} } } fn garbage(span: Span) -> Expression { Expression::garbage(span) } fn is_identifier_byte(b: u8) -> bool { b != b'.' && b != b'[' && b != b'(' && b != b'{' } fn is_identifier(bytes: &[u8]) -> bool { bytes.iter().all(|x| is_identifier_byte(*x)) } fn is_variable(bytes: &[u8]) -> bool { if bytes.len() > 1 && bytes[0] == b'$' { is_identifier(&bytes[1..]) } else { is_identifier(bytes) } } fn check_call(command: Span, sig: &Signature, call: &Call) -> Option { if call.positional.len() < sig.required_positional.len() { let missing = &sig.required_positional[call.positional.len()]; Some(ParseError::MissingPositional(missing.name.clone(), command)) } else { for req_flag in sig.named.iter().filter(|x| x.required) { if call.named.iter().all(|(n, _)| n != &req_flag.long) { return Some(ParseError::MissingRequiredFlag( req_flag.long.clone(), command, )); } } None } } fn span(spans: &[Span]) -> Span { let length = spans.len(); if length == 0 { Span::unknown() } else if length == 1 { spans[0] } else { Span { start: spans[0].start, end: spans[length - 1].end, } } } impl ParserWorkingSet { pub fn parse_external_call(&mut self, spans: &[Span]) -> (Expression, Option) { // TODO: add external parsing let mut args = vec![]; let name = self.get_span_contents(spans[0]).to_vec(); for span in &spans[1..] { args.push(self.get_span_contents(*span).to_vec()); } ( Expression { expr: Expr::ExternalCall(name, args), span: span(spans), }, None, ) } fn parse_long_flag( &mut self, spans: &[Span], spans_idx: &mut usize, sig: &Signature, ) -> (Option, Option, Option) { let arg_span = spans[*spans_idx]; let arg_contents = self.get_span_contents(arg_span); if arg_contents.starts_with(&[b'-', b'-']) { // FIXME: only use the first you find let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect(); let long_name = String::from_utf8(split[0].into()); if let Ok(long_name) = long_name { if let Some(flag) = sig.get_long_flag(&long_name) { if let Some(arg_shape) = &flag.arg { if split.len() > 1 { // and we also have the argument let mut span = arg_span; span.start += long_name.len() + 1; //offset by long flag and '=' let (arg, err) = self.parse_value(span, arg_shape.clone()); (Some(long_name), Some(arg), err) } else if let Some(arg) = spans.get(*spans_idx + 1) { let (arg, err) = self.parse_value(*arg, arg_shape.clone()); *spans_idx += 1; (Some(long_name), Some(arg), err) } else { ( Some(long_name), None, Some(ParseError::MissingFlagParam(arg_span)), ) } } else { // A flag with no argument (Some(long_name), None, None) } } else { ( Some(long_name), None, Some(ParseError::UnknownFlag(arg_span)), ) } } else { (Some("--".into()), None, Some(ParseError::NonUtf8(arg_span))) } } else { (None, None, None) } } fn parse_short_flags( &mut self, spans: &[Span], spans_idx: &mut usize, positional_idx: usize, sig: &Signature, ) -> (Option>, Option) { let mut error = None; let arg_span = spans[*spans_idx]; let arg_contents = self.get_span_contents(arg_span); if arg_contents.starts_with(&[b'-']) && arg_contents.len() > 1 { let short_flags = &arg_contents[1..]; let mut found_short_flags = vec![]; let mut unmatched_short_flags = vec![]; for short_flag in short_flags.iter().enumerate() { let short_flag_char = char::from(*short_flag.1); let orig = arg_span; let short_flag_span = Span { start: orig.start + 1 + short_flag.0, end: orig.start + 1 + short_flag.0 + 1, }; if let Some(flag) = sig.get_short_flag(short_flag_char) { // If we require an arg and are in a batch of short flags, error if !found_short_flags.is_empty() && flag.arg.is_some() { error = error.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span))) } found_short_flags.push(flag); } else { unmatched_short_flags.push(short_flag_span); } } if found_short_flags.is_empty() { // check to see if we have a negative number if let Some(positional) = sig.get_positional(positional_idx) { if positional.shape == SyntaxShape::Int || positional.shape == SyntaxShape::Number { if String::from_utf8_lossy(&arg_contents) .parse::() .is_ok() { return (None, None); } else if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } else if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } else if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } else if !unmatched_short_flags.is_empty() { if let Some(first) = unmatched_short_flags.first() { error = error.or(Some(ParseError::UnknownFlag(*first))); } } (Some(found_short_flags), error) } else { (None, None) } } fn parse_multispan_value( &mut self, spans: &[Span], spans_idx: &mut usize, shape: SyntaxShape, ) -> (Expression, Option) { let mut error = None; let arg_span = spans[*spans_idx]; match shape { SyntaxShape::RowCondition => { let (arg, err) = self.parse_row_condition(spans); error = error.or(err); *spans_idx = spans.len(); (arg, error) } SyntaxShape::Expression => { let (arg, err) = self.parse_expression(spans); error = error.or(err); *spans_idx = spans.len(); (arg, error) } SyntaxShape::Literal(literal) => { let arg_contents = self.get_span_contents(arg_span); if arg_contents != literal { // When keywords mismatch, this is a strong indicator of something going wrong. // We won't often override the current error, but as this is a strong indicator // go ahead and override the current error and tell the user about the missing // keyword/literal. error = Some(ParseError::Mismatch( String::from_utf8_lossy(&literal).into(), arg_span, )) } ( Expression { expr: Expr::Literal(literal), span: arg_span, }, error, ) } _ => { // All other cases are single-span values let (arg, err) = self.parse_value(arg_span, shape); error = error.or(err); (arg, error) } } } pub fn parse_internal_call( &mut self, spans: &[Span], decl_id: usize, ) -> (Box, Span, Option) { let mut error = None; let mut call = Call::new(); call.decl_id = decl_id; let decl = self .get_decl(decl_id) .expect("internal error: bad DeclId") .clone(); // The index into the positional parameter in the definition let mut positional_idx = 0; // The index into the spans of argument data given to parse // Starting at the first argument let mut spans_idx = 1; while spans_idx < spans.len() { let arg_span = spans[spans_idx]; // Check if we're on a long flag, if so, parse let (long_name, arg, err) = self.parse_long_flag(spans, &mut spans_idx, &decl.signature); if let Some(long_name) = long_name { // We found a long flag, like --bar error = error.or(err); call.named.push((long_name, arg)); spans_idx += 1; continue; } // Check if we're on a short flag or group of short flags, if so, parse let (short_flags, err) = self.parse_short_flags(spans, &mut spans_idx, positional_idx, &decl.signature); if let Some(short_flags) = short_flags { error = error.or(err); for flag in short_flags { if let Some(arg_shape) = flag.arg { if let Some(arg) = spans.get(spans_idx + 1) { let (arg, err) = self.parse_value(*arg, arg_shape.clone()); error = error.or(err); call.named.push((flag.long.clone(), Some(arg))); spans_idx += 1; } else { error = error.or(Some(ParseError::MissingFlagParam(arg_span))) } } else { call.named.push((flag.long.clone(), None)); } } spans_idx += 1; continue; } // Parse a positional arg if there is one if let Some(positional) = decl.signature.get_positional(positional_idx) { //Make sure we leave enough spans for the remaining positionals let remainder = decl.signature.num_positionals() - positional_idx; let (arg, err) = self.parse_multispan_value( &spans[..(spans.len() - remainder + 1)], &mut spans_idx, positional.shape, ); error = error.or(err); call.positional.push(arg); positional_idx += 1; } else { error = error.or(Some(ParseError::ExtraPositional(arg_span))) } error = error.or(err); spans_idx += 1; } let err = check_call(spans[0], &decl.signature, &call); error = error.or(err); // FIXME: type unknown (Box::new(call), span(spans), error) } pub fn parse_call(&mut self, spans: &[Span]) -> (Expression, Option) { // assume spans.len() > 0? let name = self.get_span_contents(spans[0]); if let Some(decl_id) = self.find_decl(name) { let (call, span, err) = self.parse_internal_call(spans, decl_id); ( Expression { expr: Expr::Call(call), span, }, err, ) } else { self.parse_external_call(spans) } } pub fn parse_int(&mut self, token: &str, span: Span) -> (Expression, Option) { if let Some(token) = token.strip_prefix("0x") { if let Ok(v) = i64::from_str_radix(token, 16) { ( Expression { expr: Expr::Int(v), span, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } else if let Some(token) = token.strip_prefix("0b") { if let Ok(v) = i64::from_str_radix(token, 2) { ( Expression { expr: Expr::Int(v), span, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } else if let Some(token) = token.strip_prefix("0o") { if let Ok(v) = i64::from_str_radix(token, 8) { ( Expression { expr: Expr::Int(v), span, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } else if let Ok(x) = token.parse::() { ( Expression { expr: Expr::Int(x), span, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } pub fn parse_number(&mut self, token: &str, span: Span) -> (Expression, Option) { if let (x, None) = self.parse_int(token, span) { (x, None) } else { ( garbage(span), Some(ParseError::Mismatch("number".into(), span)), ) } } pub(crate) fn parse_dollar_expr(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); if let Some(var_id) = self.find_variable(bytes) { ( Expression { expr: Expr::Var(var_id), span, }, None, ) } else { (garbage(span), Some(ParseError::VariableNotFound(span))) } } pub fn parse_variable_expr(&mut self, span: Span) -> (Expression, Option) { let (id, err) = self.parse_variable(span); if err.is_none() { if let Some(id) = id { ( Expression { expr: Expr::Var(id), span, }, None, ) } else { let name = self.get_span_contents(span).to_vec(); // this seems okay to set it to unknown here, but we should double-check let id = self.add_variable(name, Type::Unknown); ( Expression { expr: Expr::Var(id), span, }, None, ) } } else { (garbage(span), err) } } pub fn parse_full_column_path(&mut self, span: Span) -> (Expression, Option) { // FIXME: assume for now a paren expr, but needs more let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"(") { start += 1; } if bytes.ends_with(b")") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( ")".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = self.get_span_contents(span); let (output, err) = lex(&source, start, crate::LexMode::Normal); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output); error = error.or(err); ( Expression { expr: Expr::Subexpression(Box::new(output)), span, }, error, ) } pub fn parse_string(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); if let Ok(token) = String::from_utf8(bytes.into()) { ( Expression { expr: Expr::String(token), span, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch("string".into(), span)), ) } } pub fn parse_row_condition(&mut self, spans: &[Span]) -> (Expression, Option) { self.parse_math_expression(spans) } pub fn parse_list_expression( &mut self, span: Span, element_shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = &self.file_contents[..span.end]; let (output, err) = lex(&source, span.start, crate::LexMode::CommaAndNewlineIsSpace); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let mut args = vec![]; for arg in &output.block[0].commands { let mut spans_idx = 0; while spans_idx < arg.parts.len() { let (arg, err) = self.parse_multispan_value(&arg.parts, &mut spans_idx, element_shape.clone()); error = error.or(err); args.push(arg); spans_idx += 1; } } ( Expression { expr: Expr::List(args), span, }, error, ) } pub fn parse_table_expression(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = &self.file_contents[..end]; let (output, err) = lex(&source, start, crate::LexMode::CommaAndNewlineIsSpace); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); match output.block.len() { 0 => ( Expression { expr: Expr::List(vec![]), span, }, None, ), 1 => { // List self.parse_list_expression(span, &SyntaxShape::Any) } _ => { let mut table_headers = vec![]; let (headers, err) = self.parse_value(output.block[0].commands[0].parts[0], SyntaxShape::Table); error = error.or(err); if let Expression { expr: Expr::List(headers), .. } = headers { table_headers = headers; } let mut rows = vec![]; for part in &output.block[1].commands[0].parts { let (values, err) = self.parse_value(*part, SyntaxShape::Table); error = error.or(err); if let Expression { expr: Expr::List(values), .. } = values { rows.push(values); } } ( Expression { expr: Expr::Table(table_headers, rows), span, }, error, ) } } } pub fn parse_block_expression(&mut self, span: Span) -> (Expression, Option) { let bytes = self.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { return ( garbage(span), Some(ParseError::Mismatch("block".into(), span)), ); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "}".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = &self.file_contents[..end]; let (output, err) = lex(&source, start, crate::LexMode::Normal); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output); error = error.or(err); println!("{:?} {:?}", output, error); ( Expression { expr: Expr::Block(Box::new(output)), span, }, error, ) } pub fn parse_value( &mut self, span: Span, shape: SyntaxShape, ) -> (Expression, Option) { let bytes = self.get_span_contents(span); // First, check the special-cases. These will likely represent specific values as expressions // and may fit a variety of shapes. // // We check variable first because immediately following we check for variables with column paths // which might result in a value that fits other shapes (and require the variable to already be // declared) if shape == SyntaxShape::Variable { return self.parse_variable_expr(span); } else if bytes.starts_with(b"$") { return self.parse_dollar_expr(span); } else if bytes.starts_with(b"(") { return self.parse_full_column_path(span); } else if bytes.starts_with(b"[") { match shape { SyntaxShape::Any | SyntaxShape::List(_) | SyntaxShape::Table => {} _ => { return ( Expression::garbage(span), Some(ParseError::Mismatch("non-table/non-list".into(), span)), ); } } } match shape { SyntaxShape::Number => { if let Ok(token) = String::from_utf8(bytes.into()) { self.parse_number(&token, span) } else { ( garbage(span), Some(ParseError::Mismatch("number".into(), span)), ) } } SyntaxShape::Int => { if let Ok(token) = String::from_utf8(bytes.into()) { self.parse_int(&token, span) } else { ( garbage(span), Some(ParseError::Mismatch("int".into(), span)), ) } } SyntaxShape::Literal(literal) => { if bytes == literal { ( Expression { expr: Expr::Literal(literal), span, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( format!("keyword '{}'", String::from_utf8_lossy(&literal)), span, )), ) } } SyntaxShape::String | SyntaxShape::GlobPattern | SyntaxShape::FilePath => { self.parse_string(span) } SyntaxShape::Block => { if bytes.starts_with(b"{") { self.parse_block_expression(span) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("table".into(), span)), ) } } SyntaxShape::List(elem) => { if bytes.starts_with(b"[") { self.parse_list_expression(span, &elem) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("list".into(), span)), ) } } SyntaxShape::Table => { if bytes.starts_with(b"[") { self.parse_table_expression(span) } else { ( Expression::garbage(span), Some(ParseError::Mismatch("table".into(), span)), ) } } SyntaxShape::Any => { let shapes = [ SyntaxShape::Int, SyntaxShape::Number, SyntaxShape::Range, SyntaxShape::Filesize, SyntaxShape::Duration, SyntaxShape::Block, SyntaxShape::Table, SyntaxShape::List(Box::new(SyntaxShape::Any)), SyntaxShape::String, ]; for shape in shapes.iter() { if let (s, None) = self.parse_value(span, shape.clone()) { return (s, None); } } ( garbage(span), Some(ParseError::Mismatch("any shape".into(), span)), ) } _ => ( garbage(span), Some(ParseError::Mismatch("incomplete parser".into(), span)), ), } } pub fn parse_operator(&mut self, span: Span) -> (Expression, Option) { let contents = self.get_span_contents(span); let operator = match contents { b"==" => Operator::Equal, b"!=" => Operator::NotEqual, b"<" => Operator::LessThan, b"<=" => Operator::LessThanOrEqual, b">" => Operator::GreaterThan, b">=" => Operator::GreaterThanOrEqual, b"=~" => Operator::Contains, b"!~" => Operator::NotContains, b"+" => Operator::Plus, b"-" => Operator::Minus, b"*" => Operator::Multiply, b"/" => Operator::Divide, b"in" => Operator::In, b"not-in" => Operator::NotIn, b"mod" => Operator::Modulo, b"&&" => Operator::And, b"||" => Operator::Or, b"**" => Operator::Pow, _ => { return ( garbage(span), Some(ParseError::Mismatch("operator".into(), span)), ); } }; ( Expression { expr: Expr::Operator(operator), span, }, None, ) } pub fn parse_math_expression(&mut self, spans: &[Span]) -> (Expression, Option) { // As the expr_stack grows, we increase the required precedence to grow larger // If, at any time, the operator we're looking at is the same or lower precedence // of what is in the expression stack, we collapse the expression stack. // // This leads to an expression stack that grows under increasing precedence and collapses // under decreasing/sustained precedence // // The end result is a stack that we can fold into binary operations as right associations // safely. let mut expr_stack: Vec = vec![]; let mut idx = 0; let mut last_prec = 1000000; let mut error = None; let (lhs, err) = self.parse_value(spans[0], SyntaxShape::Any); error = error.or(err); idx += 1; expr_stack.push(lhs); while idx < spans.len() { println!("idx: {}", idx); let (op, err) = self.parse_operator(spans[idx]); error = error.or(err); let op_prec = op.precedence(); idx += 1; if idx == spans.len() { // Handle broken math expr `1 +` etc error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1]))); break; } let (rhs, err) = self.parse_value(spans[idx], SyntaxShape::Any); error = error.or(err); if op_prec <= last_prec { while expr_stack.len() > 1 { // Collapse the right associated operations first // so that we can get back to a stack with a lower precedence let rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let op = expr_stack .pop() .expect("internal error: expression stack empty"); let lhs = expr_stack .pop() .expect("internal error: expression stack empty"); let op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: op_span, }); } } expr_stack.push(op); expr_stack.push(rhs); last_prec = op_prec; idx += 1; } while expr_stack.len() != 1 { let rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let op = expr_stack .pop() .expect("internal error: expression stack empty"); let lhs = expr_stack .pop() .expect("internal error: expression stack empty"); let binary_op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: binary_op_span, }); } let output = expr_stack .pop() .expect("internal error: expression stack empty"); (output, error) } pub fn parse_expression(&mut self, spans: &[Span]) -> (Expression, Option) { let bytes = self.get_span_contents(spans[0]); match bytes[0] { b'0' | b'1' | b'2' | b'3' | b'4' | b'5' | b'6' | b'7' | b'8' | b'9' | b'(' | b'{' | b'[' | b'$' => self.parse_math_expression(spans), _ => self.parse_call(spans), } } pub fn parse_variable(&mut self, span: Span) -> (Option, Option) { let bytes = self.get_span_contents(span); if is_variable(bytes) { if let Some(var_id) = self.find_variable(bytes) { (Some(var_id), None) } else { (None, None) } } else { (None, Some(ParseError::Mismatch("variable".into(), span))) } } pub fn parse_keyword(&self, span: Span, keyword: &[u8]) -> Option { if self.get_span_contents(span) == keyword { None } else { Some(ParseError::Mismatch( String::from_utf8_lossy(keyword).to_string(), span, )) } } pub fn parse_let(&mut self, spans: &[Span]) -> (Statement, Option) { let name = self.get_span_contents(spans[0]); if name == b"let" { if let Some(decl_id) = self.find_decl(b"let") { let (mut call, call_span, err) = self.parse_internal_call(spans, decl_id); if err.is_some() { return ( Statement::Expression(Expression { expr: Expr::Call(call), span: call_span, }), err, ); } else if let Expression { expr: Expr::Var(var_id), .. } = call.positional[0] { let expression = call.positional.swap_remove(2); return (Statement::VarDecl(VarDecl { var_id, expression }), None); } } } ( Statement::Expression(Expression { expr: Expr::Garbage, span: span(spans), }), Some(ParseError::UnknownState( "internal error: let statement unparseable".into(), span(spans), )), ) } pub fn parse_statement(&mut self, spans: &[Span]) -> (Statement, Option) { if let (stmt, None) = self.parse_let(spans) { (stmt, None) } else { let (expr, err) = self.parse_expression(spans); (Statement::Expression(expr), err) } } pub fn parse_block(&mut self, lite_block: &LiteBlock) -> (Block, Option) { let mut error = None; self.enter_scope(); let mut block = Block::new(); for pipeline in &lite_block.block { let (stmt, err) = self.parse_statement(&pipeline.commands[0].parts); error = error.or(err); block.stmts.push(stmt); } self.exit_scope(); (block, error) } pub fn parse_file(&mut self, fname: &str, contents: Vec) -> (Block, Option) { let mut error = None; let (output, err) = lex(&contents, 0, crate::LexMode::Normal); error = error.or(err); self.add_file(fname.into(), contents); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output); error = error.or(err); (output, error) } pub fn parse_source(&mut self, source: &[u8]) -> (Block, Option) { let mut error = None; self.add_file("source".into(), source.into()); let (output, err) = lex(source, 0, crate::LexMode::Normal); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = self.parse_block(&output); error = error.or(err); (output, error) } } #[cfg(test)] mod tests { use crate::{ParseError, Signature}; use super::*; #[test] pub fn parse_int() { let mut working_set = ParserWorkingSet::new(None); let (block, err) = working_set.parse_source(b"3"); assert!(err.is_none()); assert!(block.len() == 1); assert!(matches!( block[0], Statement::Expression(Expression { expr: Expr::Int(3), .. }) )); } #[test] pub fn parse_call() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl((b"foo").to_vec(), sig.into()); let (block, err) = working_set.parse_source(b"foo"); assert!(err.is_none()); assert!(block.len() == 1); match &block[0] { Statement::Expression(Expression { expr: Expr::Call(call), .. }) => { assert_eq!(call.decl_id, 0); } _ => panic!("not a call"), } } #[test] pub fn parse_call_missing_flag_arg() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo --jazz"); assert!(matches!(err, Some(ParseError::MissingFlagParam(..)))); } #[test] pub fn parse_call_missing_short_flag_arg() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo -j"); assert!(matches!(err, Some(ParseError::MissingFlagParam(..)))); } #[test] pub fn parse_call_too_many_shortflag_args() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo") .named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')) .named("--math", SyntaxShape::Int, "math!!", Some('m')); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo -mj"); assert!(matches!( err, Some(ParseError::ShortFlagBatchCantTakeArg(..)) )); } #[test] pub fn parse_call_unknown_shorthand() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j')); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo -mj"); assert!(matches!(err, Some(ParseError::UnknownFlag(..)))); } #[test] pub fn parse_call_extra_positional() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j')); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo -j 100"); assert!(matches!(err, Some(ParseError::ExtraPositional(..)))); } #[test] pub fn parse_call_missing_req_positional() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").required("jazz", SyntaxShape::Int, "jazz!!"); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo"); assert!(matches!(err, Some(ParseError::MissingPositional(..)))); } #[test] pub fn parse_call_missing_req_flag() { let mut working_set = ParserWorkingSet::new(None); let sig = Signature::build("foo").required_named("--jazz", SyntaxShape::Int, "jazz!!", None); working_set.add_decl((b"foo").to_vec(), sig.into()); let (_, err) = working_set.parse_source(b"foo"); assert!(matches!(err, Some(ParseError::MissingRequiredFlag(..)))); } }