use miette::SourceSpan; use serde::{Deserialize, Serialize}; use std::ops::Deref; /// A spanned area of interest, generic over what kind of thing is of interest #[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq)] pub struct Spanned { pub item: T, pub span: Span, } impl Spanned { /// Map to a spanned reference of the inner type, i.e. `Spanned -> Spanned<&T>`. pub fn as_ref(&self) -> Spanned<&T> { Spanned { item: &self.item, span: self.span, } } /// Map to a mutable reference of the inner type, i.e. `Spanned -> Spanned<&mut T>`. pub fn as_mut(&mut self) -> Spanned<&mut T> { Spanned { item: &mut self.item, span: self.span, } } /// Map to the result of [`.deref()`](std::ops::Deref::deref) on the inner type. /// /// This can be used for example to turn `Spanned>` into `Spanned<&[T]>`. pub fn as_deref(&self) -> Spanned<&::Target> where T: Deref, { Spanned { item: self.item.deref(), span: self.span, } } /// Map the spanned item with a function. pub fn map(self, f: impl FnOnce(T) -> U) -> Spanned { Spanned { item: f(self.item), span: self.span, } } } /// Helper trait to create [`Spanned`] more ergonomically. pub trait IntoSpanned: Sized { /// Wrap items together with a span into [`Spanned`]. /// /// # Example /// /// ``` /// # use nu_protocol::{Span, IntoSpanned}; /// # let span = Span::test_data(); /// let spanned = "Hello, world!".into_spanned(span); /// assert_eq!("Hello, world!", spanned.item); /// assert_eq!(span, spanned.span); /// ``` fn into_spanned(self, span: Span) -> Spanned; } impl IntoSpanned for T { fn into_spanned(self, span: Span) -> Spanned { Spanned { item: self, span } } } /// Spans are a global offset across all seen files, which are cached in the engine's state. The start and /// end offset together make the inclusive start/exclusive end pair for where to underline to highlight /// a given point of interest. #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)] pub struct Span { pub start: usize, pub end: usize, } impl Span { pub fn new(start: usize, end: usize) -> Self { debug_assert!( end >= start, "Can't create a Span whose end < start, start={start}, end={end}" ); Self { start, end } } pub const fn unknown() -> Self { Self { start: 0, end: 0 } } /// Note: Only use this for test data, *not* live data, as it will point into unknown source /// when used in errors. pub const fn test_data() -> Self { Self::unknown() } pub fn offset(&self, offset: usize) -> Self { Self::new(self.start - offset, self.end - offset) } pub fn contains(&self, pos: usize) -> bool { self.start <= pos && pos < self.end } pub fn contains_span(&self, span: Self) -> bool { self.start <= span.start && span.end <= self.end } /// Point to the space just past this span, useful for missing values pub fn past(&self) -> Self { Self { start: self.end, end: self.end, } } /// Returns the minimal [`Span`] that encompasses both of the given spans. /// /// The two `Spans` can overlap in the middle, /// but must otherwise be in order by satisfying: /// - `self.start <= after.start` /// - `self.end <= after.end` /// /// If this is not guaranteed to be the case, use [`Span::merge`] instead. pub fn append(self, after: Self) -> Self { debug_assert!( self.start <= after.start && self.end <= after.end, "Can't merge two Spans that are not in order" ); Self { start: self.start, end: after.end, } } /// Returns the minimal [`Span`] that encompasses both of the given spans. /// /// The spans need not be in order or have any relationship. /// /// [`Span::append`] is slightly more efficient if the spans are known to be in order. pub fn merge(self, other: Self) -> Self { Self { start: usize::min(self.start, other.start), end: usize::max(self.end, other.end), } } /// Returns the minimal [`Span`] that encompasses all of the spans in the given slice. /// /// The spans are assumed to be in order, that is, all consecutive spans must satisfy: /// - `spans[i].start <= spans[i + 1].start` /// - `spans[i].end <= spans[i + 1].end` /// /// (Two consecutive spans can overlap as long as the above is true.) /// /// Use [`Span::merge_many`] if the spans are not known to be in order. pub fn concat(spans: &[Self]) -> Self { // TODO: enable assert below // debug_assert!(!spans.is_empty()); debug_assert!(spans.windows(2).all(|spans| { let &[a, b] = spans else { return false; }; a.start <= b.start && a.end <= b.end })); Self { start: spans.first().map(|s| s.start).unwrap_or(0), end: spans.last().map(|s| s.end).unwrap_or(0), } } /// Returns the minimal [`Span`] that encompasses all of the spans in the given iterator. /// /// The spans need not be in order or have any relationship. /// /// [`Span::concat`] is more efficient if the spans are known to be in order. pub fn merge_many(spans: impl IntoIterator) -> Self { spans .into_iter() .reduce(Self::merge) .unwrap_or(Self::unknown()) } } impl From for SourceSpan { fn from(s: Span) -> Self { Self::new(s.start.into(), s.end - s.start) } } /// An extension trait for `Result`, which adds a span to the error type. pub trait ErrSpan { type Result; /// Add the given span to the error type `E`, turning it into a `Spanned`. /// /// Some auto-conversion methods to `ShellError` from other error types are available on spanned /// errors, to give users better information about where an error came from. For example, it is /// preferred when working with `std::io::Error`: /// /// ```no_run /// use nu_protocol::{ErrSpan, ShellError, Span}; /// use std::io::Read; /// /// fn read_from(mut reader: impl Read, span: Span) -> Result, ShellError> { /// let mut vec = vec![]; /// reader.read_to_end(&mut vec).err_span(span)?; /// Ok(vec) /// } /// ``` fn err_span(self, span: Span) -> Self::Result; } impl ErrSpan for Result { type Result = Result>; fn err_span(self, span: Span) -> Self::Result { self.map_err(|err| err.into_spanned(span)) } }