`left =~ right` return true if left contains right, using Rust's
`String::contains`. `!~` is the negated version.
A new `apply_operator` function is added which decouples evaluation from
`Value::compare`. This returns a `Value` and opens the door to
implementing `+` for example, though it wouldn't be useful immediately.
The `operator!` macro had to be changed slightly as it would choke on
`~` in arguments.
The functions for retrieving, replacing, and inserting values into values all assumed they get the complete
column path as regular tagged strings. This commit changes for these to accept a tagged values instead. Basically
it means we can have column paths containing strings and numbers (eg. package.authors.1)
Unfortunately, for the moment all members when parsed and deserialized for a command that expects column paths
of tagged values will get tagged values (encapsulating Members) as strings only.
This makes it impossible to determine whether package.authors.1 package.authors."1" (meaning the "number" 1) is
a string member or a number member and thus prevents to know and force the user that paths enclosed in double
quotes means "retrieve the column at this given table" and that numbers are for retrieving a particular row number
from a table.
This commit sets in place the infraestructure needed when integer members land, in the mean time the workaround
is to convert back to strings the tagged values passed from the column paths.
The original purpose of this PR was to modernize the external parser to
use the new Shape system.
This commit does include some of that change, but a more important
aspect of this change is an improvement to the expansion trace.
Previous commit 6a7c00ea adding trace infrastructure to the syntax coloring
feature. This commit adds tracing to the expander.
The bulk of that work, in addition to the tree builder logic, was an
overhaul of the formatter traits to make them more general purpose, and
more structured.
Some highlights:
- `ToDebug` was split into two traits (`ToDebug` and `DebugFormat`)
because implementations needed to become objects, but a convenience
method on `ToDebug` didn't qualify
- `DebugFormat`'s `fmt_debug` method now takes a `DebugFormatter` rather
than a standard formatter, and `DebugFormatter` has a new (but still
limited) facility for structured formatting.
- Implementations of `ExpandSyntax` need to produce output that
implements `DebugFormat`.
Unlike the highlighter changes, these changes are fairly focused in the
trace output, so these changes aren't behind a flag.
This commit should finish the `coloring_in_tokens` feature, which moves
the shape accumulator into the token stream. This allows rollbacks of
the token stream to also roll back any shapes that were added.
This commit also adds a much nicer syntax highlighter trace, which shows
all of the paths the highlighter took to arrive at a particular coloring
output. This change is fairly substantial, but really improves the
understandability of the flow. I intend to update the normal parser with
a similar tracing view.
In general, this change also fleshes out the concept of "atomic" token
stream operations.
A good next step would be to try to make the parser more
error-correcting, using the coloring infrastructure. A follow-up step
would involve merging the parser and highlighter shapes themselves.
The code still compiles, so this doesn't seem to break anything. That also means
it's not critical to fix it, but having dead code around isn't great either.
The benefit of this is that coloring can be made atomic alongside token
stream forwarding.
I put the feature behind a flag so I can continue to iterate on it
without possibly regressing existing functionality. It's a lot of places
where the flags have to go, but I expect it to be a short-lived flag,
and the flags are fully contained in the parser.
* Moves off of draining between filters. Instead, the sink will pull on the stream, and will drain element-wise. This moves the whole stream to being lazy.
* Adds ctrl-c support and connects it into some of the key points where we pull on the stream. If a ctrl-c is detect, we immediately halt pulling on the stream and return to the prompt.
* Moves away from having a SourceMap where anchor locations are stored. Now AnchorLocation is kept directly in the Tag.
* To make this possible, split tag and span. Span is largely used in the parser and is copyable. Tag is now no longer copyable.
This commit replaces the previous naive coloring system with a coloring
system that is more aligned with the parser.
The main benefit of this change is that it allows us to use parsing
rules to decide how to color tokens.
For example, consider the following syntax:
```
$ ps | where cpu > 10
```
Ideally, we could color `cpu` like a column name and not a string,
because `cpu > 10` is a shorthand block syntax that expands to
`{ $it.cpu > 10 }`.
The way that we know that it's a shorthand block is that the `where`
command declares that its first parameter is a `SyntaxShape::Block`,
which allows the shorthand block form.
In order to accomplish this, we need to color the tokens in a way that
corresponds to their expanded semantics, which means that high-fidelity
coloring requires expansion.
This commit adds a `ColorSyntax` trait that corresponds to the
`ExpandExpression` trait. The semantics are fairly similar, with a few
differences.
First `ExpandExpression` consumes N tokens and returns a single
`hir::Expression`. `ColorSyntax` consumes N tokens and writes M
`FlatShape` tokens to the output.
Concretely, for syntax like `[1 2 3]`
- `ExpandExpression` takes a single token node and produces a single
`hir::Expression`
- `ColorSyntax` takes the same token node and emits 7 `FlatShape`s
(open delimiter, int, whitespace, int, whitespace, int, close
delimiter)
Second, `ColorSyntax` is more willing to plow through failures than
`ExpandExpression`.
In particular, consider syntax like
```
$ ps | where cpu >
```
In this case
- `ExpandExpression` will see that the `where` command is expecting a
block, see that it's not a literal block and try to parse it as a
shorthand block. It will successfully find a member followed by an
infix operator, but not a following expression. That means that the
entire pipeline part fails to parse and is a syntax error.
- `ColorSyntax` will also try to parse it as a shorthand block and
ultimately fail, but it will fall back to "backoff coloring mode",
which parsing any unidentified tokens in an unfallible, simple way. In
this case, `cpu` will color as a string and `>` will color as an
operator.
Finally, it's very important that coloring a pipeline infallibly colors
the entire string, doesn't fail, and doesn't get stuck in an infinite
loop.
In order to accomplish this, this PR separates `ColorSyntax`, which is
infallible from `FallibleColorSyntax`, which might fail. This allows the
type system to let us know if our coloring rules bottom out at at an
infallible rule.
It's not perfect: it's still possible for the coloring process to get
stuck or consume tokens non-atomically. I intend to reduce the
opportunity for those problems in a future commit. In the meantime, the
current system catches a number of mistakes (like trying to use a
fallible coloring rule in a loop without thinking about the possibility
that it will never terminate).
The main thrust of this (very large) commit is an overhaul of the
expansion system.
The parsing pipeline is:
- Lightly parse the source file for atoms, basic delimiters and pipeline
structure into a token tree
- Expand the token tree into a HIR (high-level intermediate
representation) based upon the baseline syntax rules for expressions
and the syntactic shape of commands.
Somewhat non-traditionally, nu doesn't have an AST at all. It goes
directly from the token tree, which doesn't represent many important
distinctions (like the difference between `hello` and `5KB`) directly
into a high-level representation that doesn't have a direct
correspondence to the source code.
At a high level, nu commands work like macros, in the sense that the
syntactic shape of the invocation of a command depends on the
definition of a command.
However, commands do not have the ability to perform unrestricted
expansions of the token tree. Instead, they describe their arguments in
terms of syntactic shapes, and the expander expands the token tree into
HIR based upon that definition.
For example, the `where` command says that it takes a block as its first
required argument, and the description of the block syntactic shape
expands the syntax `cpu > 10` into HIR that represents
`{ $it.cpu > 10 }`.
This commit overhauls that system so that the syntactic shapes are
described in terms of a few new traits (`ExpandSyntax` and
`ExpandExpression` are the primary ones) that are more composable than
the previous system.
The first big win of this new system is the addition of the `ColumnPath`
shape, which looks like `cpu."max ghz"` or `package.version`.
Previously, while a variable path could look like `$it.cpu."max ghz"`,
the tail of a variable path could not be easily reused in other
contexts. Now, that tail is its own syntactic shape, and it can be used
as part of a command's signature.
This cleans up commands like `inc`, `add` and `edit` as well as
shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
Bare words now represent literal file names, and globs are a different
syntax shape called "Pattern". This allows commands like `cp` to ask for
a pattern as a source and a literal file as a target.
This also means that attempting to pass a glob to a command that expects
a literal path will produce an error.
Previously, there was a single parsing rule for "bare words" that
applied to both internal and external commands.
This meant that, because `cargo +nightly` needed to work, we needed to
add `+` as a valid character in bare words.
The number of characters continued to grow, and the situation was
becoming untenable. The current strategy would eventually eat up all
syntax and make it impossible to add syntax like `@foo` to internal
commands.
This patch significantly restricts bare words and introduces a new token
type (`ExternalWord`). An `ExternalWord` expands to an error in the
internal syntax, but expands to a bare word in the external syntax.
`ExternalWords` are highlighted in grey in the shell.
Fixes#627
Fixes a regression caused by #579, specifically commit cc8872b4ee .
The code was intended to perform a comparison between the wanted
output type and "Tagged<Value>" in order to be able to provide a
special-cased path for Tagged<Value>. When I wrote the code, I
used "name" as a variable name and only later realized that it
shadowed the "name" param to the function, so I renamed it to
type_name, but forgot to change the comparison.
This broke the special-casing, as the name param only contains
the name of the struct without generics (like "Tagged"), while
`std::any::type_name` (in the current implementation) contains
the full paths of the struct including all generic params
(like "nu::object::meta::Tagged<nu::object::base::Value>").
At the moment the pipeline parser does not enforce
that there must be a pipe between each part of the pipeline,
which can lead to confusing behaviour or misleading errors.