After the previous commit, nushell uses PrettyDebug and
PrettyDebugWithSource for our pretty-printed display output.
PrettyDebug produces a structured `pretty.rs` document rather than
writing directly into a fmt::Formatter, and types that implement
`PrettyDebug` have a convenience `display` method that produces a string
(to be used in situations where `Display` is needed for compatibility
with other traits, or where simple rendering is appropriate).
This commit extracts Tag, Span, Text, as well as source-related debug
facilities into a new crate called nu_source.
This change is much bigger than one might have expected because the
previous code relied heavily on implementing inherent methods on
`Tagged<T>` and `Spanned<T>`, which is no longer possible.
As a result, this change creates more concrete types instead of using
`Tagged<T>`. One notable example: Tagged<Value> became Value, and Value
became UntaggedValue.
This change clarifies the intent of the code in many places, but it does
make it a big change.
The functions for retrieving, replacing, and inserting values into values all assumed they get the complete
column path as regular tagged strings. This commit changes for these to accept a tagged values instead. Basically
it means we can have column paths containing strings and numbers (eg. package.authors.1)
Unfortunately, for the moment all members when parsed and deserialized for a command that expects column paths
of tagged values will get tagged values (encapsulating Members) as strings only.
This makes it impossible to determine whether package.authors.1 package.authors."1" (meaning the "number" 1) is
a string member or a number member and thus prevents to know and force the user that paths enclosed in double
quotes means "retrieve the column at this given table" and that numbers are for retrieving a particular row number
from a table.
This commit sets in place the infraestructure needed when integer members land, in the mean time the workaround
is to convert back to strings the tagged values passed from the column paths.
* Moves off of draining between filters. Instead, the sink will pull on the stream, and will drain element-wise. This moves the whole stream to being lazy.
* Adds ctrl-c support and connects it into some of the key points where we pull on the stream. If a ctrl-c is detect, we immediately halt pulling on the stream and return to the prompt.
* Moves away from having a SourceMap where anchor locations are stored. Now AnchorLocation is kept directly in the Tag.
* To make this possible, split tag and span. Span is largely used in the parser and is copyable. Tag is now no longer copyable.
This commit replaces the previous naive coloring system with a coloring
system that is more aligned with the parser.
The main benefit of this change is that it allows us to use parsing
rules to decide how to color tokens.
For example, consider the following syntax:
```
$ ps | where cpu > 10
```
Ideally, we could color `cpu` like a column name and not a string,
because `cpu > 10` is a shorthand block syntax that expands to
`{ $it.cpu > 10 }`.
The way that we know that it's a shorthand block is that the `where`
command declares that its first parameter is a `SyntaxShape::Block`,
which allows the shorthand block form.
In order to accomplish this, we need to color the tokens in a way that
corresponds to their expanded semantics, which means that high-fidelity
coloring requires expansion.
This commit adds a `ColorSyntax` trait that corresponds to the
`ExpandExpression` trait. The semantics are fairly similar, with a few
differences.
First `ExpandExpression` consumes N tokens and returns a single
`hir::Expression`. `ColorSyntax` consumes N tokens and writes M
`FlatShape` tokens to the output.
Concretely, for syntax like `[1 2 3]`
- `ExpandExpression` takes a single token node and produces a single
`hir::Expression`
- `ColorSyntax` takes the same token node and emits 7 `FlatShape`s
(open delimiter, int, whitespace, int, whitespace, int, close
delimiter)
Second, `ColorSyntax` is more willing to plow through failures than
`ExpandExpression`.
In particular, consider syntax like
```
$ ps | where cpu >
```
In this case
- `ExpandExpression` will see that the `where` command is expecting a
block, see that it's not a literal block and try to parse it as a
shorthand block. It will successfully find a member followed by an
infix operator, but not a following expression. That means that the
entire pipeline part fails to parse and is a syntax error.
- `ColorSyntax` will also try to parse it as a shorthand block and
ultimately fail, but it will fall back to "backoff coloring mode",
which parsing any unidentified tokens in an unfallible, simple way. In
this case, `cpu` will color as a string and `>` will color as an
operator.
Finally, it's very important that coloring a pipeline infallibly colors
the entire string, doesn't fail, and doesn't get stuck in an infinite
loop.
In order to accomplish this, this PR separates `ColorSyntax`, which is
infallible from `FallibleColorSyntax`, which might fail. This allows the
type system to let us know if our coloring rules bottom out at at an
infallible rule.
It's not perfect: it's still possible for the coloring process to get
stuck or consume tokens non-atomically. I intend to reduce the
opportunity for those problems in a future commit. In the meantime, the
current system catches a number of mistakes (like trying to use a
fallible coloring rule in a loop without thinking about the possibility
that it will never terminate).
The main thrust of this (very large) commit is an overhaul of the
expansion system.
The parsing pipeline is:
- Lightly parse the source file for atoms, basic delimiters and pipeline
structure into a token tree
- Expand the token tree into a HIR (high-level intermediate
representation) based upon the baseline syntax rules for expressions
and the syntactic shape of commands.
Somewhat non-traditionally, nu doesn't have an AST at all. It goes
directly from the token tree, which doesn't represent many important
distinctions (like the difference between `hello` and `5KB`) directly
into a high-level representation that doesn't have a direct
correspondence to the source code.
At a high level, nu commands work like macros, in the sense that the
syntactic shape of the invocation of a command depends on the
definition of a command.
However, commands do not have the ability to perform unrestricted
expansions of the token tree. Instead, they describe their arguments in
terms of syntactic shapes, and the expander expands the token tree into
HIR based upon that definition.
For example, the `where` command says that it takes a block as its first
required argument, and the description of the block syntactic shape
expands the syntax `cpu > 10` into HIR that represents
`{ $it.cpu > 10 }`.
This commit overhauls that system so that the syntactic shapes are
described in terms of a few new traits (`ExpandSyntax` and
`ExpandExpression` are the primary ones) that are more composable than
the previous system.
The first big win of this new system is the addition of the `ColumnPath`
shape, which looks like `cpu."max ghz"` or `package.version`.
Previously, while a variable path could look like `$it.cpu."max ghz"`,
the tail of a variable path could not be easily reused in other
contexts. Now, that tail is its own syntactic shape, and it can be used
as part of a command's signature.
This cleans up commands like `inc`, `add` and `edit` as well as
shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
Bare words now represent literal file names, and globs are a different
syntax shape called "Pattern". This allows commands like `cp` to ask for
a pattern as a source and a literal file as a target.
This also means that attempting to pass a glob to a command that expects
a literal path will produce an error.