* Add block size to du
* Change blocks to physical size
* Use path instead of strings for file/directory names
* Why don't I just use paths instead of strings anyway?
* shorten physical size and apparent size to physical and apparent resp.
* Refactor pipeline ahead of block changes. Add '-c' commandline option
* Update pipelining an error value
* Fmt
* Clippy
* Add stdin redirect for -c flag
* Add stdin redirect for -c flag
* Upgrade futures, async-stream, and futures_codec
These were the last three dependencies on futures-preview. `nu` itself
is now fully dependent on `futures@0.3`, as opposed to `futures-preview`
alpha.
Because the update to `futures` from `0.3.0-alpha.19` to `0.3.0` removed
the `Stream` implementation of `VecDeque` ([changelog][changelog]), most
commands that convert a `VecDeque` to an `OutputStream` broke and had to
be fixed.
The current solution is to now convert `VecDeque`s to a `Stream` via
`futures::stream::iter`. However, it may be useful for `futures` to
create an `IntoStream` trait, implemented on the `std::collections` (or
really any `IntoIterator`). If something like this happends, it may be
worthwhile to update the trait implementations on `OutputStream` and
refactor these commands again.
While upgrading `futures_codec`, we remove a custom implementation of
`LinesCodec`, as one has been added to the library. There's also a small
refactor to make the stream output more idiomatic.
[changelog]: https://github.com/rust-lang/futures-rs/blob/master/CHANGELOG.md#030---2019-11-5
* Upgrade sys & ps plugin dependencies
They were previously dependent on `futures-preview`, and `nu_plugin_ps`
was dependent on an old version of `futures-timer`.
* Remove dependency on futures-timer from nu
* Update Cargo.lock
* Fix formatting
* Revert fmt regressions
CI is still on 1.40.0, but the latest rustfmt v1.41.0 has changes to the
`val @ pattern` syntax, causing the linting job to fail.
* Fix clippy warnings
Restructure and streamline token expansion
The purpose of this commit is to streamline the token expansion code, by
removing aspects of the code that are no longer relevant, removing
pointless duplication, and eliminating the need to pass the same
arguments to `expand_syntax`.
The first big-picture change in this commit is that instead of a handful
of `expand_` functions, which take a TokensIterator and ExpandContext, a
smaller number of methods on the `TokensIterator` do the same job.
The second big-picture change in this commit is fully eliminating the
coloring traits, making coloring a responsibility of the base expansion
implementations. This also means that the coloring tracer is merged into
the expansion tracer, so you can follow a single expansion and see how
the expansion process produced colored tokens.
One side effect of this change is that the expander itself is marginally
more error-correcting. The error correction works by switching from
structured expansion to `BackoffColoringMode` when an unexpected token
is found, which guarantees that all spans of the source are colored, but
may not be the most optimal error recovery strategy.
That said, because `BackoffColoringMode` only extends as far as a
closing delimiter (`)`, `]`, `}`) or pipe (`|`), it does result in
fairly granular correction strategy.
The current code still produces an `Err` (plus a complete list of
colored shapes) from the parsing process if any errors are encountered,
but this could easily be addressed now that the underlying expansion is
error-correcting.
This commit also colors any spans that are syntax errors in red, and
causes the parser to include some additional information about what
tokens were expected at any given point where an error was encountered,
so that completions and hinting could be more robust in the future.
Co-authored-by: Jonathan Turner <jonathandturner@users.noreply.github.com>
Co-authored-by: Andrés N. Robalino <andres@androbtech.com>
This commit changes the way we shell out externals when using the `"$it"` argument. Also pipes per row to an external's stdin if no `"$it"` argument is present for external commands.
Further separation of logic (preparing the external's command arguments, getting the data for piping, emitting values, spawning processes) will give us a better idea for lower level details regarding external commands until we can find the right abstractions for making them more generic and unify within the pipeline calling logic of Nu internal's and external's.
* Detect built-in commands passed as args to `which`
This expands the built-in `which` command to detect nushell commands
that may have the same name as a binary in the path.
* Allow which to interpret multiple arguments
Previously, it would discard any argument besides the first. This allows
`which` to process multiple arguments. It also makes the output a stream
of rows.
* Use map to build the output
* Add boolean column for builtins
* Use macros for entry creation shortcuts
* Process command args and use async_stream
In order to use `ichwh`, I'll need to use async_stream. But in order to
avoid lifetime errors with that, I have to process the command args
before using them. I'll admit I don't fully understand what is going on
with the `args.process(...)` function, but it works.
* Use `ichwh` for path searching
This commit transitions from `which` to `ichwh`. The path search is now
done asynchronously.
* Enable the `--all` flag on `which`
* Make `which` respect external commands
Escaped commands passed to wich (e.g., `which "^ls"`), are now searched
before builtins.
* Fix clippy warnings
This commit resolves two warnings from clippy, in light of #1142.
* Update Cargo.lock to get new `ichwh` version
`ichwh@0.2.1` has support for local paths.
* Add documentation for command
* Manifests check. Ignore doctests for now.
* We continue with refactorings towards the separation of concerns between
crates. `nu_plugin_inc` and `nu_plugin_str` common test helpers usage
has been refactored into `nu-plugin` value test helpers.
Inc also uses the new API for integration tests.
This commit contains two improvements:
- Support for a Range syntax (and a corresponding Range value)
- Work towards a signature syntax
Implementing the Range syntax resulted in cleaning up how operators in
the core syntax works. There are now two kinds of infix operators
- tight operators (`.` and `..`)
- loose operators
Tight operators may not be interspersed (`$it.left..$it.right` is a
syntax error). Loose operators require whitespace on both sides of the
operator, and can be arbitrarily interspersed. Precedence is left to
right in the core syntax.
Note that delimited syntax (like `( ... )` or `[ ... ]`) is a single
token node in the core syntax. A single token node can be parsed from
beginning to end in a context-free manner.
The rule for `.` is `<token node>.<member>`. The rule for `..` is
`<token node>..<token node>`.
Loose operators all have the same syntactic rule: `<token
node><space><loose op><space><token node>`.
The second aspect of this pull request is the beginning of support for a
signature syntax. Before implementing signatures, a necessary
prerequisite is for the core syntax to support multi-line programs.
That work establishes a few things:
- `;` and newlines are handled in the core grammar, and both count as
"separators"
- line comments begin with `#` and continue until the end of the line
In this commit, multi-token productions in the core grammar can use
separators interchangably with spaces. However, I think we will
ultimately want a different rule preventing separators from occurring
before an infix operator, so that the end of a line is always
unambiguous. This would avoid gratuitous differences between modules and
repl usage.
We already effectively have this rule, because otherwise `x<newline> |
y` would be a single pipeline, but of course that wouldn't work.
Previously, external words accidentally used
ExpansionRule::new().allow_external_command(), when it should have been
ExpansionRule::new().allow_external_word().
External words are the broadest category in the parser, and are the
appropriate category for external arguments. This was just a mistake.
This was achieved by deleting Cargo.lock
and letting a recent Cargo nightly re-create
it. Support for the format was already
introduced in Rust 1.38, but currently,
stable releases of Cargo only retain it
if encountered but don't generate such
files by default.
The new format is smaller, better suited to
prevent merge conflicts and generates smaller
diffs at dependency updates, leading to
smaller git history.
You can read more about it in this PR: https://github.com/rust-lang/cargo/pull/7070
This commit extracts five new crates:
- nu-source, which contains the core source-code handling logic in Nu,
including Text, Span, and also the pretty.rs-based debug logic
- nu-parser, which is the parser and expander logic
- nu-protocol, which is the bulk of the types and basic conveniences
used by plugins
- nu-errors, which contains ShellError, ParseError and error handling
conveniences
- nu-textview, which is the textview plugin extracted into a crate
One of the major consequences of this refactor is that it's no longer
possible to `impl X for Spanned<Y>` outside of the `nu-source` crate, so
a lot of types became more concrete (Value became a concrete type
instead of Spanned<Value>, for example).
This also turned a number of inherent methods in the main nu crate into
plain functions (impl Value {} became a bunch of functions in the
`value` namespace in `crate::data::value`).
This commit extracts Tag, Span, Text, as well as source-related debug
facilities into a new crate called nu_source.
This change is much bigger than one might have expected because the
previous code relied heavily on implementing inherent methods on
`Tagged<T>` and `Spanned<T>`, which is no longer possible.
As a result, this change creates more concrete types instead of using
`Tagged<T>`. One notable example: Tagged<Value> became Value, and Value
became UntaggedValue.
This change clarifies the intent of the code in many places, but it does
make it a big change.
The original purpose of this PR was to modernize the external parser to
use the new Shape system.
This commit does include some of that change, but a more important
aspect of this change is an improvement to the expansion trace.
Previous commit 6a7c00ea adding trace infrastructure to the syntax coloring
feature. This commit adds tracing to the expander.
The bulk of that work, in addition to the tree builder logic, was an
overhaul of the formatter traits to make them more general purpose, and
more structured.
Some highlights:
- `ToDebug` was split into two traits (`ToDebug` and `DebugFormat`)
because implementations needed to become objects, but a convenience
method on `ToDebug` didn't qualify
- `DebugFormat`'s `fmt_debug` method now takes a `DebugFormatter` rather
than a standard formatter, and `DebugFormatter` has a new (but still
limited) facility for structured formatting.
- Implementations of `ExpandSyntax` need to produce output that
implements `DebugFormat`.
Unlike the highlighter changes, these changes are fairly focused in the
trace output, so these changes aren't behind a flag.
* Moves off of draining between filters. Instead, the sink will pull on the stream, and will drain element-wise. This moves the whole stream to being lazy.
* Adds ctrl-c support and connects it into some of the key points where we pull on the stream. If a ctrl-c is detect, we immediately halt pulling on the stream and return to the prompt.
* Moves away from having a SourceMap where anchor locations are stored. Now AnchorLocation is kept directly in the Tag.
* To make this possible, split tag and span. Span is largely used in the parser and is copyable. Tag is now no longer copyable.
This commit adds the ability to work on features behind a feature flag
that won't be included in normal builds of nu.
These features are not exposed as Cargo features, as they reflect
incomplete features that are not yet stable.
To create a feature, add it to `features.toml`:
```toml
[hintsv1]
description = "Adding hints based on error states in the highlighter"
enabled = false
```
Each feature in `features.toml` becomes a feature flag accessible to `cfg`:
```rs
println!("hintsv1 is enabled");
```
By default, features are enabled based on the value of the `enabled` field.
You can also enable a feature from the command line via the
`NUSHELL_ENABLE_FLAGS` environment variable:
```sh
$ NUSHELL_ENABLE_FLAGS=hintsv1 cargo run
```
You can enable all flags via `NUSHELL_ENABLE_ALL_FLAGS`.
This commit also updates the CI setup to run the build with all flags off and
with all flags on. It also extracts the linting test into its own
parallelizable test, which means it doesn't need to run together with every
other test anymore.
When working on a feature, you should also add tests behind the same flag. A
commit is mergable if all tests pass with and without the flag, allowing
incomplete commits to land on master as long as the incomplete code builds and
passes tests.
The main thrust of this (very large) commit is an overhaul of the
expansion system.
The parsing pipeline is:
- Lightly parse the source file for atoms, basic delimiters and pipeline
structure into a token tree
- Expand the token tree into a HIR (high-level intermediate
representation) based upon the baseline syntax rules for expressions
and the syntactic shape of commands.
Somewhat non-traditionally, nu doesn't have an AST at all. It goes
directly from the token tree, which doesn't represent many important
distinctions (like the difference between `hello` and `5KB`) directly
into a high-level representation that doesn't have a direct
correspondence to the source code.
At a high level, nu commands work like macros, in the sense that the
syntactic shape of the invocation of a command depends on the
definition of a command.
However, commands do not have the ability to perform unrestricted
expansions of the token tree. Instead, they describe their arguments in
terms of syntactic shapes, and the expander expands the token tree into
HIR based upon that definition.
For example, the `where` command says that it takes a block as its first
required argument, and the description of the block syntactic shape
expands the syntax `cpu > 10` into HIR that represents
`{ $it.cpu > 10 }`.
This commit overhauls that system so that the syntactic shapes are
described in terms of a few new traits (`ExpandSyntax` and
`ExpandExpression` are the primary ones) that are more composable than
the previous system.
The first big win of this new system is the addition of the `ColumnPath`
shape, which looks like `cpu."max ghz"` or `package.version`.
Previously, while a variable path could look like `$it.cpu."max ghz"`,
the tail of a variable path could not be easily reused in other
contexts. Now, that tail is its own syntactic shape, and it can be used
as part of a command's signature.
This cleans up commands like `inc`, `add` and `edit` as well as
shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
Kind of touches on #356 by integrating the Starship prompt directly into the shell.
Not finished yet and has surfaced a potential bug in rustyline anyway. It depends on https://github.com/starship/starship/pull/509 being merged so the Starship prompt can be used as a library.
I could have tackled #356 completely and implemented a full custom prompt feature but I felt this was a simpler approach given that Starship is both written in Rust so shelling out isn't necessary and it already has a bunch of useful features built in.
However, I would understand if it would be preferable to just scrap integrating Starship directly and instead implement a custom prompt system which would facilitate simply shelling out to Starship.
Rids us of crossbeam v0.5 and lots of other crates.
For most users this only effects Cargo.lock though,
as rust-argon2 is only compiled when targeting
redox.
This commit migrates Value's numeric types to BigInt and BigDecimal. The
basic idea is that overflow errors aren't great in a shell environment,
and not really necessary.
The main immediate consequence is that new errors can occur when
serializing Nu values to other formats. You can see this in changes to
the various serialization formats (JSON, TOML, etc.). There's a new
`CoerceInto` trait that uses the `ToPrimitive` trait from `num_traits`
to attempt to coerce a `BigNum` or `BigDecimal` into a target type, and
produces a `RangeError` (kind of `ShellError`) if the coercion fails.
Another possible future consequence is that certain performance-critical
numeric operations might be too slow. If that happens, we can introduce
specialized numeric types to help improve the performance of those
situations, based on the real-world experience.