2
0
Fork 0
mirror of https://github.com/nushell/nushell synced 2025-01-18 16:14:10 +00:00

Implemented a command to expose polar's pivot functionality ()

# Description
Implementing pivot support 

The example below is a port of the [python API
example](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.pivot.html)

<img width="1079" alt="Screenshot 2024-07-01 at 14 29 27"
src="https://github.com/nushell/nushell/assets/56345/277eb7a2-233b-4070-9d24-c2183805c1b8">

# User-Facing Changes
* Introduction of the `polars pivot` command
This commit is contained in:
Jack Wright 2024-07-09 10:17:20 -07:00 committed by GitHub
parent 4cdceca1f7
commit ff27d6a18e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 268 additions and 1 deletions
crates/nu_plugin_polars
Cargo.toml
src/dataframe/eager

View file

@ -33,7 +33,7 @@ serde = { version = "1.0", features = ["derive"] }
sqlparser = { version = "0.47"}
polars-io = { version = "0.41", features = ["avro"]}
polars-arrow = { version = "0.41"}
polars-ops = { version = "0.41"}
polars-ops = { version = "0.41", features = ["pivot"]}
polars-plan = { version = "0.41", features = ["regex"]}
polars-utils = { version = "0.41"}
typetag = "0.2"

View file

@ -10,6 +10,7 @@ mod first;
mod get;
mod last;
mod open;
mod pivot;
mod query_df;
mod rename;
mod sample;
@ -76,6 +77,7 @@ pub(crate) fn eager_commands() -> Vec<Box<dyn PluginCommand<Plugin = PolarsPlugi
Box::new(FilterWith),
Box::new(GetDF),
Box::new(OpenDataFrame),
Box::new(pivot::PivotDF),
Box::new(UnpivotDF),
Box::new(Summary),
Box::new(FirstDF),

View file

@ -0,0 +1,265 @@
use nu_plugin::{EngineInterface, EvaluatedCall, PluginCommand};
use nu_protocol::{
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, SyntaxShape, Type,
Value,
};
use polars_ops::pivot::{pivot, PivotAgg};
use crate::{
dataframe::values::utils::convert_columns_string,
values::{Column, CustomValueSupport, PolarsPluginObject},
PolarsPlugin,
};
use super::super::values::NuDataFrame;
#[derive(Clone)]
pub struct PivotDF;
impl PluginCommand for PivotDF {
type Plugin = PolarsPlugin;
fn name(&self) -> &str {
"polars pivot"
}
fn usage(&self) -> &str {
"Pivot a DataFrame from wide to long format."
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.required_named(
"on",
SyntaxShape::List(Box::new(SyntaxShape::String)),
"column names for pivoting",
Some('o'),
)
.required_named(
"index",
SyntaxShape::List(Box::new(SyntaxShape::String)),
"column names for indexes",
Some('i'),
)
.required_named(
"values",
SyntaxShape::List(Box::new(SyntaxShape::String)),
"column names used as value columns",
Some('v'),
)
.named(
"aggregate",
SyntaxShape::String,
"Aggregation to apply when pivoting. The following are supported: first, sum, min, max, mean, median, count, last",
Some('a'),
)
.switch(
"sort",
"Sort columns",
Some('s'),
)
.switch(
"streamable",
"Whether or not to use the polars streaming engine. Only valid for lazy dataframes",
Some('t'),
)
.input_output_type(
Type::Custom("dataframe".into()),
Type::Custom("dataframe".into()),
)
.category(Category::Custom("dataframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
example: "[[name subject test_1 test_2]; [Cady maths 98 100] [Cady physics 99 100] [Karen maths 61 60] [Karen physics 58 60]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1]",
description: "Perform a pivot in order to show individuals test score by subject",
result: Some(
NuDataFrame::try_from_columns(
vec![
Column::new(
"name".to_string(),
vec![Value::string("Cady", Span::test_data()), Value::string("Karen", Span::test_data())],
),
Column::new(
"maths".to_string(),
vec![Value::int(98, Span::test_data()), Value::int(61, Span::test_data())],
),
Column::new(
"physics".to_string(),
vec![Value::int(99, Span::test_data()), Value::int(58, Span::test_data())],
),
],
None,
)
.expect("simple df for test should not fail")
.into_value(Span::unknown())
)
}
]
}
fn run(
&self,
plugin: &Self::Plugin,
engine: &EngineInterface,
call: &EvaluatedCall,
input: PipelineData,
) -> Result<PipelineData, LabeledError> {
match PolarsPluginObject::try_from_pipeline(plugin, input, call.head)? {
PolarsPluginObject::NuDataFrame(df) => command_eager(plugin, engine, call, df),
PolarsPluginObject::NuLazyFrame(lazy) => {
command_eager(plugin, engine, call, lazy.collect(call.head)?)
}
_ => Err(ShellError::GenericError {
error: "Must be a dataframe or lazy dataframe".into(),
msg: "".into(),
span: Some(call.head),
help: None,
inner: vec![],
}),
}
.map_err(LabeledError::from)
}
}
fn command_eager(
plugin: &PolarsPlugin,
engine: &EngineInterface,
call: &EvaluatedCall,
df: NuDataFrame,
) -> Result<PipelineData, ShellError> {
let on_col: Vec<Value> = call.get_flag("on")?.expect("required value");
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
let (on_col_string, id_col_span) = convert_columns_string(on_col, call.head)?;
let (index_col_string, index_col_span) = convert_columns_string(index_col, call.head)?;
let (val_col_string, val_col_span) = convert_columns_string(val_col, call.head)?;
check_column_datatypes(df.as_ref(), &on_col_string, id_col_span)?;
check_column_datatypes(df.as_ref(), &index_col_string, index_col_span)?;
check_column_datatypes(df.as_ref(), &val_col_string, val_col_span)?;
let aggregate: Option<PivotAgg> = call
.get_flag::<String>("aggregate")?
.map(pivot_agg_for_str)
.transpose()?;
let sort = call.has_flag("sort")?;
let polars_df = df.to_polars();
// todo add other args
let pivoted = pivot(
&polars_df,
&on_col_string,
Some(&index_col_string),
Some(&val_col_string),
sort,
aggregate,
None,
)
.map_err(|e| ShellError::GenericError {
error: format!("Pivot error: {e}"),
msg: "".into(),
span: Some(call.head),
help: None,
inner: vec![],
})?;
let res = NuDataFrame::new(false, pivoted);
res.to_pipeline_data(plugin, engine, call.head)
}
fn check_column_datatypes<T: AsRef<str>>(
df: &polars::prelude::DataFrame,
cols: &[T],
col_span: Span,
) -> Result<(), ShellError> {
if cols.is_empty() {
return Err(ShellError::GenericError {
error: "Merge error".into(),
msg: "empty column list".into(),
span: Some(col_span),
help: None,
inner: vec![],
});
}
// Checking if they are same type
if cols.len() > 1 {
for w in cols.windows(2) {
let l_series = df
.column(w[0].as_ref())
.map_err(|e| ShellError::GenericError {
error: "Error selecting columns".into(),
msg: e.to_string(),
span: Some(col_span),
help: None,
inner: vec![],
})?;
let r_series = df
.column(w[1].as_ref())
.map_err(|e| ShellError::GenericError {
error: "Error selecting columns".into(),
msg: e.to_string(),
span: Some(col_span),
help: None,
inner: vec![],
})?;
if l_series.dtype() != r_series.dtype() {
return Err(ShellError::GenericError {
error: "Merge error".into(),
msg: "found different column types in list".into(),
span: Some(col_span),
help: Some(format!(
"datatypes {} and {} are incompatible",
l_series.dtype(),
r_series.dtype()
)),
inner: vec![],
});
}
}
}
Ok(())
}
fn pivot_agg_for_str(agg: impl AsRef<str>) -> Result<PivotAgg, ShellError> {
match agg.as_ref() {
"first" => Ok(PivotAgg::First),
"sum" => Ok(PivotAgg::Sum),
"min" => Ok(PivotAgg::Min),
"max" => Ok(PivotAgg::Max),
"mean" => Ok(PivotAgg::Mean),
"median" => Ok(PivotAgg::Median),
"count" => Ok(PivotAgg::Count),
"last" => Ok(PivotAgg::Last),
s => Err(ShellError::GenericError {
error: format!("{s} is not a valid aggregation"),
msg: "".into(),
span: None,
help: Some(
"Use one of the following: first, sum, min, max, mean, median, count, last".into(),
),
inner: vec![],
}),
}
}
#[cfg(test)]
mod test {
use crate::test::test_polars_plugin_command;
use super::*;
#[test]
fn test_examples() -> Result<(), ShellError> {
test_polars_plugin_command(&PivotDF)
}
}