mirror of
https://github.com/nushell/nushell
synced 2024-11-14 00:47:09 +00:00
Implemented a command to expose polar's pivot functionality (#13282)
# Description Implementing pivot support The example below is a port of the [python API example](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.pivot.html) <img width="1079" alt="Screenshot 2024-07-01 at 14 29 27" src="https://github.com/nushell/nushell/assets/56345/277eb7a2-233b-4070-9d24-c2183805c1b8"> # User-Facing Changes * Introduction of the `polars pivot` command
This commit is contained in:
parent
4cdceca1f7
commit
ff27d6a18e
3 changed files with 268 additions and 1 deletions
|
@ -33,7 +33,7 @@ serde = { version = "1.0", features = ["derive"] }
|
|||
sqlparser = { version = "0.47"}
|
||||
polars-io = { version = "0.41", features = ["avro"]}
|
||||
polars-arrow = { version = "0.41"}
|
||||
polars-ops = { version = "0.41"}
|
||||
polars-ops = { version = "0.41", features = ["pivot"]}
|
||||
polars-plan = { version = "0.41", features = ["regex"]}
|
||||
polars-utils = { version = "0.41"}
|
||||
typetag = "0.2"
|
||||
|
|
|
@ -10,6 +10,7 @@ mod first;
|
|||
mod get;
|
||||
mod last;
|
||||
mod open;
|
||||
mod pivot;
|
||||
mod query_df;
|
||||
mod rename;
|
||||
mod sample;
|
||||
|
@ -76,6 +77,7 @@ pub(crate) fn eager_commands() -> Vec<Box<dyn PluginCommand<Plugin = PolarsPlugi
|
|||
Box::new(FilterWith),
|
||||
Box::new(GetDF),
|
||||
Box::new(OpenDataFrame),
|
||||
Box::new(pivot::PivotDF),
|
||||
Box::new(UnpivotDF),
|
||||
Box::new(Summary),
|
||||
Box::new(FirstDF),
|
||||
|
|
265
crates/nu_plugin_polars/src/dataframe/eager/pivot.rs
Normal file
265
crates/nu_plugin_polars/src/dataframe/eager/pivot.rs
Normal file
|
@ -0,0 +1,265 @@
|
|||
use nu_plugin::{EngineInterface, EvaluatedCall, PluginCommand};
|
||||
use nu_protocol::{
|
||||
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, SyntaxShape, Type,
|
||||
Value,
|
||||
};
|
||||
|
||||
use polars_ops::pivot::{pivot, PivotAgg};
|
||||
|
||||
use crate::{
|
||||
dataframe::values::utils::convert_columns_string,
|
||||
values::{Column, CustomValueSupport, PolarsPluginObject},
|
||||
PolarsPlugin,
|
||||
};
|
||||
|
||||
use super::super::values::NuDataFrame;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct PivotDF;
|
||||
|
||||
impl PluginCommand for PivotDF {
|
||||
type Plugin = PolarsPlugin;
|
||||
|
||||
fn name(&self) -> &str {
|
||||
"polars pivot"
|
||||
}
|
||||
|
||||
fn usage(&self) -> &str {
|
||||
"Pivot a DataFrame from wide to long format."
|
||||
}
|
||||
|
||||
fn signature(&self) -> Signature {
|
||||
Signature::build(self.name())
|
||||
.required_named(
|
||||
"on",
|
||||
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
||||
"column names for pivoting",
|
||||
Some('o'),
|
||||
)
|
||||
.required_named(
|
||||
"index",
|
||||
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
||||
"column names for indexes",
|
||||
Some('i'),
|
||||
)
|
||||
.required_named(
|
||||
"values",
|
||||
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
||||
"column names used as value columns",
|
||||
Some('v'),
|
||||
)
|
||||
.named(
|
||||
"aggregate",
|
||||
SyntaxShape::String,
|
||||
"Aggregation to apply when pivoting. The following are supported: first, sum, min, max, mean, median, count, last",
|
||||
Some('a'),
|
||||
)
|
||||
.switch(
|
||||
"sort",
|
||||
"Sort columns",
|
||||
Some('s'),
|
||||
)
|
||||
.switch(
|
||||
"streamable",
|
||||
"Whether or not to use the polars streaming engine. Only valid for lazy dataframes",
|
||||
Some('t'),
|
||||
)
|
||||
.input_output_type(
|
||||
Type::Custom("dataframe".into()),
|
||||
Type::Custom("dataframe".into()),
|
||||
)
|
||||
.category(Category::Custom("dataframe".into()))
|
||||
}
|
||||
|
||||
fn examples(&self) -> Vec<Example> {
|
||||
vec![
|
||||
Example {
|
||||
example: "[[name subject test_1 test_2]; [Cady maths 98 100] [Cady physics 99 100] [Karen maths 61 60] [Karen physics 58 60]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1]",
|
||||
description: "Perform a pivot in order to show individuals test score by subject",
|
||||
result: Some(
|
||||
NuDataFrame::try_from_columns(
|
||||
vec![
|
||||
Column::new(
|
||||
"name".to_string(),
|
||||
vec![Value::string("Cady", Span::test_data()), Value::string("Karen", Span::test_data())],
|
||||
),
|
||||
Column::new(
|
||||
"maths".to_string(),
|
||||
vec![Value::int(98, Span::test_data()), Value::int(61, Span::test_data())],
|
||||
),
|
||||
Column::new(
|
||||
"physics".to_string(),
|
||||
vec![Value::int(99, Span::test_data()), Value::int(58, Span::test_data())],
|
||||
),
|
||||
],
|
||||
None,
|
||||
)
|
||||
.expect("simple df for test should not fail")
|
||||
.into_value(Span::unknown())
|
||||
)
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
fn run(
|
||||
&self,
|
||||
plugin: &Self::Plugin,
|
||||
engine: &EngineInterface,
|
||||
call: &EvaluatedCall,
|
||||
input: PipelineData,
|
||||
) -> Result<PipelineData, LabeledError> {
|
||||
match PolarsPluginObject::try_from_pipeline(plugin, input, call.head)? {
|
||||
PolarsPluginObject::NuDataFrame(df) => command_eager(plugin, engine, call, df),
|
||||
PolarsPluginObject::NuLazyFrame(lazy) => {
|
||||
command_eager(plugin, engine, call, lazy.collect(call.head)?)
|
||||
}
|
||||
_ => Err(ShellError::GenericError {
|
||||
error: "Must be a dataframe or lazy dataframe".into(),
|
||||
msg: "".into(),
|
||||
span: Some(call.head),
|
||||
help: None,
|
||||
inner: vec![],
|
||||
}),
|
||||
}
|
||||
.map_err(LabeledError::from)
|
||||
}
|
||||
}
|
||||
|
||||
fn command_eager(
|
||||
plugin: &PolarsPlugin,
|
||||
engine: &EngineInterface,
|
||||
call: &EvaluatedCall,
|
||||
df: NuDataFrame,
|
||||
) -> Result<PipelineData, ShellError> {
|
||||
let on_col: Vec<Value> = call.get_flag("on")?.expect("required value");
|
||||
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
|
||||
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
|
||||
|
||||
let (on_col_string, id_col_span) = convert_columns_string(on_col, call.head)?;
|
||||
let (index_col_string, index_col_span) = convert_columns_string(index_col, call.head)?;
|
||||
let (val_col_string, val_col_span) = convert_columns_string(val_col, call.head)?;
|
||||
|
||||
check_column_datatypes(df.as_ref(), &on_col_string, id_col_span)?;
|
||||
check_column_datatypes(df.as_ref(), &index_col_string, index_col_span)?;
|
||||
check_column_datatypes(df.as_ref(), &val_col_string, val_col_span)?;
|
||||
|
||||
let aggregate: Option<PivotAgg> = call
|
||||
.get_flag::<String>("aggregate")?
|
||||
.map(pivot_agg_for_str)
|
||||
.transpose()?;
|
||||
|
||||
let sort = call.has_flag("sort")?;
|
||||
|
||||
let polars_df = df.to_polars();
|
||||
// todo add other args
|
||||
let pivoted = pivot(
|
||||
&polars_df,
|
||||
&on_col_string,
|
||||
Some(&index_col_string),
|
||||
Some(&val_col_string),
|
||||
sort,
|
||||
aggregate,
|
||||
None,
|
||||
)
|
||||
.map_err(|e| ShellError::GenericError {
|
||||
error: format!("Pivot error: {e}"),
|
||||
msg: "".into(),
|
||||
span: Some(call.head),
|
||||
help: None,
|
||||
inner: vec![],
|
||||
})?;
|
||||
|
||||
let res = NuDataFrame::new(false, pivoted);
|
||||
res.to_pipeline_data(plugin, engine, call.head)
|
||||
}
|
||||
|
||||
fn check_column_datatypes<T: AsRef<str>>(
|
||||
df: &polars::prelude::DataFrame,
|
||||
cols: &[T],
|
||||
col_span: Span,
|
||||
) -> Result<(), ShellError> {
|
||||
if cols.is_empty() {
|
||||
return Err(ShellError::GenericError {
|
||||
error: "Merge error".into(),
|
||||
msg: "empty column list".into(),
|
||||
span: Some(col_span),
|
||||
help: None,
|
||||
inner: vec![],
|
||||
});
|
||||
}
|
||||
|
||||
// Checking if they are same type
|
||||
if cols.len() > 1 {
|
||||
for w in cols.windows(2) {
|
||||
let l_series = df
|
||||
.column(w[0].as_ref())
|
||||
.map_err(|e| ShellError::GenericError {
|
||||
error: "Error selecting columns".into(),
|
||||
msg: e.to_string(),
|
||||
span: Some(col_span),
|
||||
help: None,
|
||||
inner: vec![],
|
||||
})?;
|
||||
|
||||
let r_series = df
|
||||
.column(w[1].as_ref())
|
||||
.map_err(|e| ShellError::GenericError {
|
||||
error: "Error selecting columns".into(),
|
||||
msg: e.to_string(),
|
||||
span: Some(col_span),
|
||||
help: None,
|
||||
inner: vec![],
|
||||
})?;
|
||||
|
||||
if l_series.dtype() != r_series.dtype() {
|
||||
return Err(ShellError::GenericError {
|
||||
error: "Merge error".into(),
|
||||
msg: "found different column types in list".into(),
|
||||
span: Some(col_span),
|
||||
help: Some(format!(
|
||||
"datatypes {} and {} are incompatible",
|
||||
l_series.dtype(),
|
||||
r_series.dtype()
|
||||
)),
|
||||
inner: vec![],
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn pivot_agg_for_str(agg: impl AsRef<str>) -> Result<PivotAgg, ShellError> {
|
||||
match agg.as_ref() {
|
||||
"first" => Ok(PivotAgg::First),
|
||||
"sum" => Ok(PivotAgg::Sum),
|
||||
"min" => Ok(PivotAgg::Min),
|
||||
"max" => Ok(PivotAgg::Max),
|
||||
"mean" => Ok(PivotAgg::Mean),
|
||||
"median" => Ok(PivotAgg::Median),
|
||||
"count" => Ok(PivotAgg::Count),
|
||||
"last" => Ok(PivotAgg::Last),
|
||||
s => Err(ShellError::GenericError {
|
||||
error: format!("{s} is not a valid aggregation"),
|
||||
msg: "".into(),
|
||||
span: None,
|
||||
help: Some(
|
||||
"Use one of the following: first, sum, min, max, mean, median, count, last".into(),
|
||||
),
|
||||
inner: vec![],
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use crate::test::test_polars_plugin_command;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_examples() -> Result<(), ShellError> {
|
||||
test_polars_plugin_command(&PivotDF)
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue