Suggest a column name in case one unknown column is supplied.

This commit is contained in:
Andrés N. Robalino 2019-10-22 00:00:06 -05:00
parent 0611f56776
commit f1630da2cc
4 changed files with 62 additions and 6 deletions

View file

@ -249,7 +249,7 @@ Nu adheres closely to a set of goals that make up its design philosophy. As feat
| command | description | | command | description |
| ------------- | ------------- | | ------------- | ------------- |
| add column-or-column-path value | Add a new column to the table | | add column-or-column-path value | Add a new column to the table |
| count | Show the total number of cells | | count | Show the total number of rows |
| edit column-or-column-path value | Edit an existing column to have a new value | | edit column-or-column-path value | Edit an existing column to have a new value |
| embed column | Creates a new table of one column with the given name, and places the current table inside of it | | embed column | Creates a new table of one column with the given name, and places the current table inside of it |
| first amount | Show only the first number of rows | | first amount | Show only the first number of rows |

View file

@ -20,7 +20,7 @@ impl WholeStreamCommand for Count {
} }
fn usage(&self) -> &str { fn usage(&self) -> &str {
"Show the total number of cells." "Show the total number of rows."
} }
fn run( fn run(

View file

@ -40,10 +40,41 @@ fn group_by(
let values: Vec<Tagged<Value>> = input.values.collect().await; let values: Vec<Tagged<Value>> = input.values.collect().await;
let mut groups = indexmap::IndexMap::new(); let mut groups = indexmap::IndexMap::new();
for row in values { for value in values {
let key = row.get_data_by_key(&column_name.item).unwrap().as_string()?; let group_key = value.get_data_by_key(&column_name.item);
let mut group = groups.entry(key).or_insert(vec![]);
group.push(row); if group_key.is_none() {
let possibilities = value.data_descriptors();
let mut possible_matches: Vec<_> = possibilities
.iter()
.map(|x| (natural::distance::levenshtein_distance(x, &column_name.item), x))
.collect();
possible_matches.sort();
let err = {
if possible_matches.len() > 0 {
ShellError::labeled_error(
"Unknown column",
format!("did you mean '{}'?", possible_matches[0].1),
&column_name.tag,)
} else {
ShellError::labeled_error(
"Unknown column",
"row does not contain this column",
&column_name.tag,
)
}
};
yield Err(err)
} else {
let group_key = group_key.unwrap().as_string()?;
let mut group = groups.entry(group_key).or_insert(vec![]);
group.push(value);
}
} }
let mut out = TaggedDictBuilder::new(name.clone()); let mut out = TaggedDictBuilder::new(name.clone());

View file

@ -31,6 +31,31 @@ fn group_by() {
}) })
} }
#[test]
fn group_by_errors_if_unknown_column_name() {
Playground::setup("group_by_test_2", |dirs, sandbox| {
sandbox.with_files(vec![FileWithContentToBeTrimmed(
"los_tres_caballeros.csv",
r#"
first_name,last_name,rusty_luck,type
Andrés,Robalino,1,A
Jonathan,Turner,1,B
Yehuda,Katz,1,A
"#,
)]);
let actual = nu_error!(
cwd: dirs.test(), h::pipeline(
r#"
open los_tres_caballeros.csv
| group-by ttype
"#
));
assert!(actual.contains("Unknown column"));
})
}
#[test] #[test]
fn first_gets_first_rows_by_amount() { fn first_gets_first_rows_by_amount() {
Playground::setup("first_test_1", |dirs, sandbox| { Playground::setup("first_test_1", |dirs, sandbox| {