mirror of
https://github.com/nushell/nushell
synced 2025-01-16 07:04:09 +00:00
updated to a quicker levenshtein implementation (#3366)
This commit is contained in:
parent
d05c48a1d7
commit
3792562046
1 changed files with 54 additions and 24 deletions
|
@ -1,5 +1,4 @@
|
|||
use crate::Value;
|
||||
use std::cmp;
|
||||
|
||||
/// Prepares a list of "sounds like" matches (using edit distance) for the string you're trying to find
|
||||
pub fn did_you_mean(obj_source: &Value, field_tried: String) -> Option<Vec<String>> {
|
||||
|
@ -22,34 +21,65 @@ pub fn did_you_mean(obj_source: &Value, field_tried: String) -> Option<Vec<Strin
|
|||
}
|
||||
}
|
||||
|
||||
/// Borrowed from https://crates.io/crates/natural
|
||||
fn levenshtein_distance(str1: &str, str2: &str) -> usize {
|
||||
let mut current: Vec<usize> = (0..str1.len() + 1).collect();
|
||||
let str1_chars: Vec<char> = str1.chars().collect();
|
||||
let str2_chars: Vec<char> = str2.chars().collect();
|
||||
// Borrowed from here https://github.com/wooorm/levenshtein-rs
|
||||
pub fn levenshtein_distance(a: &str, b: &str) -> usize {
|
||||
let mut result = 0;
|
||||
|
||||
let str1_len = str1_chars.len();
|
||||
let str2_len = str2_chars.len();
|
||||
|
||||
for str2_index in 1..str2_len + 1 {
|
||||
let previous = current;
|
||||
current = vec![0; str1_len + 1];
|
||||
current[0] = str2_index;
|
||||
for str1_index in 1..str1_len + 1 {
|
||||
let add = previous[str1_index] + 1;
|
||||
let delete = current[str1_index - 1] + 1;
|
||||
let mut change = previous[str1_index - 1];
|
||||
if str1_chars[str1_index - 1] != str2_chars[str2_index - 1] {
|
||||
change += 1
|
||||
}
|
||||
current[str1_index] = min3(add, delete, change);
|
||||
}
|
||||
}
|
||||
current[str1_len]
|
||||
/* Shortcut optimizations / degenerate cases. */
|
||||
if a == b {
|
||||
return result;
|
||||
}
|
||||
|
||||
fn min3<T: Ord>(a: T, b: T, c: T) -> T {
|
||||
cmp::min(a, cmp::min(b, c))
|
||||
let length_a = a.chars().count();
|
||||
let length_b = b.chars().count();
|
||||
|
||||
if length_a == 0 {
|
||||
return length_b;
|
||||
}
|
||||
|
||||
if length_b == 0 {
|
||||
return length_a;
|
||||
}
|
||||
|
||||
/* Initialize the vector.
|
||||
*
|
||||
* This is why it’s fast, normally a matrix is used,
|
||||
* here we use a single vector. */
|
||||
let mut cache: Vec<usize> = (1..).take(length_a).collect();
|
||||
let mut distance_a;
|
||||
let mut distance_b;
|
||||
|
||||
/* Loop. */
|
||||
for (index_b, code_b) in b.chars().enumerate() {
|
||||
result = index_b;
|
||||
distance_a = index_b;
|
||||
|
||||
for (index_a, code_a) in a.chars().enumerate() {
|
||||
distance_b = if code_a == code_b {
|
||||
distance_a
|
||||
} else {
|
||||
distance_a + 1
|
||||
};
|
||||
|
||||
distance_a = cache[index_a];
|
||||
|
||||
result = if distance_a > result {
|
||||
if distance_b > result {
|
||||
result + 1
|
||||
} else {
|
||||
distance_b
|
||||
}
|
||||
} else if distance_b > distance_a {
|
||||
distance_a + 1
|
||||
} else {
|
||||
distance_b
|
||||
};
|
||||
|
||||
cache[index_a] = result;
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
|
Loading…
Reference in a new issue