nushell/src/deserializer.rs

536 lines
16 KiB
Rust
Raw Normal View History

use crate::data::base::property_get::ValueExt;
use crate::data::value;
2019-08-02 19:15:07 +00:00
use log::trace;
use nu_errors::{CoerceInto, ShellError};
use nu_protocol::{CallInfo, ColumnPath, Evaluate, Primitive, ShellTypeName, UntaggedValue, Value};
use nu_source::{HasSpan, SpannedItem, Tagged, TaggedItem};
use serde::de;
use std::path::PathBuf;
2019-08-02 19:15:07 +00:00
#[derive(Debug)]
pub struct DeserializerItem<'de> {
key_struct_field: Option<(String, &'de str)>,
val: Value,
2019-08-02 19:15:07 +00:00
}
pub struct ConfigDeserializer<'de> {
call: CallInfo,
2019-08-02 19:15:07 +00:00
stack: Vec<DeserializerItem<'de>>,
saw_root: bool,
position: usize,
}
impl<'de> ConfigDeserializer<'de> {
pub fn from_call_info(call: CallInfo) -> ConfigDeserializer<'de> {
2019-08-02 19:15:07 +00:00
ConfigDeserializer {
call,
2019-08-02 19:15:07 +00:00
stack: vec![],
saw_root: false,
position: 0,
}
}
pub fn push_val(&mut self, val: Value) {
2019-09-02 01:25:34 +00:00
self.stack.push(DeserializerItem {
key_struct_field: None,
val,
});
}
2019-08-02 19:15:07 +00:00
pub fn push(&mut self, name: &'static str) -> Result<(), ShellError> {
let value: Option<Value> = if name == "rest" {
let positional = self.call.args.slice_from(self.position);
2019-08-02 19:15:07 +00:00
self.position += positional.len();
Some(UntaggedValue::Table(positional).into_untagged_value()) // TODO: correct tag
2019-08-02 19:15:07 +00:00
} else {
if self.call.args.has(name) {
self.call.args.get(name).map(|x| x.clone())
2019-08-02 19:15:07 +00:00
} else {
let position = self.position;
self.position += 1;
self.call.args.nth(position).map(|x| x.clone())
2019-08-02 19:15:07 +00:00
}
};
trace!("pushing {:?}", value);
self.stack.push(DeserializerItem {
key_struct_field: Some((name.to_string(), name)),
val: value.unwrap_or_else(|| value::nothing().into_value(&self.call.name_tag)),
2019-08-02 19:15:07 +00:00
});
Ok(())
}
2019-09-01 22:32:26 +00:00
pub fn top(&mut self) -> &DeserializerItem {
let value = self.stack.last();
trace!("inspecting top value :: {:?}", value);
value.expect("Can't get top element of an empty stack")
2019-09-01 22:32:26 +00:00
}
2019-08-02 19:15:07 +00:00
pub fn pop(&mut self) -> DeserializerItem {
let value = self.stack.pop();
trace!("popping value :: {:?}", value);
value.expect("Can't pop an empty stack")
}
}
use de::Visitor;
impl<'de, 'a> de::Deserializer<'de> for &'a mut ConfigDeserializer<'de> {
type Error = ShellError;
fn deserialize_any<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
2019-09-02 02:07:02 +00:00
unimplemented!("deserialize_any")
2019-08-02 19:15:07 +00:00
}
fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
let value = self.pop();
trace!("Extracting {:?} for bool", value.val);
2019-08-02 19:15:07 +00:00
match &value.val {
Value {
value: UntaggedValue::Primitive(Primitive::Boolean(b)),
..
} => visitor.visit_bool(*b),
Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
..
} => visitor.visit_bool(false),
2019-11-04 15:47:03 +00:00
other => Err(ShellError::type_error(
"Boolean",
other.type_name().spanned(other.span()),
)),
}
}
2019-08-02 19:15:07 +00:00
fn deserialize_i8<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_i8")
}
fn deserialize_i16<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_i16")
}
fn deserialize_i32<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_i32")
}
fn deserialize_i64<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_i64")
}
fn deserialize_u8<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_u8")
}
fn deserialize_u16<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_u16")
}
fn deserialize_u32<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_u32")
}
fn deserialize_u64<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_u64")
}
fn deserialize_f32<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_f32")
}
fn deserialize_f64<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_f64")
}
fn deserialize_char<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_char")
}
fn deserialize_str<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_str")
}
fn deserialize_string<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_string")
}
fn deserialize_bytes<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_bytes")
}
fn deserialize_byte_buf<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_byte_buf")
}
2019-09-01 22:32:26 +00:00
fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
let value = self.top();
let name = std::any::type_name::<V::Value>();
trace!("<Option> Extracting {:?} for Option<{}>", value, name);
match &value.val.value {
UntaggedValue::Primitive(Primitive::Nothing) => visitor.visit_none(),
2019-09-01 22:32:26 +00:00
_ => visitor.visit_some(self),
}
}
2019-08-02 19:15:07 +00:00
fn deserialize_unit<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_unit")
}
fn deserialize_unit_struct<V>(
self,
_name: &'static str,
_visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_unit_struct")
}
fn deserialize_newtype_struct<V>(
self,
_name: &'static str,
_visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_newtype_struct")
}
2019-09-02 01:25:34 +00:00
fn deserialize_seq<V>(mut self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
let value = self.pop();
trace!("<Vec> Extracting {:?} for vec", value.val);
2019-08-02 19:15:07 +00:00
2019-09-02 01:25:34 +00:00
match value.val.into_parts() {
(UntaggedValue::Table(items), _) => {
2019-09-02 01:25:34 +00:00
let de = SeqDeserializer::new(&mut self, items.into_iter());
visitor.visit_seq(de)
}
2019-11-04 15:47:03 +00:00
(other, tag) => Err(ShellError::type_error(
"Vec",
other.type_name().spanned(tag),
)),
2019-09-02 01:25:34 +00:00
}
}
2019-09-02 01:37:01 +00:00
fn deserialize_tuple<V>(mut self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
2019-08-02 19:15:07 +00:00
where
V: Visitor<'de>,
{
2019-09-02 01:37:01 +00:00
let value = self.pop();
trace!(
"<Tuple> Extracting {:?} for tuple with {} elements",
value.val,
len
);
2019-09-02 01:37:01 +00:00
match value.val.into_parts() {
(UntaggedValue::Table(items), _) => {
2019-09-02 01:37:01 +00:00
let de = SeqDeserializer::new(&mut self, items.into_iter());
visitor.visit_seq(de)
}
(other, tag) => Err(ShellError::type_error(
"Tuple",
2019-11-04 15:47:03 +00:00
other.type_name().spanned(tag),
2019-09-02 01:37:01 +00:00
)),
}
2019-08-02 19:15:07 +00:00
}
fn deserialize_tuple_struct<V>(
self,
_name: &'static str,
_len: usize,
_visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_tuple_struct")
}
fn deserialize_map<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_map")
}
fn deserialize_struct<V>(
mut self,
name: &'static str,
fields: &'static [&'static str],
visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
2019-09-02 21:21:29 +00:00
fn visit<'de, T, V>(
val: T,
name: &'static str,
fields: &'static [&'static str],
visitor: V,
2019-09-02 21:21:29 +00:00
) -> Result<V::Value, ShellError>
where
T: serde::Serialize,
V: Visitor<'de>,
{
let json = serde_json::to_string(&val)?;
let json_cursor = std::io::Cursor::new(json.into_bytes());
let mut json_de = serde_json::Deserializer::from_reader(json_cursor);
let r = json_de.deserialize_struct(name, fields, visitor)?;
return Ok(r);
}
2019-08-02 19:15:07 +00:00
trace!(
Overhaul the expansion system The main thrust of this (very large) commit is an overhaul of the expansion system. The parsing pipeline is: - Lightly parse the source file for atoms, basic delimiters and pipeline structure into a token tree - Expand the token tree into a HIR (high-level intermediate representation) based upon the baseline syntax rules for expressions and the syntactic shape of commands. Somewhat non-traditionally, nu doesn't have an AST at all. It goes directly from the token tree, which doesn't represent many important distinctions (like the difference between `hello` and `5KB`) directly into a high-level representation that doesn't have a direct correspondence to the source code. At a high level, nu commands work like macros, in the sense that the syntactic shape of the invocation of a command depends on the definition of a command. However, commands do not have the ability to perform unrestricted expansions of the token tree. Instead, they describe their arguments in terms of syntactic shapes, and the expander expands the token tree into HIR based upon that definition. For example, the `where` command says that it takes a block as its first required argument, and the description of the block syntactic shape expands the syntax `cpu > 10` into HIR that represents `{ $it.cpu > 10 }`. This commit overhauls that system so that the syntactic shapes are described in terms of a few new traits (`ExpandSyntax` and `ExpandExpression` are the primary ones) that are more composable than the previous system. The first big win of this new system is the addition of the `ColumnPath` shape, which looks like `cpu."max ghz"` or `package.version`. Previously, while a variable path could look like `$it.cpu."max ghz"`, the tail of a variable path could not be easily reused in other contexts. Now, that tail is its own syntactic shape, and it can be used as part of a command's signature. This cleans up commands like `inc`, `add` and `edit` as well as shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
2019-09-17 22:26:27 +00:00
"deserializing struct {:?} {:?} (saw_root={} stack={:?})",
2019-08-02 19:15:07 +00:00
name,
fields,
Overhaul the expansion system The main thrust of this (very large) commit is an overhaul of the expansion system. The parsing pipeline is: - Lightly parse the source file for atoms, basic delimiters and pipeline structure into a token tree - Expand the token tree into a HIR (high-level intermediate representation) based upon the baseline syntax rules for expressions and the syntactic shape of commands. Somewhat non-traditionally, nu doesn't have an AST at all. It goes directly from the token tree, which doesn't represent many important distinctions (like the difference between `hello` and `5KB`) directly into a high-level representation that doesn't have a direct correspondence to the source code. At a high level, nu commands work like macros, in the sense that the syntactic shape of the invocation of a command depends on the definition of a command. However, commands do not have the ability to perform unrestricted expansions of the token tree. Instead, they describe their arguments in terms of syntactic shapes, and the expander expands the token tree into HIR based upon that definition. For example, the `where` command says that it takes a block as its first required argument, and the description of the block syntactic shape expands the syntax `cpu > 10` into HIR that represents `{ $it.cpu > 10 }`. This commit overhauls that system so that the syntactic shapes are described in terms of a few new traits (`ExpandSyntax` and `ExpandExpression` are the primary ones) that are more composable than the previous system. The first big win of this new system is the addition of the `ColumnPath` shape, which looks like `cpu."max ghz"` or `package.version`. Previously, while a variable path could look like `$it.cpu."max ghz"`, the tail of a variable path could not be easily reused in other contexts. Now, that tail is its own syntactic shape, and it can be used as part of a command's signature. This cleans up commands like `inc`, `add` and `edit` as well as shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
2019-09-17 22:26:27 +00:00
self.saw_root,
2019-08-02 19:15:07 +00:00
self.stack
);
2019-09-02 20:06:46 +00:00
if !self.saw_root {
2019-08-02 19:15:07 +00:00
self.saw_root = true;
2019-09-02 20:06:46 +00:00
return visitor.visit_seq(StructDeserializer::new(&mut self, fields));
2019-08-02 19:15:07 +00:00
}
2019-09-02 20:06:46 +00:00
let value = self.pop();
2019-09-02 20:30:51 +00:00
2019-09-02 21:23:34 +00:00
let type_name = std::any::type_name::<V::Value>();
let tagged_val_name = std::any::type_name::<Value>();
2019-09-02 21:23:34 +00:00
Overhaul the expansion system The main thrust of this (very large) commit is an overhaul of the expansion system. The parsing pipeline is: - Lightly parse the source file for atoms, basic delimiters and pipeline structure into a token tree - Expand the token tree into a HIR (high-level intermediate representation) based upon the baseline syntax rules for expressions and the syntactic shape of commands. Somewhat non-traditionally, nu doesn't have an AST at all. It goes directly from the token tree, which doesn't represent many important distinctions (like the difference between `hello` and `5KB`) directly into a high-level representation that doesn't have a direct correspondence to the source code. At a high level, nu commands work like macros, in the sense that the syntactic shape of the invocation of a command depends on the definition of a command. However, commands do not have the ability to perform unrestricted expansions of the token tree. Instead, they describe their arguments in terms of syntactic shapes, and the expander expands the token tree into HIR based upon that definition. For example, the `where` command says that it takes a block as its first required argument, and the description of the block syntactic shape expands the syntax `cpu > 10` into HIR that represents `{ $it.cpu > 10 }`. This commit overhauls that system so that the syntactic shapes are described in terms of a few new traits (`ExpandSyntax` and `ExpandExpression` are the primary ones) that are more composable than the previous system. The first big win of this new system is the addition of the `ColumnPath` shape, which looks like `cpu."max ghz"` or `package.version`. Previously, while a variable path could look like `$it.cpu."max ghz"`, the tail of a variable path could not be easily reused in other contexts. Now, that tail is its own syntactic shape, and it can be used as part of a command's signature. This cleans up commands like `inc`, `add` and `edit` as well as shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
2019-09-17 22:26:27 +00:00
trace!(
2019-11-04 15:47:03 +00:00
"name={} type_name={} tagged_val_name={}",
name,
Overhaul the expansion system The main thrust of this (very large) commit is an overhaul of the expansion system. The parsing pipeline is: - Lightly parse the source file for atoms, basic delimiters and pipeline structure into a token tree - Expand the token tree into a HIR (high-level intermediate representation) based upon the baseline syntax rules for expressions and the syntactic shape of commands. Somewhat non-traditionally, nu doesn't have an AST at all. It goes directly from the token tree, which doesn't represent many important distinctions (like the difference between `hello` and `5KB`) directly into a high-level representation that doesn't have a direct correspondence to the source code. At a high level, nu commands work like macros, in the sense that the syntactic shape of the invocation of a command depends on the definition of a command. However, commands do not have the ability to perform unrestricted expansions of the token tree. Instead, they describe their arguments in terms of syntactic shapes, and the expander expands the token tree into HIR based upon that definition. For example, the `where` command says that it takes a block as its first required argument, and the description of the block syntactic shape expands the syntax `cpu > 10` into HIR that represents `{ $it.cpu > 10 }`. This commit overhauls that system so that the syntactic shapes are described in terms of a few new traits (`ExpandSyntax` and `ExpandExpression` are the primary ones) that are more composable than the previous system. The first big win of this new system is the addition of the `ColumnPath` shape, which looks like `cpu."max ghz"` or `package.version`. Previously, while a variable path could look like `$it.cpu."max ghz"`, the tail of a variable path could not be easily reused in other contexts. Now, that tail is its own syntactic shape, and it can be used as part of a command's signature. This cleans up commands like `inc`, `add` and `edit` as well as shorthand blocks, which can now look like `| where cpu."max ghz" > 10`
2019-09-17 22:26:27 +00:00
type_name,
tagged_val_name
);
if type_name == tagged_val_name {
return visit::<Value, _>(value.val, name, fields, visitor);
2019-09-02 21:23:34 +00:00
}
if name == "Evaluate" {
2019-09-02 20:30:51 +00:00
let block = match value.val {
Value {
value: UntaggedValue::Block(block),
2019-09-02 20:30:51 +00:00
..
} => block,
2019-11-04 15:47:03 +00:00
other => {
return Err(ShellError::type_error(
"Block",
other.type_name().spanned(other.span()),
))
}
2019-09-02 20:30:51 +00:00
};
return visit::<Evaluate, _>(block, name, fields, visitor);
2019-09-02 20:30:51 +00:00
}
2019-11-04 15:47:03 +00:00
if name == "ColumnPath" {
let path = match value.val {
Value {
value: UntaggedValue::Primitive(Primitive::ColumnPath(path)),
2019-11-04 15:47:03 +00:00
..
} => path,
other => {
return Err(ShellError::type_error(
"column path",
other.type_name().spanned(other.span()),
))
}
};
return visit::<ColumnPath, _>(path, name, fields, visitor);
}
2019-09-02 21:23:34 +00:00
trace!("Extracting {:?} for {:?}", value.val, type_name);
let tag = value.val.tag();
match value.val {
Value {
value: UntaggedValue::Primitive(Primitive::Boolean(b)),
..
} => visit::<Tagged<bool>, _>(b.tagged(tag), name, fields, visitor),
Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
..
} => visit::<Tagged<bool>, _>(false.tagged(tag), name, fields, visitor),
Value {
value: UntaggedValue::Primitive(Primitive::Path(p)),
..
} => visit::<Tagged<PathBuf>, _>(p.clone().tagged(tag), name, fields, visitor),
Value {
value: UntaggedValue::Primitive(Primitive::Int(int)),
..
} => {
let i: i64 = int.tagged(value.val.tag).coerce_into("converting to i64")?;
visit::<Tagged<i64>, _>(i.tagged(tag), name, fields, visitor)
}
Value {
value: UntaggedValue::Primitive(Primitive::String(string)),
..
} => visit::<Tagged<String>, _>(string.tagged(tag), name, fields, visitor),
2019-11-04 15:47:03 +00:00
other => {
return Err(ShellError::type_error(
name,
other.type_name().spanned(other.span()),
))
}
}
2019-08-02 19:15:07 +00:00
}
fn deserialize_enum<V>(
self,
_name: &'static str,
_variants: &'static [&'static str],
_visitor: V,
) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_enum")
}
fn deserialize_identifier<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_identifier")
}
fn deserialize_ignored_any<V>(self, _visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
unimplemented!("deserialize_ignored_any")
}
}
struct SeqDeserializer<'a, 'de: 'a, I: Iterator<Item = Value>> {
2019-09-02 01:25:34 +00:00
de: &'a mut ConfigDeserializer<'de>,
vals: I,
}
impl<'a, 'de: 'a, I: Iterator<Item = Value>> SeqDeserializer<'a, 'de, I> {
2019-09-02 01:25:34 +00:00
fn new(de: &'a mut ConfigDeserializer<'de>, vals: I) -> Self {
SeqDeserializer { de, vals }
2019-09-02 01:25:34 +00:00
}
}
impl<'a, 'de: 'a, I: Iterator<Item = Value>> de::SeqAccess<'de> for SeqDeserializer<'a, 'de, I> {
2019-09-02 01:25:34 +00:00
type Error = ShellError;
fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
where
T: de::DeserializeSeed<'de>,
{
let next = if let Some(next) = self.vals.next() {
next
} else {
return Ok(None);
};
self.de.push_val(next);
seed.deserialize(&mut *self.de).map(Some)
}
fn size_hint(&self) -> Option<usize> {
return self.vals.size_hint().1;
}
}
2019-08-02 19:15:07 +00:00
struct StructDeserializer<'a, 'de: 'a> {
de: &'a mut ConfigDeserializer<'de>,
fields: &'static [&'static str],
}
impl<'a, 'de: 'a> StructDeserializer<'a, 'de> {
fn new(de: &'a mut ConfigDeserializer<'de>, fields: &'static [&'static str]) -> Self {
StructDeserializer { de, fields }
2019-08-02 19:15:07 +00:00
}
}
impl<'a, 'de: 'a> de::SeqAccess<'de> for StructDeserializer<'a, 'de> {
type Error = ShellError;
fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
where
T: de::DeserializeSeed<'de>,
{
if self.fields.len() == 0 {
return Ok(None);
}
trace!("Processing {}", self.fields[0]);
self.de.push(self.fields[0])?;
self.fields = &self.fields[1..];
seed.deserialize(&mut *self.de).map(Some)
}
fn size_hint(&self) -> Option<usize> {
return Some(self.fields.len());
}
}
2019-09-09 11:39:43 +00:00
#[cfg(test)]
mod tests {
use super::*;
use std::any::type_name;
#[test]
fn check_type_name_properties() {
// This ensures that certain properties for the
// std::any::type_name function hold, that
// this code relies on. The type_name docs explicitly
// mention that the actual format of the output
// is unspecified and change is likely.
// This test makes sure that such change is detected
// by this test failing, and not things silently breaking.
// Specifically, we rely on this behavior further above
// in the file for the Value special case parsing.
2019-09-09 11:39:43 +00:00
let tuple = type_name::<()>();
let tagged_tuple = type_name::<Tagged<()>>();
let tagged_value = type_name::<Value>();
2019-09-09 11:39:43 +00:00
assert!(tuple != tagged_tuple);
assert!(tuple != tagged_value);
assert!(tagged_tuple != tagged_value);
}
}