mirror of
https://github.com/moonlight-stream/moonlight-qt
synced 2025-01-07 00:38:45 +00:00
539 lines
22 KiB
C
539 lines
22 KiB
C
/*
|
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#ifndef HEADER_BN_H
|
|
# define HEADER_BN_H
|
|
|
|
# include <openssl/e_os2.h>
|
|
# ifndef OPENSSL_NO_STDIO
|
|
# include <stdio.h>
|
|
# endif
|
|
# include <openssl/opensslconf.h>
|
|
# include <openssl/ossl_typ.h>
|
|
# include <openssl/crypto.h>
|
|
# include <openssl/bnerr.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*
|
|
* 64-bit processor with LP64 ABI
|
|
*/
|
|
# ifdef SIXTY_FOUR_BIT_LONG
|
|
# define BN_ULONG unsigned long
|
|
# define BN_BYTES 8
|
|
# endif
|
|
|
|
/*
|
|
* 64-bit processor other than LP64 ABI
|
|
*/
|
|
# ifdef SIXTY_FOUR_BIT
|
|
# define BN_ULONG unsigned long long
|
|
# define BN_BYTES 8
|
|
# endif
|
|
|
|
# ifdef THIRTY_TWO_BIT
|
|
# define BN_ULONG unsigned int
|
|
# define BN_BYTES 4
|
|
# endif
|
|
|
|
# define BN_BITS2 (BN_BYTES * 8)
|
|
# define BN_BITS (BN_BITS2 * 2)
|
|
# define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1))
|
|
|
|
# define BN_FLG_MALLOCED 0x01
|
|
# define BN_FLG_STATIC_DATA 0x02
|
|
|
|
/*
|
|
* avoid leaking exponent information through timing,
|
|
* BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
|
|
* BN_div() will call BN_div_no_branch,
|
|
* BN_mod_inverse() will call BN_mod_inverse_no_branch.
|
|
*/
|
|
# define BN_FLG_CONSTTIME 0x04
|
|
# define BN_FLG_SECURE 0x08
|
|
|
|
# if OPENSSL_API_COMPAT < 0x00908000L
|
|
/* deprecated name for the flag */
|
|
# define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME
|
|
# define BN_FLG_FREE 0x8000 /* used for debugging */
|
|
# endif
|
|
|
|
void BN_set_flags(BIGNUM *b, int n);
|
|
int BN_get_flags(const BIGNUM *b, int n);
|
|
|
|
/* Values for |top| in BN_rand() */
|
|
#define BN_RAND_TOP_ANY -1
|
|
#define BN_RAND_TOP_ONE 0
|
|
#define BN_RAND_TOP_TWO 1
|
|
|
|
/* Values for |bottom| in BN_rand() */
|
|
#define BN_RAND_BOTTOM_ANY 0
|
|
#define BN_RAND_BOTTOM_ODD 1
|
|
|
|
/*
|
|
* get a clone of a BIGNUM with changed flags, for *temporary* use only (the
|
|
* two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The
|
|
* value |dest| should be a newly allocated BIGNUM obtained via BN_new() that
|
|
* has not been otherwise initialised or used.
|
|
*/
|
|
void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags);
|
|
|
|
/* Wrapper function to make using BN_GENCB easier */
|
|
int BN_GENCB_call(BN_GENCB *cb, int a, int b);
|
|
|
|
BN_GENCB *BN_GENCB_new(void);
|
|
void BN_GENCB_free(BN_GENCB *cb);
|
|
|
|
/* Populate a BN_GENCB structure with an "old"-style callback */
|
|
void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
|
|
void *cb_arg);
|
|
|
|
/* Populate a BN_GENCB structure with a "new"-style callback */
|
|
void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
|
|
void *cb_arg);
|
|
|
|
void *BN_GENCB_get_arg(BN_GENCB *cb);
|
|
|
|
# define BN_prime_checks 0 /* default: select number of iterations based
|
|
* on the size of the number */
|
|
|
|
/*
|
|
* BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
|
|
* that will be done for checking that a random number is probably prime. The
|
|
* error rate for accepting a composite number as prime depends on the size of
|
|
* the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
|
|
* and so the level is what you would expect for a key of double the size of the
|
|
* prime.
|
|
*
|
|
* This table is generated using the algorithm of FIPS PUB 186-4
|
|
* Digital Signature Standard (DSS), section F.1, page 117.
|
|
* (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
|
|
*
|
|
* The following magma script was used to generate the output:
|
|
* securitybits:=125;
|
|
* k:=1024;
|
|
* for t:=1 to 65 do
|
|
* for M:=3 to Floor(2*Sqrt(k-1)-1) do
|
|
* S:=0;
|
|
* // Sum over m
|
|
* for m:=3 to M do
|
|
* s:=0;
|
|
* // Sum over j
|
|
* for j:=2 to m do
|
|
* s+:=(RealField(32)!2)^-(j+(k-1)/j);
|
|
* end for;
|
|
* S+:=2^(m-(m-1)*t)*s;
|
|
* end for;
|
|
* A:=2^(k-2-M*t);
|
|
* B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
|
|
* pkt:=2.00743*Log(2)*k*2^-k*(A+B);
|
|
* seclevel:=Floor(-Log(2,pkt));
|
|
* if seclevel ge securitybits then
|
|
* printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
|
|
* break;
|
|
* end if;
|
|
* end for;
|
|
* if seclevel ge securitybits then break; end if;
|
|
* end for;
|
|
*
|
|
* It can be run online at:
|
|
* http://magma.maths.usyd.edu.au/calc
|
|
*
|
|
* And will output:
|
|
* k: 1024, security: 129 bits (t: 6, M: 23)
|
|
*
|
|
* k is the number of bits of the prime, securitybits is the level we want to
|
|
* reach.
|
|
*
|
|
* prime length | RSA key size | # MR tests | security level
|
|
* -------------+--------------|------------+---------------
|
|
* (b) >= 6394 | >= 12788 | 3 | 256 bit
|
|
* (b) >= 3747 | >= 7494 | 3 | 192 bit
|
|
* (b) >= 1345 | >= 2690 | 4 | 128 bit
|
|
* (b) >= 1080 | >= 2160 | 5 | 128 bit
|
|
* (b) >= 852 | >= 1704 | 5 | 112 bit
|
|
* (b) >= 476 | >= 952 | 5 | 80 bit
|
|
* (b) >= 400 | >= 800 | 6 | 80 bit
|
|
* (b) >= 347 | >= 694 | 7 | 80 bit
|
|
* (b) >= 308 | >= 616 | 8 | 80 bit
|
|
* (b) >= 55 | >= 110 | 27 | 64 bit
|
|
* (b) >= 6 | >= 12 | 34 | 64 bit
|
|
*/
|
|
|
|
# define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
|
|
(b) >= 1345 ? 4 : \
|
|
(b) >= 476 ? 5 : \
|
|
(b) >= 400 ? 6 : \
|
|
(b) >= 347 ? 7 : \
|
|
(b) >= 308 ? 8 : \
|
|
(b) >= 55 ? 27 : \
|
|
/* b >= 6 */ 34)
|
|
|
|
# define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
|
|
|
|
int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
|
|
int BN_is_zero(const BIGNUM *a);
|
|
int BN_is_one(const BIGNUM *a);
|
|
int BN_is_word(const BIGNUM *a, const BN_ULONG w);
|
|
int BN_is_odd(const BIGNUM *a);
|
|
|
|
# define BN_one(a) (BN_set_word((a),1))
|
|
|
|
void BN_zero_ex(BIGNUM *a);
|
|
|
|
# if OPENSSL_API_COMPAT >= 0x00908000L
|
|
# define BN_zero(a) BN_zero_ex(a)
|
|
# else
|
|
# define BN_zero(a) (BN_set_word((a),0))
|
|
# endif
|
|
|
|
const BIGNUM *BN_value_one(void);
|
|
char *BN_options(void);
|
|
BN_CTX *BN_CTX_new(void);
|
|
BN_CTX *BN_CTX_secure_new(void);
|
|
void BN_CTX_free(BN_CTX *c);
|
|
void BN_CTX_start(BN_CTX *ctx);
|
|
BIGNUM *BN_CTX_get(BN_CTX *ctx);
|
|
void BN_CTX_end(BN_CTX *ctx);
|
|
int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
|
int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
|
int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
|
|
int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range);
|
|
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
|
int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
|
|
int BN_num_bits(const BIGNUM *a);
|
|
int BN_num_bits_word(BN_ULONG l);
|
|
int BN_security_bits(int L, int N);
|
|
BIGNUM *BN_new(void);
|
|
BIGNUM *BN_secure_new(void);
|
|
void BN_clear_free(BIGNUM *a);
|
|
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
|
|
void BN_swap(BIGNUM *a, BIGNUM *b);
|
|
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
|
|
int BN_bn2bin(const BIGNUM *a, unsigned char *to);
|
|
int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
|
|
BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
|
|
int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
|
|
BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
|
|
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
|
|
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
|
int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
|
int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
|
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
|
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
|
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
|
|
/** BN_set_negative sets sign of a BIGNUM
|
|
* \param b pointer to the BIGNUM object
|
|
* \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
|
|
*/
|
|
void BN_set_negative(BIGNUM *b, int n);
|
|
/** BN_is_negative returns 1 if the BIGNUM is negative
|
|
* \param b pointer to the BIGNUM object
|
|
* \return 1 if a < 0 and 0 otherwise
|
|
*/
|
|
int BN_is_negative(const BIGNUM *b);
|
|
|
|
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
|
|
BN_CTX *ctx);
|
|
# define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
|
|
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
|
|
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
|
BN_CTX *ctx);
|
|
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *m);
|
|
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
|
BN_CTX *ctx);
|
|
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *m);
|
|
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
|
BN_CTX *ctx);
|
|
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
|
|
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
|
|
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
|
|
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
|
|
BN_CTX *ctx);
|
|
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
|
|
|
|
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
|
|
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
|
|
int BN_mul_word(BIGNUM *a, BN_ULONG w);
|
|
int BN_add_word(BIGNUM *a, BN_ULONG w);
|
|
int BN_sub_word(BIGNUM *a, BN_ULONG w);
|
|
int BN_set_word(BIGNUM *a, BN_ULONG w);
|
|
BN_ULONG BN_get_word(const BIGNUM *a);
|
|
|
|
int BN_cmp(const BIGNUM *a, const BIGNUM *b);
|
|
void BN_free(BIGNUM *a);
|
|
int BN_is_bit_set(const BIGNUM *a, int n);
|
|
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
|
|
int BN_lshift1(BIGNUM *r, const BIGNUM *a);
|
|
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
|
|
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx);
|
|
int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
|
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *in_mont);
|
|
int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
|
int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
|
|
const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
|
|
BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
|
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx);
|
|
|
|
int BN_mask_bits(BIGNUM *a, int n);
|
|
# ifndef OPENSSL_NO_STDIO
|
|
int BN_print_fp(FILE *fp, const BIGNUM *a);
|
|
# endif
|
|
int BN_print(BIO *bio, const BIGNUM *a);
|
|
int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
|
|
int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
|
|
int BN_rshift1(BIGNUM *r, const BIGNUM *a);
|
|
void BN_clear(BIGNUM *a);
|
|
BIGNUM *BN_dup(const BIGNUM *a);
|
|
int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
|
|
int BN_set_bit(BIGNUM *a, int n);
|
|
int BN_clear_bit(BIGNUM *a, int n);
|
|
char *BN_bn2hex(const BIGNUM *a);
|
|
char *BN_bn2dec(const BIGNUM *a);
|
|
int BN_hex2bn(BIGNUM **a, const char *str);
|
|
int BN_dec2bn(BIGNUM **a, const char *str);
|
|
int BN_asc2bn(BIGNUM **a, const char *str);
|
|
int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
|
int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns
|
|
* -2 for
|
|
* error */
|
|
BIGNUM *BN_mod_inverse(BIGNUM *ret,
|
|
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
|
|
BIGNUM *BN_mod_sqrt(BIGNUM *ret,
|
|
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
|
|
|
|
void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
|
|
|
|
/* Deprecated versions */
|
|
DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
|
|
const BIGNUM *add,
|
|
const BIGNUM *rem,
|
|
void (*callback) (int, int,
|
|
void *),
|
|
void *cb_arg))
|
|
DEPRECATEDIN_0_9_8(int
|
|
BN_is_prime(const BIGNUM *p, int nchecks,
|
|
void (*callback) (int, int, void *),
|
|
BN_CTX *ctx, void *cb_arg))
|
|
DEPRECATEDIN_0_9_8(int
|
|
BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
|
|
void (*callback) (int, int, void *),
|
|
BN_CTX *ctx, void *cb_arg,
|
|
int do_trial_division))
|
|
|
|
/* Newer versions */
|
|
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
|
|
const BIGNUM *rem, BN_GENCB *cb);
|
|
int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
|
|
int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
|
|
int do_trial_division, BN_GENCB *cb);
|
|
|
|
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
|
|
|
|
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
|
const BIGNUM *Xp, const BIGNUM *Xp1,
|
|
const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
|
|
BN_GENCB *cb);
|
|
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1,
|
|
BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e,
|
|
BN_CTX *ctx, BN_GENCB *cb);
|
|
|
|
BN_MONT_CTX *BN_MONT_CTX_new(void);
|
|
int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
BN_MONT_CTX *mont, BN_CTX *ctx);
|
|
int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
|
|
BN_CTX *ctx);
|
|
int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
|
|
BN_CTX *ctx);
|
|
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
|
|
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
|
|
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
|
|
BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
|
|
const BIGNUM *mod, BN_CTX *ctx);
|
|
|
|
/* BN_BLINDING flags */
|
|
# define BN_BLINDING_NO_UPDATE 0x00000001
|
|
# define BN_BLINDING_NO_RECREATE 0x00000002
|
|
|
|
BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
|
|
void BN_BLINDING_free(BN_BLINDING *b);
|
|
int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
|
|
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
|
|
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
|
|
int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
|
|
int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
|
|
BN_CTX *);
|
|
|
|
int BN_BLINDING_is_current_thread(BN_BLINDING *b);
|
|
void BN_BLINDING_set_current_thread(BN_BLINDING *b);
|
|
int BN_BLINDING_lock(BN_BLINDING *b);
|
|
int BN_BLINDING_unlock(BN_BLINDING *b);
|
|
|
|
unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
|
|
void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
|
|
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
|
|
const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
|
|
int (*bn_mod_exp) (BIGNUM *r,
|
|
const BIGNUM *a,
|
|
const BIGNUM *p,
|
|
const BIGNUM *m,
|
|
BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx),
|
|
BN_MONT_CTX *m_ctx);
|
|
|
|
DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont))
|
|
DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3
|
|
* mont */
|
|
|
|
BN_RECP_CTX *BN_RECP_CTX_new(void);
|
|
void BN_RECP_CTX_free(BN_RECP_CTX *recp);
|
|
int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
|
|
int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
|
|
BN_RECP_CTX *recp, BN_CTX *ctx);
|
|
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx);
|
|
int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
|
|
BN_RECP_CTX *recp, BN_CTX *ctx);
|
|
|
|
# ifndef OPENSSL_NO_EC2M
|
|
|
|
/*
|
|
* Functions for arithmetic over binary polynomials represented by BIGNUMs.
|
|
* The BIGNUM::neg property of BIGNUMs representing binary polynomials is
|
|
* ignored. Note that input arguments are not const so that their bit arrays
|
|
* can be expanded to the appropriate size if needed.
|
|
*/
|
|
|
|
/*
|
|
* r = a + b
|
|
*/
|
|
int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
|
# define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
|
|
/*
|
|
* r=a mod p
|
|
*/
|
|
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p);
|
|
/* r = (a * b) mod p */
|
|
int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx);
|
|
/* r = (a * a) mod p */
|
|
int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
/* r = (1 / b) mod p */
|
|
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx);
|
|
/* r = (a / b) mod p */
|
|
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx);
|
|
/* r = (a ^ b) mod p */
|
|
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx);
|
|
/* r = sqrt(a) mod p */
|
|
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
BN_CTX *ctx);
|
|
/* r^2 + r = a mod p */
|
|
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
BN_CTX *ctx);
|
|
# define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
|
|
/*-
|
|
* Some functions allow for representation of the irreducible polynomials
|
|
* as an unsigned int[], say p. The irreducible f(t) is then of the form:
|
|
* t^p[0] + t^p[1] + ... + t^p[k]
|
|
* where m = p[0] > p[1] > ... > p[k] = 0.
|
|
*/
|
|
/* r = a mod p */
|
|
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
|
|
/* r = (a * b) mod p */
|
|
int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx);
|
|
/* r = (a * a) mod p */
|
|
int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
|
BN_CTX *ctx);
|
|
/* r = (1 / b) mod p */
|
|
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
|
|
BN_CTX *ctx);
|
|
/* r = (a / b) mod p */
|
|
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx);
|
|
/* r = (a ^ b) mod p */
|
|
int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx);
|
|
/* r = sqrt(a) mod p */
|
|
int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
|
|
const int p[], BN_CTX *ctx);
|
|
/* r^2 + r = a mod p */
|
|
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
|
|
const int p[], BN_CTX *ctx);
|
|
int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
|
|
int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
|
|
|
|
# endif
|
|
|
|
/*
|
|
* faster mod functions for the 'NIST primes' 0 <= a < p^2
|
|
*/
|
|
int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
|
|
|
const BIGNUM *BN_get0_nist_prime_192(void);
|
|
const BIGNUM *BN_get0_nist_prime_224(void);
|
|
const BIGNUM *BN_get0_nist_prime_256(void);
|
|
const BIGNUM *BN_get0_nist_prime_384(void);
|
|
const BIGNUM *BN_get0_nist_prime_521(void);
|
|
|
|
int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *field, BN_CTX *ctx);
|
|
|
|
int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
|
|
const BIGNUM *priv, const unsigned char *message,
|
|
size_t message_len, BN_CTX *ctx);
|
|
|
|
/* Primes from RFC 2409 */
|
|
BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
|
|
BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
|
|
|
|
/* Primes from RFC 3526 */
|
|
BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
|
|
BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
|
|
BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
|
|
BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
|
|
BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
|
|
BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
|
|
|
|
# if OPENSSL_API_COMPAT < 0x10100000L
|
|
# define get_rfc2409_prime_768 BN_get_rfc2409_prime_768
|
|
# define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024
|
|
# define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536
|
|
# define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048
|
|
# define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072
|
|
# define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096
|
|
# define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144
|
|
# define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192
|
|
# endif
|
|
|
|
int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
|
|
|
|
|
# ifdef __cplusplus
|
|
}
|
|
# endif
|
|
#endif
|