moonlight-qt/app/streaming/video/ffmpeg.cpp
2023-07-05 19:47:45 -05:00

1412 lines
50 KiB
C++

#include <Limelight.h>
#include "ffmpeg.h"
#include "streaming/streamutils.h"
#include "streaming/session.h"
#include <h264_stream.h>
#include "ffmpeg-renderers/sdlvid.h"
#ifdef Q_OS_WIN32
#include "ffmpeg-renderers/dxva2.h"
#include "ffmpeg-renderers/d3d11va.h"
#endif
#ifdef Q_OS_DARWIN
#include "ffmpeg-renderers/vt.h"
#endif
#ifdef HAVE_LIBVA
#include "ffmpeg-renderers/vaapi.h"
#endif
#ifdef HAVE_LIBVDPAU
#include "ffmpeg-renderers/vdpau.h"
#endif
#ifdef HAVE_MMAL
#include "ffmpeg-renderers/mmal.h"
#endif
#ifdef HAVE_DRM
#include "ffmpeg-renderers/drm.h"
#endif
#ifdef HAVE_EGL
#include "ffmpeg-renderers/eglvid.h"
#endif
#ifdef HAVE_CUDA
#include "ffmpeg-renderers/cuda.h"
#endif
// This is gross but it allows us to use sizeof()
#include "ffmpeg_videosamples.cpp"
#define MAX_SPS_EXTRA_SIZE 16
#define FAILED_DECODES_RESET_THRESHOLD 20
typedef struct {
const char* codec;
int capabilities;
} codec_info_t;
static const QList<codec_info_t> k_NonHwaccelH264Codecs = {
#ifdef HAVE_MMAL
{"h264_mmal", 0},
#endif
{"h264_rkmpp", 0},
{"h264_nvv4l2", 0},
{"h264_nvmpi", 0},
#ifndef HAVE_MMAL
// Only enable V4L2M2M by default on non-MMAL (RPi) builds. The performance
// of the V4L2M2M wrapper around MMAL is not enough for 1080p 60 FPS, so we
// would rather show the missing hardware acceleration warning when the user
// is in Full KMS mode rather than try to use a poorly performing hwaccel.
// See discussion on https://github.com/jc-kynesim/rpi-ffmpeg/pull/25
{"h264_v4l2m2m", 0},
#endif
{"h264_omx", 0},
};
static const QList<codec_info_t> k_NonHwaccelHEVCCodecs = {
{"hevc_rkmpp", 0},
{"hevc_nvv4l2", CAPABILITY_REFERENCE_FRAME_INVALIDATION_HEVC},
{"hevc_nvmpi", 0},
{"hevc_v4l2m2m", 0},
{"hevc_omx", 0},
};
static const QList<codec_info_t> k_NonHwaccelAV1Codecs = {
};
bool FFmpegVideoDecoder::isHardwareAccelerated()
{
return m_HwDecodeCfg != nullptr ||
(m_VideoDecoderCtx->codec->capabilities & AV_CODEC_CAP_HARDWARE) != 0;
}
bool FFmpegVideoDecoder::isAlwaysFullScreen()
{
return m_FrontendRenderer->getRendererAttributes() & RENDERER_ATTRIBUTE_FULLSCREEN_ONLY;
}
bool FFmpegVideoDecoder::isHdrSupported()
{
return m_FrontendRenderer->getRendererAttributes() & RENDERER_ATTRIBUTE_HDR_SUPPORT;
}
void FFmpegVideoDecoder::setHdrMode(bool enabled)
{
m_FrontendRenderer->setHdrMode(enabled);
}
int FFmpegVideoDecoder::getDecoderCapabilities()
{
bool ok;
int capabilities = qEnvironmentVariableIntValue("DECODER_CAPS", &ok);
if (ok) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using decoder capability override: 0x%x",
capabilities);
}
else {
// Start with the backend renderer's capabilities
capabilities = m_BackendRenderer->getDecoderCapabilities();
if (!isHardwareAccelerated()) {
// Slice up to 4 times for parallel CPU decoding, once slice per core
int slices = qMin(MAX_SLICES, SDL_GetCPUCount());
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Encoder configured for %d slices per frame",
slices);
capabilities |= CAPABILITY_SLICES_PER_FRAME(slices);
// Enable HEVC RFI when using the FFmpeg software decoder
capabilities |= CAPABILITY_REFERENCE_FRAME_INVALIDATION_HEVC;
}
else if (m_HwDecodeCfg == nullptr) {
// We have a non-hwaccel hardware decoder. This will always
// be using SDLRenderer/DrmRenderer so we will pick decoder
// capabilities based on the decoder name.
for (const codec_info_t& codecInfo : k_NonHwaccelH264Codecs) {
if (strcmp(m_VideoDecoderCtx->codec->name, codecInfo.codec) == 0) {
capabilities = codecInfo.capabilities;
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Found capabilities for non-hwaccel H.264 decoder: %s -> %d",
m_VideoDecoderCtx->codec->name,
capabilities);
break;
}
}
for (const codec_info_t& codecInfo : k_NonHwaccelHEVCCodecs) {
if (strcmp(m_VideoDecoderCtx->codec->name, codecInfo.codec) == 0) {
capabilities = codecInfo.capabilities;
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Found capabilities for non-hwaccel HEVC decoder: %s -> %d",
m_VideoDecoderCtx->codec->name,
capabilities);
break;
}
}
}
}
// We use our own decoder thread with the "pull" model. This cannot
// be overridden using the by the user because it is critical to
// our operation.
capabilities |= CAPABILITY_PULL_RENDERER;
return capabilities;
}
int FFmpegVideoDecoder::getDecoderColorspace()
{
return m_FrontendRenderer->getDecoderColorspace();
}
int FFmpegVideoDecoder::getDecoderColorRange()
{
return m_FrontendRenderer->getDecoderColorRange();
}
QSize FFmpegVideoDecoder::getDecoderMaxResolution()
{
if (m_BackendRenderer->getRendererAttributes() & RENDERER_ATTRIBUTE_1080P_MAX) {
return QSize(1920, 1080);
}
else {
// No known maximum
return QSize(0, 0);
}
}
enum AVPixelFormat FFmpegVideoDecoder::ffGetFormat(AVCodecContext* context,
const enum AVPixelFormat* pixFmts)
{
FFmpegVideoDecoder* decoder = (FFmpegVideoDecoder*)context->opaque;
const enum AVPixelFormat *p;
for (p = pixFmts; *p != -1; p++) {
// Only match our hardware decoding codec or preferred SW pixel
// format (if not using hardware decoding). It's crucial
// to override the default get_format() which will try
// to gracefully fall back to software decode and break us.
if (*p == (decoder->m_HwDecodeCfg ? decoder->m_HwDecodeCfg->pix_fmt : context->pix_fmt) &&
decoder->m_BackendRenderer->prepareDecoderContextInGetFormat(context, *p)) {
return *p;
}
}
// Failed to match the preferred pixel formats. Try non-preferred options for non-hwaccel decoders.
if (decoder->m_HwDecodeCfg == nullptr) {
for (p = pixFmts; *p != -1; p++) {
if (decoder->m_FrontendRenderer->isPixelFormatSupported(decoder->m_VideoFormat, *p) &&
decoder->m_BackendRenderer->prepareDecoderContextInGetFormat(context, *p)) {
return *p;
}
}
}
return AV_PIX_FMT_NONE;
}
FFmpegVideoDecoder::FFmpegVideoDecoder(bool testOnly)
: m_Pkt(av_packet_alloc()),
m_VideoDecoderCtx(nullptr),
m_DecodeBuffer(1024 * 1024, 0),
m_HwDecodeCfg(nullptr),
m_BackendRenderer(nullptr),
m_FrontendRenderer(nullptr),
m_ConsecutiveFailedDecodes(0),
m_Pacer(nullptr),
m_FramesIn(0),
m_FramesOut(0),
m_LastFrameNumber(0),
m_StreamFps(0),
m_VideoFormat(0),
m_NeedsSpsFixup(false),
m_TestOnly(testOnly),
m_DecoderThread(nullptr)
{
SDL_zero(m_ActiveWndVideoStats);
SDL_zero(m_LastWndVideoStats);
SDL_zero(m_GlobalVideoStats);
SDL_AtomicSet(&m_DecoderThreadShouldQuit, 0);
// Use linear filtering when renderer scaling is required
SDL_SetHint(SDL_HINT_RENDER_SCALE_QUALITY, "1");
}
FFmpegVideoDecoder::~FFmpegVideoDecoder()
{
reset();
// Set log level back to default.
// NB: We don't do this in reset() because we want
// to preserve the log level across reset() during
// test initialization.
av_log_set_level(AV_LOG_INFO);
av_packet_free(&m_Pkt);
}
IFFmpegRenderer* FFmpegVideoDecoder::getBackendRenderer()
{
return m_BackendRenderer;
}
void FFmpegVideoDecoder::reset()
{
// Terminate the decoder thread before doing anything else.
// It might be touching things we're about to free.
if (m_DecoderThread != nullptr) {
SDL_AtomicSet(&m_DecoderThreadShouldQuit, 1);
LiWakeWaitForVideoFrame();
SDL_WaitThread(m_DecoderThread, NULL);
SDL_AtomicSet(&m_DecoderThreadShouldQuit, 0);
m_DecoderThread = nullptr;
}
m_FramesIn = m_FramesOut = 0;
m_FrameInfoQueue.clear();
delete m_Pacer;
m_Pacer = nullptr;
// This must be called after deleting Pacer because it
// may be holding AVFrames to free in its destructor.
// However, it must be called before deleting the IFFmpegRenderer
// since the codec context may be referencing objects that we
// need to delete in the renderer destructor.
avcodec_free_context(&m_VideoDecoderCtx);
if (!m_TestOnly) {
Session::get()->getOverlayManager().setOverlayRenderer(nullptr);
}
// If we have a separate frontend renderer, free that first
if (m_FrontendRenderer != m_BackendRenderer) {
delete m_FrontendRenderer;
}
delete m_BackendRenderer;
m_FrontendRenderer = m_BackendRenderer = nullptr;
if (!m_TestOnly) {
logVideoStats(m_GlobalVideoStats, "Global video stats");
}
else {
// Test-only decoders can't have any frames submitted
SDL_assert(m_GlobalVideoStats.totalFrames == 0);
}
}
bool FFmpegVideoDecoder::createFrontendRenderer(PDECODER_PARAMETERS params, bool useAlternateFrontend)
{
if (useAlternateFrontend) {
#ifdef HAVE_DRM
// If we're trying to stream HDR, we need to use the DRM renderer in direct
// rendering mode so it can set the HDR metadata on the display. EGL does
// not currently support this (and even if it did, Mesa and Wayland don't
// currently have protocols to actually get that metadata to the display).
if ((params->videoFormat & VIDEO_FORMAT_MASK_10BIT) && m_BackendRenderer->canExportDrmPrime()) {
m_FrontendRenderer = new DrmRenderer(false, m_BackendRenderer);
if (m_FrontendRenderer->initialize(params)) {
return true;
}
delete m_FrontendRenderer;
m_FrontendRenderer = nullptr;
}
#endif
#if defined(HAVE_EGL) && !defined(GL_IS_SLOW)
if (m_BackendRenderer->canExportEGL()) {
m_FrontendRenderer = new EGLRenderer(m_BackendRenderer);
if (m_FrontendRenderer->initialize(params)) {
return true;
}
delete m_FrontendRenderer;
m_FrontendRenderer = nullptr;
}
#endif
// If we made it here, we failed to create the EGLRenderer
return false;
}
if (m_BackendRenderer->isDirectRenderingSupported()) {
// The backend renderer can render to the display
m_FrontendRenderer = m_BackendRenderer;
}
else {
// The backend renderer cannot directly render to the display, so
// we will create an SDL or DRM renderer to draw the frames.
#ifdef GL_IS_SLOW
#ifdef HAVE_DRM
m_FrontendRenderer = new DrmRenderer(false, m_BackendRenderer);
if (m_FrontendRenderer->initialize(params)) {
return true;
}
delete m_FrontendRenderer;
m_FrontendRenderer = nullptr;
#endif
#ifdef HAVE_EGL
// We explicitly skipped EGL in the GL_IS_SLOW case above.
// If DRM didn't work either, try EGL now.
if (m_BackendRenderer->canExportEGL()) {
m_FrontendRenderer = new EGLRenderer(m_BackendRenderer);
if (m_FrontendRenderer->initialize(params)) {
return true;
}
delete m_FrontendRenderer;
m_FrontendRenderer = nullptr;
}
#endif
#endif
m_FrontendRenderer = new SdlRenderer();
if (!m_FrontendRenderer->initialize(params)) {
return false;
}
}
return true;
}
bool FFmpegVideoDecoder::completeInitialization(const AVCodec* decoder, PDECODER_PARAMETERS params, bool testFrame, bool useAlternateFrontend)
{
// In test-only mode, we should only see test frames
SDL_assert(!m_TestOnly || testFrame);
// Create the frontend renderer based on the capabilities of the backend renderer
if (!createFrontendRenderer(params, useAlternateFrontend)) {
return false;
}
m_StreamFps = params->frameRate;
m_VideoFormat = params->videoFormat;
// Don't bother initializing Pacer if we're not actually going to render
if (!testFrame) {
m_Pacer = new Pacer(m_FrontendRenderer, &m_ActiveWndVideoStats);
if (!m_Pacer->initialize(params->window, params->frameRate,
params->enableFramePacing || (params->enableVsync && (m_FrontendRenderer->getRendererAttributes() & RENDERER_ATTRIBUTE_FORCE_PACING)))) {
return false;
}
}
m_VideoDecoderCtx = avcodec_alloc_context3(decoder);
if (!m_VideoDecoderCtx) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Unable to allocate video decoder context");
return false;
}
// Always request low delay decoding
m_VideoDecoderCtx->flags |= AV_CODEC_FLAG_LOW_DELAY;
// Allow display of corrupt frames and frames missing references
m_VideoDecoderCtx->flags |= AV_CODEC_FLAG_OUTPUT_CORRUPT;
m_VideoDecoderCtx->flags2 |= AV_CODEC_FLAG2_SHOW_ALL;
// Report decoding errors to allow us to request a key frame
//
// With HEVC streams, FFmpeg can drop a frame (hwaccel->start_frame() fails)
// without telling us. Since we have an infinite GOP length, this causes artifacts
// on screen that persist for a long time. It's easy to cause this condition
// by using NVDEC and delaying 100 ms randomly in the render path so the decoder
// runs out of output buffers.
m_VideoDecoderCtx->err_recognition = AV_EF_EXPLODE;
// Enable slice multi-threading for software decoding
if (!isHardwareAccelerated()) {
m_VideoDecoderCtx->thread_type = FF_THREAD_SLICE;
m_VideoDecoderCtx->thread_count = qMin(MAX_SLICES, SDL_GetCPUCount());
}
else {
// No threading for HW decode
m_VideoDecoderCtx->thread_count = 1;
}
// Setup decoding parameters
m_VideoDecoderCtx->width = params->width;
m_VideoDecoderCtx->height = params->height;
m_VideoDecoderCtx->pix_fmt = m_FrontendRenderer->getPreferredPixelFormat(params->videoFormat);
m_VideoDecoderCtx->get_format = ffGetFormat;
AVDictionary* options = nullptr;
// Allow the backend renderer to attach data to this decoder
if (!m_BackendRenderer->prepareDecoderContext(m_VideoDecoderCtx, &options)) {
return false;
}
// Nobody must override our ffGetFormat
SDL_assert(m_VideoDecoderCtx->get_format == ffGetFormat);
// Stash a pointer to this object in the context
SDL_assert(m_VideoDecoderCtx->opaque == nullptr);
m_VideoDecoderCtx->opaque = this;
int err = avcodec_open2(m_VideoDecoderCtx, decoder, &options);
av_dict_free(&options);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Unable to open decoder for format: %x",
params->videoFormat);
return false;
}
// FFMpeg doesn't completely initialize the codec until the codec
// config data comes in. This would be too late for us to change
// our minds on the selected video codec, so we'll do a trial run
// now to see if things will actually work when the video stream
// comes in.
if (testFrame) {
switch (params->videoFormat) {
case VIDEO_FORMAT_H264:
m_Pkt->data = (uint8_t*)k_H264TestFrame;
m_Pkt->size = sizeof(k_H264TestFrame);
break;
case VIDEO_FORMAT_H265:
m_Pkt->data = (uint8_t*)k_HEVCMainTestFrame;
m_Pkt->size = sizeof(k_HEVCMainTestFrame);
break;
case VIDEO_FORMAT_H265_MAIN10:
m_Pkt->data = (uint8_t*)k_HEVCMain10TestFrame;
m_Pkt->size = sizeof(k_HEVCMain10TestFrame);
break;
case VIDEO_FORMAT_AV1_MAIN8:
m_Pkt->data = (uint8_t*)k_AV1Main8TestFrame;
m_Pkt->size = sizeof(k_AV1Main8TestFrame);
break;
case VIDEO_FORMAT_AV1_MAIN10:
m_Pkt->data = (uint8_t*)k_AV1Main10TestFrame;
m_Pkt->size = sizeof(k_AV1Main10TestFrame);
break;
default:
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"No test frame for format: %x",
params->videoFormat);
return false;
}
AVFrame* frame = av_frame_alloc();
if (!frame) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to allocate frame");
return false;
}
// Some decoders won't output on the first frame, so we'll submit
// a few test frames if we get an EAGAIN error.
for (int retries = 0; retries < 5; retries++) {
// Most FFmpeg decoders process input using a "push" model.
// We'll see those fail here if the format is not supported.
err = avcodec_send_packet(m_VideoDecoderCtx, m_Pkt);
if (err < 0) {
av_frame_free(&frame);
char errorstring[512];
av_strerror(err, errorstring, sizeof(errorstring));
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Test decode failed (avcodec_send_packet): %s", errorstring);
return false;
}
// A few FFmpeg decoders (h264_mmal) process here using a "pull" model.
// Those decoders will fail here if the format is not supported.
err = avcodec_receive_frame(m_VideoDecoderCtx, frame);
if (err == AVERROR(EAGAIN)) {
// Wait a little while to let the hardware work
SDL_Delay(100);
}
else {
// Done!
break;
}
}
if (err < 0) {
char errorstring[512];
av_strerror(err, errorstring, sizeof(errorstring));
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Test decode failed (avcodec_receive_frame): %s", errorstring);
av_frame_free(&frame);
return false;
}
// Allow the renderer to do any validation it wants on this frame
if (!m_FrontendRenderer->testRenderFrame(frame)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Test decode failed (testRenderFrame)");
av_frame_free(&frame);
return false;
}
av_frame_free(&frame);
}
else {
if ((params->videoFormat & VIDEO_FORMAT_MASK_H264) &&
!(m_BackendRenderer->getDecoderCapabilities() & CAPABILITY_REFERENCE_FRAME_INVALIDATION_AVC)) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Using H.264 SPS fixup");
m_NeedsSpsFixup = true;
}
else {
m_NeedsSpsFixup = false;
}
// Tell overlay manager to use this frontend renderer
Session::get()->getOverlayManager().setOverlayRenderer(m_FrontendRenderer);
// Only create the decoder thread when instantiating the decoder for real. It will use APIs from
// moonlight-common-c that can only be legally called with an established connection.
m_DecoderThread = SDL_CreateThread(FFmpegVideoDecoder::decoderThreadProcThunk, "FFDecoder", (void*)this);
if (m_DecoderThread == nullptr) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to create decoder thread: %s", SDL_GetError());
return false;
}
}
return true;
}
void FFmpegVideoDecoder::addVideoStats(VIDEO_STATS& src, VIDEO_STATS& dst)
{
dst.receivedFrames += src.receivedFrames;
dst.decodedFrames += src.decodedFrames;
dst.renderedFrames += src.renderedFrames;
dst.totalFrames += src.totalFrames;
dst.networkDroppedFrames += src.networkDroppedFrames;
dst.pacerDroppedFrames += src.pacerDroppedFrames;
dst.totalReassemblyTime += src.totalReassemblyTime;
dst.totalDecodeTime += src.totalDecodeTime;
dst.totalPacerTime += src.totalPacerTime;
dst.totalRenderTime += src.totalRenderTime;
if (!LiGetEstimatedRttInfo(&dst.lastRtt, &dst.lastRttVariance)) {
dst.lastRtt = 0;
dst.lastRttVariance = 0;
}
else {
// Our logic to determine if RTT is valid depends on us never
// getting an RTT of 0. ENet currently ensures RTTs are >= 1.
SDL_assert(dst.lastRtt > 0);
}
Uint32 now = SDL_GetTicks();
// Initialize the measurement start point if this is the first video stat window
if (!dst.measurementStartTimestamp) {
dst.measurementStartTimestamp = src.measurementStartTimestamp;
}
// The following code assumes the global measure was already started first
SDL_assert(dst.measurementStartTimestamp <= src.measurementStartTimestamp);
dst.totalFps = (float)dst.totalFrames / ((float)(now - dst.measurementStartTimestamp) / 1000);
dst.receivedFps = (float)dst.receivedFrames / ((float)(now - dst.measurementStartTimestamp) / 1000);
dst.decodedFps = (float)dst.decodedFrames / ((float)(now - dst.measurementStartTimestamp) / 1000);
dst.renderedFps = (float)dst.renderedFrames / ((float)(now - dst.measurementStartTimestamp) / 1000);
}
void FFmpegVideoDecoder::stringifyVideoStats(VIDEO_STATS& stats, char* output)
{
int offset = 0;
const char* codecString;
// Start with an empty string
output[offset] = 0;
switch (m_VideoFormat)
{
case VIDEO_FORMAT_H264:
codecString = "H.264";
break;
case VIDEO_FORMAT_H265:
codecString = "HEVC";
break;
case VIDEO_FORMAT_H265_MAIN10:
if (LiGetCurrentHostDisplayHdrMode()) {
codecString = "HEVC Main 10 HDR";
}
else {
codecString = "HEVC Main 10 SDR";
}
break;
case VIDEO_FORMAT_AV1_MAIN8:
codecString = "AV1";
break;
case VIDEO_FORMAT_AV1_MAIN10:
if (LiGetCurrentHostDisplayHdrMode()) {
codecString = "AV1 10-bit HDR";
}
else {
codecString = "AV1 10-bit SDR";
}
break;
default:
SDL_assert(false);
codecString = "UNKNOWN";
break;
}
if (stats.receivedFps > 0) {
if (m_VideoDecoderCtx != nullptr) {
offset += sprintf(&output[offset],
"Video stream: %dx%d %.2f FPS (Codec: %s)\n",
m_VideoDecoderCtx->width,
m_VideoDecoderCtx->height,
stats.totalFps,
codecString);
}
offset += sprintf(&output[offset],
"Incoming frame rate from network: %.2f FPS\n"
"Decoding frame rate: %.2f FPS\n"
"Rendering frame rate: %.2f FPS\n",
stats.receivedFps,
stats.decodedFps,
stats.renderedFps);
}
if (stats.renderedFrames != 0) {
char rttString[32];
if (stats.lastRtt != 0) {
sprintf(rttString, "%u ms (variance: %u ms)", stats.lastRtt, stats.lastRttVariance);
}
else {
sprintf(rttString, "N/A");
}
offset += sprintf(&output[offset],
"Frames dropped by your network connection: %.2f%%\n"
"Frames dropped due to network jitter: %.2f%%\n"
"Average network latency: %s\n"
"Average decoding time: %.2f ms\n"
"Average frame queue delay: %.2f ms\n"
"Average rendering time (including monitor V-sync latency): %.2f ms\n",
(float)stats.networkDroppedFrames / stats.totalFrames * 100,
(float)stats.pacerDroppedFrames / stats.decodedFrames * 100,
rttString,
(float)stats.totalDecodeTime / stats.decodedFrames,
(float)stats.totalPacerTime / stats.renderedFrames,
(float)stats.totalRenderTime / stats.renderedFrames);
}
}
void FFmpegVideoDecoder::logVideoStats(VIDEO_STATS& stats, const char* title)
{
if (stats.renderedFps > 0 || stats.renderedFrames != 0) {
char videoStatsStr[512];
stringifyVideoStats(stats, videoStatsStr);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"%s", title);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"----------------------------------------------------------\n%s",
videoStatsStr);
}
}
IFFmpegRenderer* FFmpegVideoDecoder::createHwAccelRenderer(const AVCodecHWConfig* hwDecodeCfg, int pass)
{
if (!(hwDecodeCfg->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX)) {
return nullptr;
}
// First pass using our top-tier hwaccel implementations
if (pass == 0) {
switch (hwDecodeCfg->device_type) {
#ifdef Q_OS_WIN32
// DXVA2 appears in the hwaccel list before D3D11VA, so we will prefer it.
//
// There is logic in DXVA2 that may elect to fail on the first selection pass
// to allow D3D11VA to be used in cases where it is known to be better.
case AV_HWDEVICE_TYPE_DXVA2:
return new DXVA2Renderer(pass);
case AV_HWDEVICE_TYPE_D3D11VA:
return new D3D11VARenderer(pass);
#endif
#ifdef Q_OS_DARWIN
case AV_HWDEVICE_TYPE_VIDEOTOOLBOX:
return VTRendererFactory::createRenderer();
#endif
#ifdef HAVE_LIBVA
case AV_HWDEVICE_TYPE_VAAPI:
return new VAAPIRenderer(pass);
#endif
#ifdef HAVE_LIBVDPAU
case AV_HWDEVICE_TYPE_VDPAU:
return new VDPAURenderer();
#endif
#ifdef HAVE_DRM
case AV_HWDEVICE_TYPE_DRM:
return new DrmRenderer(true);
#endif
default:
return nullptr;
}
}
// Second pass for our second-tier hwaccel implementations
else if (pass == 1) {
switch (hwDecodeCfg->device_type) {
#ifdef HAVE_CUDA
case AV_HWDEVICE_TYPE_CUDA:
// CUDA should only be used to cover the NVIDIA+Wayland case
return new CUDARenderer();
#endif
#ifdef Q_OS_WIN32
// This gives DXVA2 and D3D11VA another shot at handling cases where they
// chose to purposefully fail in the first selection pass to allow a more
// optimal decoder to be tried.
case AV_HWDEVICE_TYPE_DXVA2:
return new DXVA2Renderer(pass);
case AV_HWDEVICE_TYPE_D3D11VA:
return new D3D11VARenderer(pass);
#endif
#ifdef HAVE_LIBVA
case AV_HWDEVICE_TYPE_VAAPI:
return new VAAPIRenderer(pass);
#endif
#ifdef HAVE_LIBVDPAU
case AV_HWDEVICE_TYPE_VDPAU:
return new VDPAURenderer();
#endif
default:
return nullptr;
}
}
else {
SDL_assert(false);
return nullptr;
}
}
bool FFmpegVideoDecoder::tryInitializeRenderer(const AVCodec* decoder,
PDECODER_PARAMETERS params,
const AVCodecHWConfig* hwConfig,
std::function<IFFmpegRenderer*()> createRendererFunc)
{
m_HwDecodeCfg = hwConfig;
// i == 0 - Indirect via EGL or DRM frontend with zero-copy DMA-BUF passing
// i == 1 - Direct rendering or indirect via SDL read-back
#ifdef HAVE_EGL
for (int i = 0; i < 2; i++) {
#else
for (int i = 1; i < 2; i++) {
#endif
SDL_assert(m_BackendRenderer == nullptr);
if ((m_BackendRenderer = createRendererFunc()) != nullptr &&
m_BackendRenderer->initialize(params) &&
completeInitialization(decoder, params, m_TestOnly || m_BackendRenderer->needsTestFrame(), i == 0 /* EGL/DRM */)) {
if (m_TestOnly) {
// This decoder is only for testing capabilities, so don't bother
// creating a usable renderer
return true;
}
if (m_BackendRenderer->needsTestFrame()) {
// The test worked, so now let's initialize it for real
reset();
if ((m_BackendRenderer = createRendererFunc()) != nullptr &&
m_BackendRenderer->initialize(params) &&
completeInitialization(decoder, params, false, i == 0 /* EGL/DRM */)) {
return true;
}
else {
SDL_LogCritical(SDL_LOG_CATEGORY_APPLICATION,
"Decoder failed to initialize after successful test");
reset();
}
}
else {
// No test required. Good to go now.
return true;
}
}
else {
// Failed to initialize, so keep looking
reset();
}
}
// reset() must be called before we reach this point!
SDL_assert(m_BackendRenderer == nullptr);
return false;
}
#define TRY_PREFERRED_PIXEL_FORMAT(RENDERER_TYPE) \
{ \
RENDERER_TYPE renderer; \
if (renderer.getPreferredPixelFormat(params->videoFormat) == decoder->pix_fmts[i]) { \
if (tryInitializeRenderer(decoder, params, nullptr, \
[]() -> IFFmpegRenderer* { return new RENDERER_TYPE(); })) { \
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, \
"Chose " #RENDERER_TYPE " for codec %s due to preferred pixel format: 0x%x", \
decoder->name, decoder->pix_fmts[i]); \
return true; \
} \
} \
}
#define TRY_SUPPORTED_NON_PREFERRED_PIXEL_FORMAT(RENDERER_TYPE) \
{ \
RENDERER_TYPE renderer; \
if (decoder->pix_fmts[i] != renderer.getPreferredPixelFormat(params->videoFormat) && \
renderer.isPixelFormatSupported(params->videoFormat, decoder->pix_fmts[i])) { \
if (tryInitializeRenderer(decoder, params, nullptr, \
[]() -> IFFmpegRenderer* { return new RENDERER_TYPE(); })) { \
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, \
"Chose " #RENDERER_TYPE " for codec %s due to compatible pixel format: 0x%x", \
decoder->name, decoder->pix_fmts[i]); \
return true; \
} \
} \
}
bool FFmpegVideoDecoder::tryInitializeRendererForDecoderByName(const char *decoderName,
PDECODER_PARAMETERS params)
{
const AVCodec* decoder = avcodec_find_decoder_by_name(decoderName);
if (decoder == nullptr) {
return false;
}
// This might be a hwaccel decoder, so try any hw configs first
for (int i = 0;; i++) {
const AVCodecHWConfig *config = avcodec_get_hw_config(decoder, i);
if (!config) {
// No remaing hwaccel options
break;
}
// Initialize the hardware codec and submit a test frame if the renderer needs it
if (tryInitializeRenderer(decoder, params, config,
[config]() -> IFFmpegRenderer* { return createHwAccelRenderer(config, 0); })) {
return true;
}
}
if (decoder->pix_fmts == NULL) {
// Supported output pixel formats are unknown. We'll just try DRM/SDL and hope it can cope.
#if defined(HAVE_DRM) && defined(GL_IS_SLOW)
if (tryInitializeRenderer(decoder, params, nullptr,
[]() -> IFFmpegRenderer* { return new DrmRenderer(); })) {
return true;
}
#endif
if (tryInitializeRenderer(decoder, params, nullptr,
[]() -> IFFmpegRenderer* { return new SdlRenderer(); })) {
return true;
}
return false;
}
#ifdef HAVE_MMAL
// HACK: Avoid using YUV420P on h264_mmal. It can cause a deadlock inside the MMAL libraries.
// Even if it didn't completely deadlock us, the performance would likely be atrocious.
if (strcmp(decoderName, "h264_mmal") == 0) {
for (int i = 0; decoder->pix_fmts[i] != AV_PIX_FMT_NONE; i++) {
TRY_PREFERRED_PIXEL_FORMAT(MmalRenderer);
}
for (int i = 0; decoder->pix_fmts[i] != AV_PIX_FMT_NONE; i++) {
TRY_SUPPORTED_NON_PREFERRED_PIXEL_FORMAT(MmalRenderer);
}
// Give up if we can't use MmalRenderer for h264_mmal
return false;
}
#endif
// Check if any of our decoders prefer any of the pixel formats first
for (int i = 0; decoder->pix_fmts[i] != AV_PIX_FMT_NONE; i++) {
#ifdef HAVE_DRM
TRY_PREFERRED_PIXEL_FORMAT(DrmRenderer);
#endif
#ifndef GL_IS_SLOW
TRY_PREFERRED_PIXEL_FORMAT(SdlRenderer);
#endif
}
// Nothing prefers any of them. Let's see if anyone will tolerate one.
for (int i = 0; decoder->pix_fmts[i] != AV_PIX_FMT_NONE; i++) {
#ifdef HAVE_DRM
TRY_SUPPORTED_NON_PREFERRED_PIXEL_FORMAT(DrmRenderer);
#endif
#ifndef GL_IS_SLOW
TRY_SUPPORTED_NON_PREFERRED_PIXEL_FORMAT(SdlRenderer);
#endif
}
#ifdef GL_IS_SLOW
// If we got here with GL_IS_SLOW, DrmRenderer didn't work, so we have
// to resort to SdlRenderer.
for (int i = 0; decoder->pix_fmts[i] != AV_PIX_FMT_NONE; i++) {
TRY_PREFERRED_PIXEL_FORMAT(SdlRenderer);
}
for (int i = 0; decoder->pix_fmts[i] != AV_PIX_FMT_NONE; i++) {
TRY_SUPPORTED_NON_PREFERRED_PIXEL_FORMAT(SdlRenderer);
}
#endif
// If we made it here, we couldn't find anything
return false;
}
bool FFmpegVideoDecoder::initialize(PDECODER_PARAMETERS params)
{
// Increase log level until the first frame is decoded
av_log_set_level(AV_LOG_DEBUG);
// First try decoders that the user has manually specified via environment variables.
// These must output surfaces in one of the formats that one of our renderers supports,
// which is currently:
// - AV_PIX_FMT_DRM_PRIME
// - AV_PIX_FMT_MMAL
// - AV_PIX_FMT_YUV420P
// - AV_PIX_FMT_YUVJ420P
// - AV_PIX_FMT_NV12
// - AV_PIX_FMT_NV21
{
QString h264DecoderHint = qgetenv("H264_DECODER_HINT");
if (!h264DecoderHint.isEmpty() && (params->videoFormat & VIDEO_FORMAT_MASK_H264)) {
QByteArray decoderString = h264DecoderHint.toLocal8Bit();
if (tryInitializeRendererForDecoderByName(decoderString.constData(), params)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using custom H.264 decoder (H264_DECODER_HINT): %s",
decoderString.constData());
return true;
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Custom H.264 decoder (H264_DECODER_HINT) failed to load: %s",
decoderString.constData());
}
}
}
{
QString hevcDecoderHint = qgetenv("HEVC_DECODER_HINT");
if (!hevcDecoderHint.isEmpty() && (params->videoFormat & VIDEO_FORMAT_MASK_H265)) {
QByteArray decoderString = hevcDecoderHint.toLocal8Bit();
if (tryInitializeRendererForDecoderByName(decoderString.constData(), params)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using custom HEVC decoder (HEVC_DECODER_HINT): %s",
decoderString.constData());
return true;
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Custom HEVC decoder (HEVC_DECODER_HINT) failed to load: %s",
decoderString.constData());
}
}
}
{
QString av1DecoderHint = qgetenv("AV1_DECODER_HINT");
if (!av1DecoderHint.isEmpty() && (params->videoFormat & VIDEO_FORMAT_MASK_AV1)) {
QByteArray decoderString = av1DecoderHint.toLocal8Bit();
if (tryInitializeRendererForDecoderByName(decoderString.constData(), params)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using custom AV1 decoder (AV1_DECODER_HINT): %s",
decoderString.constData());
return true;
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Custom AV1 decoder (AV1_DECODER_HINT) failed to load: %s",
decoderString.constData());
}
}
}
const AVCodec* decoder;
if (params->videoFormat & VIDEO_FORMAT_MASK_H264) {
decoder = avcodec_find_decoder(AV_CODEC_ID_H264);
}
else if (params->videoFormat & VIDEO_FORMAT_MASK_H265) {
decoder = avcodec_find_decoder(AV_CODEC_ID_HEVC);
}
else if (params->videoFormat & VIDEO_FORMAT_MASK_AV1) {
decoder = avcodec_find_decoder(AV_CODEC_ID_AV1);
}
else {
Q_ASSERT(false);
decoder = nullptr;
}
if (!decoder) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Unable to find decoder for format: %x",
params->videoFormat);
return false;
}
// Look for a hardware decoder first unless software-only
if (params->vds != StreamingPreferences::VDS_FORCE_SOFTWARE) {
// Look for the first matching hwaccel hardware decoder (pass 0)
for (int i = 0;; i++) {
const AVCodecHWConfig *config = avcodec_get_hw_config(decoder, i);
if (!config) {
// No remaing hwaccel options
break;
}
// Initialize the hardware codec and submit a test frame if the renderer needs it
if (tryInitializeRenderer(decoder, params, config,
[config]() -> IFFmpegRenderer* { return createHwAccelRenderer(config, 0); })) {
return true;
}
}
// Continue with special non-hwaccel hardware decoders
if (params->videoFormat & VIDEO_FORMAT_MASK_H264) {
for (const codec_info_t& codecInfo : k_NonHwaccelH264Codecs) {
if (tryInitializeRendererForDecoderByName(codecInfo.codec, params)) {
return true;
}
}
}
else if (params->videoFormat & VIDEO_FORMAT_MASK_H265) {
for (const codec_info_t& codecInfo : k_NonHwaccelHEVCCodecs) {
if (tryInitializeRendererForDecoderByName(codecInfo.codec, params)) {
return true;
}
}
}
else if (params->videoFormat & VIDEO_FORMAT_MASK_AV1) {
for (const codec_info_t& codecInfo : k_NonHwaccelAV1Codecs) {
if (tryInitializeRendererForDecoderByName(codecInfo.codec, params)) {
return true;
}
}
}
else {
Q_ASSERT(false);
}
// Look for the first matching hwaccel hardware decoder (pass 1)
// This picks up "second-tier" hwaccels like CUDA.
for (int i = 0;; i++) {
const AVCodecHWConfig *config = avcodec_get_hw_config(decoder, i);
if (!config) {
// No remaing hwaccel options
break;
}
// Initialize the hardware codec and submit a test frame if the renderer needs it
if (tryInitializeRenderer(decoder, params, config,
[config]() -> IFFmpegRenderer* { return createHwAccelRenderer(config, 1); })) {
return true;
}
}
}
// Fallback to software if no matching hardware decoder was found
// and if software fallback is allowed
if (params->vds != StreamingPreferences::VDS_FORCE_HARDWARE) {
if (tryInitializeRenderer(decoder, params, nullptr,
[]() -> IFFmpegRenderer* { return new SdlRenderer(); })) {
return true;
}
}
// No decoder worked
return false;
}
void FFmpegVideoDecoder::writeBuffer(PLENTRY entry, int& offset)
{
if (m_NeedsSpsFixup && entry->bufferType == BUFFER_TYPE_SPS) {
h264_stream_t* stream = h264_new();
int nalStart, nalEnd;
// Read the old NALU
find_nal_unit((uint8_t*)entry->data, entry->length, &nalStart, &nalEnd);
read_nal_unit(stream,
(unsigned char *)&entry->data[nalStart],
nalEnd - nalStart);
SDL_assert(nalStart == 3 || nalStart == 4); // 3 or 4 byte Annex B start sequence
SDL_assert(nalEnd == entry->length);
// Fixup the SPS to what OS X needs to use hardware acceleration
stream->sps->num_ref_frames = 1;
stream->sps->vui.max_dec_frame_buffering = 1;
int initialOffset = offset;
// Copy the modified NALU data. This clobbers byte 0 and starts NALU data at byte 1.
// Since it prepended one extra byte, subtract one from the returned length.
offset += write_nal_unit(stream, (uint8_t*)&m_DecodeBuffer.data()[initialOffset + nalStart - 1],
MAX_SPS_EXTRA_SIZE + entry->length - nalStart) - 1;
// Copy the NALU prefix over from the original SPS
memcpy(&m_DecodeBuffer.data()[initialOffset], entry->data, nalStart);
offset += nalStart;
h264_free(stream);
}
else {
// Write the buffer as-is
memcpy(&m_DecodeBuffer.data()[offset],
entry->data,
entry->length);
offset += entry->length;
}
}
int FFmpegVideoDecoder::decoderThreadProcThunk(void *context)
{
((FFmpegVideoDecoder*)context)->decoderThreadProc();
return 0;
}
void FFmpegVideoDecoder::decoderThreadProc()
{
while (!SDL_AtomicGet(&m_DecoderThreadShouldQuit)) {
if (m_FramesIn == m_FramesOut) {
VIDEO_FRAME_HANDLE handle;
PDECODE_UNIT du;
// Waiting for input. All output frames have been received.
// Block until we receive a new frame from the host.
if (!LiWaitForNextVideoFrame(&handle, &du)) {
// This might be a signal from the main thread to exit
continue;
}
LiCompleteVideoFrame(handle, submitDecodeUnit(du));
}
if (m_FramesIn != m_FramesOut) {
SDL_assert(m_FramesIn > m_FramesOut);
// We have output frames to receive. Let's poll until we get one,
// and submit new input data if/when we get it.
AVFrame* frame = av_frame_alloc();
if (!frame) {
// Failed to allocate a frame but we did submit,
// so we can return DR_OK
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Failed to allocate frame");
continue;
}
int err;
do {
err = avcodec_receive_frame(m_VideoDecoderCtx, frame);
if (err == 0) {
SDL_assert(m_FrameInfoQueue.size() == m_FramesIn - m_FramesOut);
m_FramesOut++;
// Reset failed decodes count if we reached this far
m_ConsecutiveFailedDecodes = 0;
// Restore default log level after a successful decode
av_log_set_level(AV_LOG_INFO);
// Capture a frame timestamp to measuring pacing delay
frame->pkt_dts = SDL_GetTicks();
if (!m_FrameInfoQueue.isEmpty()) {
// Data buffers in the DU are not valid here!
DECODE_UNIT du = m_FrameInfoQueue.dequeue();
// Count time in avcodec_send_packet() and avcodec_receive_frame()
// as time spent decoding. Also count time spent in the decode unit
// queue because that's directly caused by decoder latency.
m_ActiveWndVideoStats.totalDecodeTime += LiGetMillis() - du.enqueueTimeMs;
// Store the presentation time
frame->pts = du.presentationTimeMs;
}
m_ActiveWndVideoStats.decodedFrames++;
// Queue the frame for rendering (or render now if pacer is disabled)
m_Pacer->submitFrame(frame);
}
else if (err == AVERROR(EAGAIN)) {
VIDEO_FRAME_HANDLE handle;
PDECODE_UNIT du;
// No output data, so let's try to submit more input data,
// while we're waiting for this to frame to come back.
if (LiPollNextVideoFrame(&handle, &du)) {
// FIXME: Handle EAGAIN on avcodec_send_packet() properly?
LiCompleteVideoFrame(handle, submitDecodeUnit(du));
}
else {
// No output data or input data. Let's wait a little bit.
SDL_Delay(2);
}
}
else {
char errorstring[512];
// FIXME: Should we pop an entry off m_FrameInfoQueue here?
av_strerror(err, errorstring, sizeof(errorstring));
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"avcodec_receive_frame() failed: %s (frame %d)",
errorstring,
!m_FrameInfoQueue.isEmpty() ? m_FrameInfoQueue.head().frameNumber : -1);
if (++m_ConsecutiveFailedDecodes == FAILED_DECODES_RESET_THRESHOLD) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Resetting decoder due to consistent failure");
SDL_Event event;
event.type = SDL_RENDER_DEVICE_RESET;
SDL_PushEvent(&event);
// Don't consume any additional data
SDL_AtomicSet(&m_DecoderThreadShouldQuit, 1);
}
// Just in case the error resulted in the loss of the frame,
// request an IDR frame to reset our decoder state.
LiRequestIdrFrame();
}
} while (err == AVERROR(EAGAIN) && !SDL_AtomicGet(&m_DecoderThreadShouldQuit));
if (err != 0) {
// Free the frame if we failed to submit it
av_frame_free(&frame);
}
}
}
}
int FFmpegVideoDecoder::submitDecodeUnit(PDECODE_UNIT du)
{
PLENTRY entry = du->bufferList;
int err;
SDL_assert(!m_TestOnly);
// If this is the first frame, reject anything that's not an IDR frame
if (m_FramesIn == 0 && du->frameType != FRAME_TYPE_IDR) {
return DR_NEED_IDR;
}
if (!m_LastFrameNumber) {
m_ActiveWndVideoStats.measurementStartTimestamp = SDL_GetTicks();
m_LastFrameNumber = du->frameNumber;
}
else {
// Any frame number greater than m_LastFrameNumber + 1 represents a dropped frame
m_ActiveWndVideoStats.networkDroppedFrames += du->frameNumber - (m_LastFrameNumber + 1);
m_ActiveWndVideoStats.totalFrames += du->frameNumber - (m_LastFrameNumber + 1);
m_LastFrameNumber = du->frameNumber;
}
// Flip stats windows roughly every second
if (SDL_TICKS_PASSED(SDL_GetTicks(), m_ActiveWndVideoStats.measurementStartTimestamp + 1000)) {
// Update overlay stats if it's enabled
if (Session::get()->getOverlayManager().isOverlayEnabled(Overlay::OverlayDebug)) {
VIDEO_STATS lastTwoWndStats = {};
addVideoStats(m_LastWndVideoStats, lastTwoWndStats);
addVideoStats(m_ActiveWndVideoStats, lastTwoWndStats);
stringifyVideoStats(lastTwoWndStats, Session::get()->getOverlayManager().getOverlayText(Overlay::OverlayDebug));
Session::get()->getOverlayManager().setOverlayTextUpdated(Overlay::OverlayDebug);
}
// Accumulate these values into the global stats
addVideoStats(m_ActiveWndVideoStats, m_GlobalVideoStats);
// Move this window into the last window slot and clear it for next window
SDL_memcpy(&m_LastWndVideoStats, &m_ActiveWndVideoStats, sizeof(m_ActiveWndVideoStats));
SDL_zero(m_ActiveWndVideoStats);
m_ActiveWndVideoStats.measurementStartTimestamp = SDL_GetTicks();
}
m_ActiveWndVideoStats.receivedFrames++;
m_ActiveWndVideoStats.totalFrames++;
int requiredBufferSize = du->fullLength;
if (du->frameType == FRAME_TYPE_IDR) {
// Add some extra space in case we need to do an SPS fixup
requiredBufferSize += MAX_SPS_EXTRA_SIZE;
}
// Ensure the decoder buffer is large enough
m_DecodeBuffer.reserve(requiredBufferSize + AV_INPUT_BUFFER_PADDING_SIZE);
int offset = 0;
while (entry != nullptr) {
writeBuffer(entry, offset);
entry = entry->next;
}
m_Pkt->data = reinterpret_cast<uint8_t*>(m_DecodeBuffer.data());
m_Pkt->size = offset;
if (du->frameType == FRAME_TYPE_IDR) {
m_Pkt->flags = AV_PKT_FLAG_KEY;
}
else {
m_Pkt->flags = 0;
}
m_ActiveWndVideoStats.totalReassemblyTime += du->enqueueTimeMs - du->receiveTimeMs;
err = avcodec_send_packet(m_VideoDecoderCtx, m_Pkt);
if (err < 0) {
char errorstring[512];
av_strerror(err, errorstring, sizeof(errorstring));
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"avcodec_send_packet() failed: %s (frame %d)",
errorstring,
du->frameNumber);
// If we've failed a bunch of decodes in a row, the decoder/renderer is
// clearly unhealthy, so let's generate a synthetic reset event to trigger
// the event loop to destroy and recreate the decoder.
if (++m_ConsecutiveFailedDecodes == FAILED_DECODES_RESET_THRESHOLD) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Resetting decoder due to consistent failure");
SDL_Event event;
event.type = SDL_RENDER_DEVICE_RESET;
SDL_PushEvent(&event);
// Don't consume any additional data
SDL_AtomicSet(&m_DecoderThreadShouldQuit, 1);
}
return DR_NEED_IDR;
}
m_FrameInfoQueue.enqueue(*du);
m_FramesIn++;
return DR_OK;
}
void FFmpegVideoDecoder::renderFrameOnMainThread()
{
m_Pacer->renderOnMainThread();
}