moonlight-qt/app/streaming/video/ffmpeg-renderers/vt.mm
Cameron Gutman db06239018 Rewrite the macOS renderer using CAMetalLayer
This allows v-sync to be disabled on macOS and lets us remove a whole bunch of old hacks.

Further optimizations of the new renderer are still needed.
2024-02-07 02:40:35 -06:00

785 lines
29 KiB
Text

// Nasty hack to avoid conflict between AVFoundation and
// libavutil both defining AVMediaType
#define AVMediaType AVMediaType_FFmpeg
#include "vt.h"
#include "pacer/pacer.h"
#undef AVMediaType
#include <SDL_syswm.h>
#include <Limelight.h>
#include "streaming/session.h"
#include "streaming/streamutils.h"
#include "path.h"
#import <Cocoa/Cocoa.h>
#import <VideoToolbox/VideoToolbox.h>
#import <AVFoundation/AVFoundation.h>
#import <dispatch/dispatch.h>
#import <Metal/Metal.h>
#import <MetalKit/MetalKit.h>
struct CscParams
{
vector_float3 matrix[3];
vector_float3 offsets;
};
static const CscParams k_CscParams_Bt601Lim = {
// CSC Matrix
{
{ 1.1644f, 0.0f, 1.5960f },
{ 1.1644f, -0.3917f, -0.8129f },
{ 1.1644f, 2.0172f, 0.0f }
},
// Offsets
{ 16.0f / 255.0f, 128.0f / 255.0f, 128.0f / 255.0f },
};
static const CscParams k_CscParams_Bt601Full = {
// CSC Matrix
{
{ 1.0f, 0.0f, 1.4020f },
{ 1.0f, -0.3441f, -0.7141f },
{ 1.0f, 1.7720f, 0.0f },
},
// Offsets
{ 0.0f, 128.0f / 255.0f, 128.0f / 255.0f },
};
static const CscParams k_CscParams_Bt709Lim = {
// CSC Matrix
{
{ 1.1644f, 0.0f, 1.7927f },
{ 1.1644f, -0.2132f, -0.5329f },
{ 1.1644f, 2.1124f, 0.0f },
},
// Offsets
{ 16.0f / 255.0f, 128.0f / 255.0f, 128.0f / 255.0f },
};
static const CscParams k_CscParams_Bt709Full = {
// CSC Matrix
{
{ 1.0f, 0.0f, 1.5748f },
{ 1.0f, -0.1873f, -0.4681f },
{ 1.0f, 1.8556f, 0.0f },
},
// Offsets
{ 0.0f, 128.0f / 255.0f, 128.0f / 255.0f },
};
static const CscParams k_CscParams_Bt2020Lim = {
// CSC Matrix
{
{ 1.1644f, 0.0f, 1.6781f },
{ 1.1644f, -0.1874f, -0.6505f },
{ 1.1644f, 2.1418f, 0.0f },
},
// Offsets
{ 16.0f / 255.0f, 128.0f / 255.0f, 128.0f / 255.0f },
};
static const CscParams k_CscParams_Bt2020Full = {
// CSC Matrix
{
{ 1.0f, 0.0f, 1.4746f },
{ 1.0f, -0.1646f, -0.5714f },
{ 1.0f, 1.8814f, 0.0f },
},
// Offsets
{ 0.0f, 128.0f / 255.0f, 128.0f / 255.0f },
};
struct Vertex
{
vector_float4 position;
vector_float2 texCoord;
};
@interface VTView : NSView
- (NSView *)hitTest:(NSPoint)point;
@end
@implementation VTView
- (NSView *)hitTest:(NSPoint)point {
Q_UNUSED(point);
return nil;
}
@end
class VTRenderer : public IFFmpegRenderer
{
public:
VTRenderer()
: m_Window(nullptr),
m_HwContext(nullptr),
m_MetalLayer(nullptr),
m_TextureCache(nullptr),
m_CscParamsBuffer(nullptr),
m_VideoVertexBuffer(nullptr),
m_PipelineState(nullptr),
m_ShaderLibrary(nullptr),
m_CommandQueue(nullptr),
m_StreamView(nullptr),
m_DisplayLink(nullptr),
m_LastColorSpace(-1),
m_LastFullRange(false),
m_VsyncMutex(nullptr),
m_VsyncPassed(nullptr)
{
SDL_zero(m_OverlayTextFields);
for (int i = 0; i < Overlay::OverlayMax; i++) {
m_OverlayUpdateBlocks[i] = dispatch_block_create(DISPATCH_BLOCK_DETACHED, ^{
updateOverlayOnMainThread((Overlay::OverlayType)i);
});
}
}
virtual ~VTRenderer() override
{ @autoreleasepool {
// We may have overlay update blocks enqueued for execution.
// We must cancel those to avoid a UAF.
for (int i = 0; i < Overlay::OverlayMax; i++) {
dispatch_block_cancel(m_OverlayUpdateBlocks[i]);
Block_release(m_OverlayUpdateBlocks[i]);
}
if (m_DisplayLink != nullptr) {
CVDisplayLinkStop(m_DisplayLink);
CVDisplayLinkRelease(m_DisplayLink);
}
if (m_VsyncPassed != nullptr) {
SDL_DestroyCond(m_VsyncPassed);
}
if (m_VsyncMutex != nullptr) {
SDL_DestroyMutex(m_VsyncMutex);
}
if (m_HwContext != nullptr) {
av_buffer_unref(&m_HwContext);
}
for (int i = 0; i < Overlay::OverlayMax; i++) {
if (m_OverlayTextFields[i] != nullptr) {
[m_OverlayTextFields[i] removeFromSuperview];
[m_OverlayTextFields[i] release];
}
}
if (m_StreamView != nullptr) {
[m_StreamView removeFromSuperview];
[m_StreamView release];
}
if (m_CscParamsBuffer != nullptr) {
[m_CscParamsBuffer release];
}
if (m_VideoVertexBuffer != nullptr) {
[m_VideoVertexBuffer release];
}
if (m_PipelineState != nullptr) {
[m_PipelineState release];
}
if (m_ShaderLibrary != nullptr) {
[m_ShaderLibrary release];
}
if (m_CommandQueue != nullptr) {
[m_CommandQueue release];
}
if (m_TextureCache != nullptr) {
CFRelease(m_TextureCache);
}
// It appears to be necessary to run the event loop after destroying
// the AVSampleBufferDisplayLayer to avoid issue #973.
SDL_PumpEvents();
}}
static
CVReturn
displayLinkOutputCallback(
CVDisplayLinkRef displayLink,
const CVTimeStamp* /* now */,
const CVTimeStamp* /* vsyncTime */,
CVOptionFlags,
CVOptionFlags*,
void *displayLinkContext)
{
auto me = reinterpret_cast<VTRenderer*>(displayLinkContext);
SDL_assert(displayLink == me->m_DisplayLink);
SDL_LockMutex(me->m_VsyncMutex);
SDL_CondSignal(me->m_VsyncPassed);
SDL_UnlockMutex(me->m_VsyncMutex);
return kCVReturnSuccess;
}
bool initializeVsyncCallback(SDL_SysWMinfo* info)
{
NSScreen* screen = [info->info.cocoa.window screen];
CVReturn status;
if (screen == nullptr) {
// Window not visible on any display, so use a
// CVDisplayLink that can work with all active displays.
// When we become visible, we'll recreate ourselves
// and associate with the new screen.
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"NSWindow is not visible on any display");
status = CVDisplayLinkCreateWithActiveCGDisplays(&m_DisplayLink);
}
else {
CGDirectDisplayID displayId = [[screen deviceDescription][@"NSScreenNumber"] unsignedIntValue];
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"NSWindow on display: %x",
displayId);
status = CVDisplayLinkCreateWithCGDisplay(displayId, &m_DisplayLink);
}
if (status != kCVReturnSuccess) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to create CVDisplayLink: %d",
status);
return false;
}
status = CVDisplayLinkSetOutputCallback(m_DisplayLink, displayLinkOutputCallback, this);
if (status != kCVReturnSuccess) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"CVDisplayLinkSetOutputCallback() failed: %d",
status);
return false;
}
// The CVDisplayLink callback uses these, so we must initialize them before
// starting the callbacks.
m_VsyncMutex = SDL_CreateMutex();
m_VsyncPassed = SDL_CreateCond();
status = CVDisplayLinkStart(m_DisplayLink);
if (status != kCVReturnSuccess) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"CVDisplayLinkStart() failed: %d",
status);
return false;
}
return true;
}
virtual void waitToRender() override
{
if (m_DisplayLink != nullptr) {
// Vsync is enabled, so wait for a swap before returning
SDL_LockMutex(m_VsyncMutex);
if (SDL_CondWaitTimeout(m_VsyncPassed, m_VsyncMutex, 100) == SDL_MUTEX_TIMEDOUT) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"V-sync wait timed out after 100 ms");
}
SDL_UnlockMutex(m_VsyncMutex);
}
}
bool updateVideoRegionSizeForFrame(AVFrame* frame)
{
// TODO: When we support seamless resizing, implement this properly!
if (m_VideoVertexBuffer) {
return true;
}
int drawableWidth, drawableHeight;
SDL_Metal_GetDrawableSize(m_Window, &drawableWidth, &drawableHeight);
// Determine the correct scaled size for the video region
SDL_Rect src, dst;
src.x = src.y = 0;
src.w = frame->width;
src.h = frame->height;
dst.x = dst.y = 0;
dst.w = drawableWidth;
dst.h = drawableHeight;
StreamUtils::scaleSourceToDestinationSurface(&src, &dst);
// Convert screen space to normalized device coordinates
SDL_FRect renderRect;
StreamUtils::screenSpaceToNormalizedDeviceCoords(&dst, &renderRect, drawableWidth, drawableHeight);
Vertex verts[] =
{
{ { renderRect.x, renderRect.y, 0.0f, 1.0f }, { 0.0f, 1.0f } },
{ { renderRect.x, renderRect.y+renderRect.h, 0.0f, 1.0f }, { 0.0f, 0} },
{ { renderRect.x+renderRect.w, renderRect.y, 0.0f, 1.0f }, { 1.0f, 1.0f} },
{ { renderRect.x+renderRect.w, renderRect.y+renderRect.h, 0.0f, 1.0f }, { 1.0f, 0} },
};
[m_VideoVertexBuffer release];
m_VideoVertexBuffer = [m_MetalLayer.device newBufferWithBytes:verts length:sizeof(verts) options:MTLResourceStorageModePrivate];
if (!m_VideoVertexBuffer) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to create video vertex buffer");
return false;
}
return true;
}
bool updateColorSpaceForFrame(AVFrame* frame)
{
int colorspace = getFrameColorspace(frame);
bool fullRange = isFrameFullRange(frame);
if (colorspace != m_LastColorSpace || fullRange != m_LastFullRange) {
CGColorSpaceRef newColorSpace;
void* paramBuffer;
switch (colorspace) {
case COLORSPACE_REC_709:
m_MetalLayer.colorspace = newColorSpace = CGColorSpaceCreateWithName(kCGColorSpaceITUR_709);
m_MetalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;
paramBuffer = (void*)(fullRange ? &k_CscParams_Bt709Full : &k_CscParams_Bt709Lim);
break;
case COLORSPACE_REC_2020:
// https://developer.apple.com/documentation/metal/hdr_content/using_color_spaces_to_display_hdr_content
if (frame->color_trc == AVCOL_TRC_SMPTE2084) {
if (@available(macOS 11.0, *)) {
m_MetalLayer.colorspace = newColorSpace = CGColorSpaceCreateWithName(kCGColorSpaceITUR_2100_PQ);
}
else {
m_MetalLayer.colorspace = newColorSpace = CGColorSpaceCreateWithName(kCGColorSpaceITUR_2020);
}
m_MetalLayer.pixelFormat = MTLPixelFormatBGR10A2Unorm;
}
else {
m_MetalLayer.colorspace = newColorSpace = CGColorSpaceCreateWithName(kCGColorSpaceITUR_2020);
m_MetalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;
}
paramBuffer = (void*)(fullRange ? &k_CscParams_Bt2020Full : &k_CscParams_Bt2020Lim);
break;
default:
case COLORSPACE_REC_601:
m_MetalLayer.colorspace = newColorSpace = CGColorSpaceCreateWithName(kCGColorSpaceSRGB);
m_MetalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;
paramBuffer = (void*)(fullRange ? &k_CscParams_Bt601Full : &k_CscParams_Bt601Lim);
break;
}
// The CAMetalLayer retains the CGColorSpace
CGColorSpaceRelease(newColorSpace);
// Create the new colorspace parameter buffer for our fragment shader
[m_CscParamsBuffer release];
m_CscParamsBuffer = [m_MetalLayer.device newBufferWithBytes:paramBuffer length:sizeof(CscParams) options:MTLResourceStorageModePrivate];
if (!m_CscParamsBuffer) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to create CSC parameters buffer");
return false;
}
MTLRenderPipelineDescriptor *pipelineDesc = [[MTLRenderPipelineDescriptor new] autorelease];
pipelineDesc.vertexFunction = [[m_ShaderLibrary newFunctionWithName:@"vs_draw"] autorelease];
pipelineDesc.fragmentFunction = [[m_ShaderLibrary newFunctionWithName:@"ps_draw_biplanar"] autorelease];
pipelineDesc.colorAttachments[0].pixelFormat = m_MetalLayer.pixelFormat;
m_PipelineState = [m_MetalLayer.device newRenderPipelineStateWithDescriptor:pipelineDesc error:nullptr];
if (!m_PipelineState) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to create render pipeline state");
return false;
}
m_LastColorSpace = colorspace;
m_LastFullRange = fullRange;
}
return true;
}
// Caller frees frame after we return
virtual void renderFrame(AVFrame* frame) override
{ @autoreleasepool {
CVPixelBufferRef pixBuf = reinterpret_cast<CVPixelBufferRef>(frame->data[3]);
if (m_MetalLayer.preferredDevice != nullptr && m_MetalLayer.preferredDevice != m_MetalLayer.device) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Resetting renderer after preferred device changed");
// Trigger the main thread to recreate the decoder
SDL_Event event;
event.type = SDL_RENDER_DEVICE_RESET;
SDL_PushEvent(&event);
return;
}
// Handle changes to the frame's colorspace from last time we rendered
if (!updateColorSpaceForFrame(frame)) {
// Trigger the main thread to recreate the decoder
SDL_Event event;
event.type = SDL_RENDER_DEVICE_RESET;
SDL_PushEvent(&event);
return;
}
// Handle changes to the video size or drawable size
if (!updateVideoRegionSizeForFrame(frame)) {
// Trigger the main thread to recreate the decoder
SDL_Event event;
event.type = SDL_RENDER_DEVICE_RESET;
SDL_PushEvent(&event);
return;
}
auto nextDrawable = [m_MetalLayer nextDrawable];
// Create Metal textures for the planes of the CVPixelBuffer
std::array<CVMetalTextureRef, 2> textures;
for (size_t i = 0; i < textures.size(); i++) {
MTLPixelFormat fmt;
switch (CVPixelBufferGetPixelFormatType(pixBuf)) {
case kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange:
case kCVPixelFormatType_420YpCbCr8BiPlanarFullRange:
fmt = (i == 0) ? MTLPixelFormatR8Unorm : MTLPixelFormatRG8Unorm;
break;
case kCVPixelFormatType_420YpCbCr10BiPlanarFullRange:
case kCVPixelFormatType_420YpCbCr10BiPlanarVideoRange:
fmt = (i == 0) ? MTLPixelFormatR16Unorm : MTLPixelFormatRG16Unorm;
break;
default:
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Unknown pixel format: %x",
CVPixelBufferGetPixelFormatType(pixBuf));
return;
}
CVReturn err = CVMetalTextureCacheCreateTextureFromImage(kCFAllocatorDefault, m_TextureCache, pixBuf, nullptr, fmt,
CVPixelBufferGetWidthOfPlane(pixBuf, i),
CVPixelBufferGetHeightOfPlane(pixBuf, i),
i,
&textures[i]);
if (err != kCVReturnSuccess) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"CVMetalTextureCacheCreateTextureFromImage() failed: %d",
err);
return;
}
}
// Prepare a render pass to render into the next drawable
auto renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor];
renderPassDescriptor.colorAttachments[0].texture = nextDrawable.texture;
renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear;
renderPassDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 0.0);
renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
// Bind textures and buffers then draw the video region
auto commandBuffer = [m_CommandQueue commandBuffer];
auto renderEncoder = [commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor];
[renderEncoder setRenderPipelineState:m_PipelineState];
for (size_t i = 0; i < textures.size(); i++) {
[renderEncoder setFragmentTexture:CVMetalTextureGetTexture(textures[i]) atIndex:i];
}
[commandBuffer addCompletedHandler:^(id<MTLCommandBuffer>) {
// Free textures after completion of rendering per CVMetalTextureCache requirements
for (const CVMetalTextureRef &tex : textures) {
CFRelease(tex);
}
}];
[renderEncoder setFragmentBuffer:m_CscParamsBuffer offset:0 atIndex:0];
[renderEncoder setVertexBuffer:m_VideoVertexBuffer offset:0 atIndex:0];
[renderEncoder drawPrimitives:MTLPrimitiveTypeTriangleStrip vertexStart:0 vertexCount:4];
[renderEncoder endEncoding];
// Flip to the newly rendered buffer
[commandBuffer presentDrawable: nextDrawable];
[commandBuffer commit];
}}
bool checkDecoderCapabilities(PDECODER_PARAMETERS params) {
if (params->videoFormat & VIDEO_FORMAT_MASK_H264) {
if (!VTIsHardwareDecodeSupported(kCMVideoCodecType_H264)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No HW accelerated H.264 decode via VT");
return false;
}
}
else if (params->videoFormat & VIDEO_FORMAT_MASK_H265) {
if (!VTIsHardwareDecodeSupported(kCMVideoCodecType_HEVC)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No HW accelerated HEVC decode via VT");
return false;
}
// HEVC Main10 requires more extensive checks because there's no
// simple API to check for Main10 hardware decoding, and if we don't
// have it, we'll silently get software decoding with horrible performance.
if (params->videoFormat == VIDEO_FORMAT_H265_MAIN10) {
id<MTLDevice> device = MTLCreateSystemDefaultDevice();
if (device == nullptr) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Unable to get default Metal device");
return false;
}
// Exclude all GPUs earlier than macOSGPUFamily2
// https://developer.apple.com/documentation/metal/mtlfeatureset/mtlfeatureset_macos_gpufamily2_v1
if ([device supportsFeatureSet:MTLFeatureSet_macOS_GPUFamily2_v1]) {
if ([device.name containsString:@"Intel"]) {
// 500-series Intel GPUs are Skylake and don't support Main10 hardware decoding
if ([device.name containsString:@" 5"]) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No HEVC Main10 support on Skylake iGPU");
[device release];
return false;
}
}
else if ([device.name containsString:@"AMD"]) {
// FirePro D, M200, and M300 series GPUs don't support Main10 hardware decoding
if ([device.name containsString:@"FirePro D"] ||
[device.name containsString:@" M2"] ||
[device.name containsString:@" M3"]) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No HEVC Main10 support on AMD GPUs until Polaris");
[device release];
return false;
}
}
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No HEVC Main10 support on macOS GPUFamily1 GPUs");
[device release];
return false;
}
[device release];
}
}
else if (params->videoFormat & VIDEO_FORMAT_MASK_AV1) {
#if __MAC_OS_X_VERSION_MAX_ALLOWED >= 130000
if (!VTIsHardwareDecodeSupported(kCMVideoCodecType_AV1)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No HW accelerated AV1 decode via VT");
return false;
}
// 10-bit is part of the Main profile for AV1, so it will always
// be present on hardware that supports 8-bit.
#else
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"AV1 requires building with Xcode 14 or later");
return false;
#endif
}
return true;
}
virtual bool initialize(PDECODER_PARAMETERS params) override
{ @autoreleasepool {
int err;
m_Window = params->window;
if (!checkDecoderCapabilities(params)) {
return false;
}
err = av_hwdevice_ctx_create(&m_HwContext,
AV_HWDEVICE_TYPE_VIDEOTOOLBOX,
nullptr,
nullptr,
0);
if (err < 0) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"av_hwdevice_ctx_create() failed for VT decoder: %d",
err);
return false;
}
SDL_SysWMinfo info;
SDL_VERSION(&info.version);
if (!SDL_GetWindowWMInfo(params->window, &info)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"SDL_GetWindowWMInfo() failed: %s",
SDL_GetError());
return false;
}
SDL_assert(info.subsystem == SDL_SYSWM_COCOA);
// SDL adds its own content view to listen for events.
// We need to add a subview for our display layer.
NSView* contentView = info.info.cocoa.window.contentView;
m_StreamView = [[VTView alloc] initWithFrame:contentView.bounds];
// Associate a CAMetalLayer to our view
m_StreamView.layer = m_MetalLayer = [CAMetalLayer layer];
m_StreamView.wantsLayer = YES;
// Choose a device
m_MetalLayer.device = m_MetalLayer.preferredDevice;
if (!m_MetalLayer.device) {
m_MetalLayer.device = [MTLCreateSystemDefaultDevice() autorelease];
if (!m_MetalLayer.device) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"No Metal device found!");
return false;
}
}
// Configure the Metal layer for rendering
m_MetalLayer.wantsExtendedDynamicRangeContent = !!(params->videoFormat & VIDEO_FORMAT_MASK_10BIT);
m_MetalLayer.displaySyncEnabled = params->enableVsync;
m_MetalLayer.maximumDrawableCount = 2; // Double buffering
[contentView addSubview: m_StreamView];
// Create the Metal texture cache for our CVPixelBuffers
CFStringRef keys[1] = { kCVMetalTextureUsage };
NSUInteger values[1] = { MTLTextureUsageShaderRead };
auto cacheAttributes = CFDictionaryCreate(kCFAllocatorDefault, (const void**)keys, (const void**)values, 1, nullptr, nullptr);
err = CVMetalTextureCacheCreate(kCFAllocatorDefault, cacheAttributes, m_MetalLayer.device, nullptr, &m_TextureCache);
CFRelease(cacheAttributes);
if (err != kCVReturnSuccess) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"CVMetalTextureCacheCreate() failed: %d",
err);
return false;
}
// Compile our shaders
QString shaderSource = QString::fromUtf8(Path::readDataFile("vt_renderer.metal"));
m_ShaderLibrary = [m_MetalLayer.device newLibraryWithSource:shaderSource.toNSString() options:nullptr error:nullptr];
if (!m_ShaderLibrary) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to compile shaders");
return false;
}
// Create a command queue for submission
m_CommandQueue = [m_MetalLayer.device newCommandQueue];
if (params->enableFramePacing) {
if (!initializeVsyncCallback(&info)) {
return false;
}
}
return true;
}}
void updateOverlayOnMainThread(Overlay::OverlayType type)
{ @autoreleasepool {
// Lazy initialization for the overlay
if (m_OverlayTextFields[type] == nullptr) {
m_OverlayTextFields[type] = [[NSTextField alloc] initWithFrame:m_StreamView.bounds];
[m_OverlayTextFields[type] setBezeled:NO];
[m_OverlayTextFields[type] setDrawsBackground:NO];
[m_OverlayTextFields[type] setEditable:NO];
[m_OverlayTextFields[type] setSelectable:NO];
switch (type) {
case Overlay::OverlayDebug:
[m_OverlayTextFields[type] setAlignment:NSTextAlignmentLeft];
break;
case Overlay::OverlayStatusUpdate:
[m_OverlayTextFields[type] setAlignment:NSTextAlignmentRight];
break;
default:
break;
}
SDL_Color color = Session::get()->getOverlayManager().getOverlayColor(type);
[m_OverlayTextFields[type] setTextColor:[NSColor colorWithSRGBRed:color.r / 255.0 green:color.g / 255.0 blue:color.b / 255.0 alpha:color.a / 255.0]];
[m_OverlayTextFields[type] setFont:[NSFont messageFontOfSize:Session::get()->getOverlayManager().getOverlayFontSize(type)]];
[m_StreamView addSubview: m_OverlayTextFields[type]];
}
// Update text contents
[m_OverlayTextFields[type] setStringValue: [NSString stringWithUTF8String:Session::get()->getOverlayManager().getOverlayText(type)]];
// Unhide if it's enabled
[m_OverlayTextFields[type] setHidden: !Session::get()->getOverlayManager().isOverlayEnabled(type)];
}}
virtual void notifyOverlayUpdated(Overlay::OverlayType type) override
{
// We must do the actual UI updates on the main thread, so queue an
// async callback on the main thread via GCD to do the UI update.
dispatch_async(dispatch_get_main_queue(), m_OverlayUpdateBlocks[type]);
}
virtual bool prepareDecoderContext(AVCodecContext* context, AVDictionary**) override
{
context->hw_device_ctx = av_buffer_ref(m_HwContext);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Using VideoToolbox Metal renderer");
return true;
}
virtual bool needsTestFrame() override
{
// We used to trust VT to tell us whether decode will work, but
// there are cases where it can lie because the hardware technically
// can decode the format but VT is unserviceable for some other reason.
// Decoding the test frame will tell us for sure whether it will work.
return true;
}
int getDecoderColorspace() override
{
// macOS seems to handle Rec 601 best
return COLORSPACE_REC_601;
}
int getDecoderCapabilities() override
{
return CAPABILITY_REFERENCE_FRAME_INVALIDATION_HEVC |
CAPABILITY_REFERENCE_FRAME_INVALIDATION_AV1;
}
int getRendererAttributes() override
{
// AVSampleBufferDisplayLayer supports HDR output
return RENDERER_ATTRIBUTE_HDR_SUPPORT;
}
private:
SDL_Window* m_Window;
AVBufferRef* m_HwContext;
CAMetalLayer* m_MetalLayer;
CVMetalTextureCacheRef m_TextureCache;
id<MTLBuffer> m_CscParamsBuffer;
id<MTLBuffer> m_VideoVertexBuffer;
id<MTLRenderPipelineState> m_PipelineState;
id<MTLLibrary> m_ShaderLibrary;
id<MTLCommandQueue> m_CommandQueue;
VTView* m_StreamView;
dispatch_block_t m_OverlayUpdateBlocks[Overlay::OverlayMax];
NSTextField* m_OverlayTextFields[Overlay::OverlayMax];
CVDisplayLinkRef m_DisplayLink;
int m_LastColorSpace;
bool m_LastFullRange;
SDL_mutex* m_VsyncMutex;
SDL_cond* m_VsyncPassed;
};
IFFmpegRenderer* VTRendererFactory::createRenderer() {
return new VTRenderer();
}