#include "plvk.h" #include "streaming/session.h" #include "streaming/streamutils.h" // Implementation in plvk_c.c #define PL_LIBAV_IMPLEMENTATION 0 #include #include #include #include // Keep these in sync with hwcontext_vulkan.c static const char *k_OptionalDeviceExtensions[] = { /* Misc or required by other extensions */ //VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME, VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, VK_EXT_DESCRIPTOR_BUFFER_EXTENSION_NAME, VK_EXT_PHYSICAL_DEVICE_DRM_EXTENSION_NAME, VK_EXT_SHADER_ATOMIC_FLOAT_EXTENSION_NAME, VK_KHR_COOPERATIVE_MATRIX_EXTENSION_NAME, /* Imports/exports */ VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, #ifdef _WIN32 VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_WIN32_EXTENSION_NAME, #endif /* Video encoding/decoding */ VK_KHR_VIDEO_QUEUE_EXTENSION_NAME, VK_KHR_VIDEO_DECODE_QUEUE_EXTENSION_NAME, VK_KHR_VIDEO_DECODE_H264_EXTENSION_NAME, VK_KHR_VIDEO_DECODE_H265_EXTENSION_NAME, "VK_MESA_video_decode_av1", }; static void pl_log_cb(void*, enum pl_log_level level, const char *msg) { switch (level) { case PL_LOG_FATAL: SDL_LogCritical(SDL_LOG_CATEGORY_APPLICATION, "%s", msg); break; case PL_LOG_ERR: SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "%s", msg); break; case PL_LOG_WARN: SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION, "%s", msg); break; case PL_LOG_INFO: SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "%s", msg); break; case PL_LOG_DEBUG: SDL_LogDebug(SDL_LOG_CATEGORY_APPLICATION, "%s", msg); break; case PL_LOG_NONE: case PL_LOG_TRACE: SDL_LogVerbose(SDL_LOG_CATEGORY_APPLICATION, "%s", msg); break; } } void PlVkRenderer::lockQueue(struct AVHWDeviceContext *dev_ctx, uint32_t queue_family, uint32_t index) { auto me = (PlVkRenderer*)dev_ctx->user_opaque; me->m_Vulkan->lock_queue(me->m_Vulkan, queue_family, index); } void PlVkRenderer::unlockQueue(struct AVHWDeviceContext *dev_ctx, uint32_t queue_family, uint32_t index) { auto me = (PlVkRenderer*)dev_ctx->user_opaque; me->m_Vulkan->unlock_queue(me->m_Vulkan, queue_family, index); } void PlVkRenderer::overlayUploadComplete(void* opaque) { SDL_FreeSurface((SDL_Surface*)opaque); } PlVkRenderer::PlVkRenderer(IFFmpegRenderer* backendRenderer) : m_Backend(backendRenderer) { bool ok; pl_log_params logParams = pl_log_default_params; logParams.log_cb = pl_log_cb; logParams.log_level = (pl_log_level)qEnvironmentVariableIntValue("PLVK_LOG_LEVEL", &ok); if (!ok) { #ifdef QT_DEBUG logParams.log_level = PL_LOG_DEBUG; #else logParams.log_level = PL_LOG_WARN; #endif } m_Log = pl_log_create(PL_API_VER, &logParams); } PlVkRenderer::~PlVkRenderer() { if (m_Vulkan != nullptr) { for (int i = 0; i < (int)SDL_arraysize(m_Overlays); i++) { pl_tex_destroy(m_Vulkan->gpu, &m_Overlays[i].overlay.tex); pl_tex_destroy(m_Vulkan->gpu, &m_Overlays[i].stagingOverlay.tex); } for (int i = 0; i < (int)SDL_arraysize(m_Textures); i++) { pl_tex_destroy(m_Vulkan->gpu, &m_Textures[i]); } } pl_renderer_destroy(&m_Renderer); pl_swapchain_destroy(&m_Swapchain); pl_vulkan_destroy(&m_Vulkan); // This surface was created by SDL, so there's no libplacebo API to destroy it if (fn_vkDestroySurfaceKHR && m_VkSurface) { fn_vkDestroySurfaceKHR(m_PlVkInstance->instance, m_VkSurface, nullptr); } if (m_HwDeviceCtx != nullptr) { av_buffer_unref(&m_HwDeviceCtx); } pl_vk_inst_destroy(&m_PlVkInstance); // m_Log must always be the last object destroyed pl_log_destroy(&m_Log); } #define POPULATE_FUNCTION(name) \ fn_##name = (PFN_##name)vkInstParams.get_proc_addr(m_PlVkInstance->instance, #name); \ if (fn_##name == nullptr) { \ SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, \ "Missing required Vulkan function: " #name); \ return false; \ } bool PlVkRenderer::initialize(PDECODER_PARAMETERS params) { unsigned int instanceExtensionCount = 0; if (!SDL_Vulkan_GetInstanceExtensions(params->window, &instanceExtensionCount, nullptr)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_Vulkan_GetInstanceExtensions() #1 failed: %s", SDL_GetError()); return false; } std::vector instanceExtensions(instanceExtensionCount); if (!SDL_Vulkan_GetInstanceExtensions(params->window, &instanceExtensionCount, instanceExtensions.data())) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_Vulkan_GetInstanceExtensions() #2 failed: %s", SDL_GetError()); return false; } pl_vk_inst_params vkInstParams = pl_vk_inst_default_params; { bool ok; vkInstParams.debug = !!qEnvironmentVariableIntValue("PLVK_DEBUG", &ok); #ifdef QT_DEBUG if (!ok) { vkInstParams.debug = true; } #endif } vkInstParams.get_proc_addr = (PFN_vkGetInstanceProcAddr)SDL_Vulkan_GetVkGetInstanceProcAddr(); vkInstParams.extensions = instanceExtensions.data(); vkInstParams.num_extensions = instanceExtensions.size(); m_PlVkInstance = pl_vk_inst_create(m_Log, &vkInstParams); if (m_PlVkInstance == nullptr) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_vk_inst_create() failed"); return false; } // Lookup all Vulkan functions we require POPULATE_FUNCTION(vkDestroySurfaceKHR); POPULATE_FUNCTION(vkGetPhysicalDeviceQueueFamilyProperties); POPULATE_FUNCTION(vkGetPhysicalDeviceSurfacePresentModesKHR); POPULATE_FUNCTION(vkGetPhysicalDeviceSurfaceFormatsKHR); if (!SDL_Vulkan_CreateSurface(params->window, m_PlVkInstance->instance, &m_VkSurface)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "SDL_Vulkan_CreateSurface() failed: %s", SDL_GetError()); return false; } pl_vulkan_params vkParams = pl_vulkan_default_params; vkParams.instance = m_PlVkInstance->instance; vkParams.get_proc_addr = m_PlVkInstance->get_proc_addr; vkParams.surface = m_VkSurface; vkParams.allow_software = false; vkParams.opt_extensions = k_OptionalDeviceExtensions; vkParams.num_opt_extensions = SDL_arraysize(k_OptionalDeviceExtensions); vkParams.extra_queues = VK_QUEUE_VIDEO_DECODE_BIT_KHR; m_Vulkan = pl_vulkan_create(m_Log, &vkParams); if (m_Vulkan == nullptr) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_vulkan_create() failed"); return false; } VkPresentModeKHR presentMode; if (params->enableVsync) { // We will use mailbox mode if present, otherwise libplacebo will fall back to FIFO presentMode = VK_PRESENT_MODE_MAILBOX_KHR; } else { // We want immediate mode for V-Sync disabled if possible if (isPresentModeSupported(VK_PRESENT_MODE_IMMEDIATE_KHR)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Using Immediate present mode with V-Sync disabled"); presentMode = VK_PRESENT_MODE_IMMEDIATE_KHR; } else { SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION, "Immediate present mode is not supported by the Vulkan driver. Latency may be higher than normal with V-Sync disabled."); // FIFO Relaxed can tear if the frame is running late if (isPresentModeSupported(VK_PRESENT_MODE_FIFO_RELAXED_KHR)) { SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Using FIFO Relaxed present mode with V-Sync disabled"); presentMode = VK_PRESENT_MODE_FIFO_RELAXED_KHR; } // Mailbox at least provides non-blocking behavior else if (isPresentModeSupported(VK_PRESENT_MODE_MAILBOX_KHR)) { SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Using Mailbox present mode with V-Sync disabled"); presentMode = VK_PRESENT_MODE_MAILBOX_KHR; } // FIFO is always supported else { SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Using FIFO present mode with V-Sync disabled"); presentMode = VK_PRESENT_MODE_FIFO_KHR; } } } pl_vulkan_swapchain_params vkSwapchainParams = {}; vkSwapchainParams.surface = m_VkSurface; vkSwapchainParams.present_mode = presentMode; vkSwapchainParams.swapchain_depth = 1; // No queued frames #if PL_API_VER >= 338 vkSwapchainParams.disable_10bit_sdr = true; // Some drivers don't dither 10-bit SDR output correctly #endif m_Swapchain = pl_vulkan_create_swapchain(m_Vulkan, &vkSwapchainParams); if (m_Swapchain == nullptr) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_vulkan_create_swapchain() failed"); return false; } int vkDrawableW, vkDrawableH; SDL_Vulkan_GetDrawableSize(params->window, &vkDrawableW, &vkDrawableH); pl_swapchain_resize(m_Swapchain, &vkDrawableW, &vkDrawableH); m_Renderer = pl_renderer_create(m_Log, m_Vulkan->gpu); if (m_Renderer == nullptr) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_renderer_create() failed"); return false; } // We only need an hwaccel device context if we're going to act as the backend renderer too if (m_Backend == nullptr) { m_HwDeviceCtx = av_hwdevice_ctx_alloc(AV_HWDEVICE_TYPE_VULKAN); if (m_HwDeviceCtx == nullptr) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "av_hwdevice_ctx_alloc(AV_HWDEVICE_TYPE_VULKAN) failed"); return false; } auto hwDeviceContext = ((AVHWDeviceContext *)m_HwDeviceCtx->data); hwDeviceContext->user_opaque = this; // Used by lockQueue()/unlockQueue() auto vkDeviceContext = (AVVulkanDeviceContext*)((AVHWDeviceContext *)m_HwDeviceCtx->data)->hwctx; vkDeviceContext->get_proc_addr = m_PlVkInstance->get_proc_addr; vkDeviceContext->inst = m_PlVkInstance->instance; vkDeviceContext->phys_dev = m_Vulkan->phys_device; vkDeviceContext->act_dev = m_Vulkan->device; vkDeviceContext->device_features = *m_Vulkan->features; vkDeviceContext->enabled_inst_extensions = m_PlVkInstance->extensions; vkDeviceContext->nb_enabled_inst_extensions = m_PlVkInstance->num_extensions; vkDeviceContext->enabled_dev_extensions = m_Vulkan->extensions; vkDeviceContext->nb_enabled_dev_extensions = m_Vulkan->num_extensions; vkDeviceContext->queue_family_index = m_Vulkan->queue_graphics.index; vkDeviceContext->nb_graphics_queues = m_Vulkan->queue_graphics.count; vkDeviceContext->queue_family_tx_index = m_Vulkan->queue_transfer.index; vkDeviceContext->nb_tx_queues = m_Vulkan->queue_transfer.count; vkDeviceContext->queue_family_comp_index = m_Vulkan->queue_compute.index; vkDeviceContext->nb_comp_queues = m_Vulkan->queue_compute.count; #if LIBAVUTIL_VERSION_INT > AV_VERSION_INT(58, 9, 100) vkDeviceContext->lock_queue = lockQueue; vkDeviceContext->unlock_queue = unlockQueue; #endif static_assert(sizeof(vkDeviceContext->queue_family_decode_index) == sizeof(uint32_t), "sizeof(int) != sizeof(uint32_t)"); static_assert(sizeof(vkDeviceContext->nb_decode_queues) == sizeof(uint32_t), "sizeof(int) != sizeof(uint32_t)"); if (!getQueue(VK_QUEUE_VIDEO_DECODE_BIT_KHR, (uint32_t*)&vkDeviceContext->queue_family_decode_index, (uint32_t*)&vkDeviceContext->nb_decode_queues)) { SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION, "Vulkan video decoding is not supported by the Vulkan device"); return false; } int err = av_hwdevice_ctx_init(m_HwDeviceCtx); if (err < 0) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "av_hwdevice_ctx_init() failed: %d", err); return false; } } SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "libplacebo Vulkan renderer initialized"); return true; } bool PlVkRenderer::prepareDecoderContext(AVCodecContext *context, AVDictionary **) { SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Using Vulkan video decoding"); if (m_Backend) { context->hw_device_ctx = av_buffer_ref(m_HwDeviceCtx); } return true; } bool PlVkRenderer::mapAvFrameToPlacebo(const AVFrame *frame, pl_frame* mappedFrame) { pl_avframe_params mapParams = {}; mapParams.frame = frame; mapParams.tex = m_Textures; if (!pl_map_avframe_ex(m_Vulkan->gpu, mappedFrame, &mapParams)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_map_avframe_ex() failed"); return false; } return true; } bool PlVkRenderer::getQueue(VkQueueFlags requiredFlags, uint32_t *queueIndex, uint32_t *queueCount) { uint32_t queueFamilyCount = 0; fn_vkGetPhysicalDeviceQueueFamilyProperties(m_Vulkan->phys_device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); fn_vkGetPhysicalDeviceQueueFamilyProperties(m_Vulkan->phys_device, &queueFamilyCount, queueFamilies.data()); for (uint32_t i = 0; i < queueFamilyCount; i++) { if ((queueFamilies[i].queueFlags & requiredFlags) == requiredFlags) { *queueIndex = i; *queueCount = queueFamilies[i].queueCount; return true; } } return false; } bool PlVkRenderer::isPresentModeSupported(VkPresentModeKHR presentMode) { uint32_t presentModeCount = 0; fn_vkGetPhysicalDeviceSurfacePresentModesKHR(m_Vulkan->phys_device, m_VkSurface, &presentModeCount, nullptr); std::vector presentModes(presentModeCount); fn_vkGetPhysicalDeviceSurfacePresentModesKHR(m_Vulkan->phys_device, m_VkSurface, &presentModeCount, presentModes.data()); for (uint32_t i = 0; i < presentModeCount; i++) { if (presentModes[i] == presentMode) { return true; } } return false; } bool PlVkRenderer::isColorSpaceSupported(VkColorSpaceKHR colorSpace) { uint32_t formatCount = 0; fn_vkGetPhysicalDeviceSurfaceFormatsKHR(m_Vulkan->phys_device, m_VkSurface, &formatCount, nullptr); std::vector formats(formatCount); fn_vkGetPhysicalDeviceSurfaceFormatsKHR(m_Vulkan->phys_device, m_VkSurface, &formatCount, formats.data()); for (uint32_t i = 0; i < formatCount; i++) { if (formats[i].colorSpace == colorSpace) { return true; } } return false; } void PlVkRenderer::renderFrame(AVFrame *frame) { pl_frame mappedFrame, targetFrame; pl_swapchain_frame swapchainFrame; if (!mapAvFrameToPlacebo(frame, &mappedFrame)) { // This function logs internally return; } // Reserve enough space to avoid allocating under the overlay lock pl_overlay_part overlayParts[Overlay::OverlayMax] = {}; std::vector texturesToDestroy; std::vector overlays; texturesToDestroy.reserve(Overlay::OverlayMax); overlays.reserve(Overlay::OverlayMax); // Get the next swapchain buffer for rendering // // NB: After calling this successfully, we *MUST* call pl_swapchain_submit_frame()! if (!pl_swapchain_start_frame(m_Swapchain, &swapchainFrame)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_swapchain_start_frame() failed"); // Recreate the renderer SDL_Event event; event.type = SDL_RENDER_TARGETS_RESET; SDL_PushEvent(&event); goto UnmapExit; } pl_frame_from_swapchain(&targetFrame, &swapchainFrame); // We perform minimal processing under the overlay lock to avoid blocking threads updating the overlay SDL_AtomicLock(&m_OverlayLock); for (int i = 0; i < Overlay::OverlayMax; i++) { // If we have a staging overlay, we need to transfer ownership to us if (m_Overlays[i].hasStagingOverlay) { if (m_Overlays[i].hasOverlay) { texturesToDestroy.push_back(m_Overlays[i].overlay.tex); } // Copy the overlay fields from the staging area m_Overlays[i].overlay = m_Overlays[i].stagingOverlay; // We now own the staging overlay m_Overlays[i].hasStagingOverlay = false; SDL_zero(m_Overlays[i].stagingOverlay); m_Overlays[i].hasOverlay = true; } // If we have an overlay but it's been disabled, free the overlay texture if (m_Overlays[i].hasOverlay && !Session::get()->getOverlayManager().isOverlayEnabled((Overlay::OverlayType)i)) { texturesToDestroy.push_back(m_Overlays[i].overlay.tex); m_Overlays[i].hasOverlay = false; } // We have an overlay to draw if (m_Overlays[i].hasOverlay) { // Position the overlay overlayParts[i].src = { 0, 0, (float)m_Overlays[i].overlay.tex->params.w, (float)m_Overlays[i].overlay.tex->params.h }; if (i == Overlay::OverlayStatusUpdate) { // Bottom Left overlayParts[i].dst.x0 = 0; overlayParts[i].dst.y0 = SDL_min(0, targetFrame.crop.y1 - overlayParts[i].src.y1); } else if (i == Overlay::OverlayDebug) { // Top left overlayParts[i].dst.x0 = 0; overlayParts[i].dst.y0 = 0; } overlayParts[i].dst.x1 = overlayParts[i].dst.x0 + overlayParts[i].src.x1; overlayParts[i].dst.y1 = overlayParts[i].dst.y0 + overlayParts[i].src.y1; m_Overlays[i].overlay.parts = &overlayParts[i]; m_Overlays[i].overlay.num_parts = 1; overlays.push_back(m_Overlays[i].overlay); } } SDL_AtomicUnlock(&m_OverlayLock); SDL_Rect src; src.x = 0; src.y = 0; src.w = frame->width; src.h = frame->height; SDL_Rect dst; dst.x = targetFrame.crop.x0; dst.y = targetFrame.crop.y0; dst.w = targetFrame.crop.x1 - targetFrame.crop.x0; dst.h = targetFrame.crop.y1 - targetFrame.crop.y0; // Scale the video to the surface size while preserving the aspect ratio StreamUtils::scaleSourceToDestinationSurface(&src, &dst); targetFrame.crop.x0 = dst.x; targetFrame.crop.y0 = dst.y; targetFrame.crop.x1 = dst.x + dst.w; targetFrame.crop.y1 = dst.y + dst.h; // Render the video image and overlays into the swapchain buffer targetFrame.num_overlays = overlays.size(); targetFrame.overlays = overlays.data(); if (!pl_render_image(m_Renderer, &mappedFrame, &targetFrame, &pl_render_fast_params)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_render_image() failed"); // NB: We must fallthrough to call pl_swapchain_submit_frame() } // Submit the frame for display and swap buffers if (!pl_swapchain_submit_frame(m_Swapchain)) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_swapchain_submit_frame() failed"); // Recreate the renderer SDL_Event event; event.type = SDL_RENDER_TARGETS_RESET; SDL_PushEvent(&event); goto UnmapExit; } pl_swapchain_swap_buffers(m_Swapchain); UnmapExit: // Delete any textures that need to be destroyed for (pl_tex texture : texturesToDestroy) { pl_tex_destroy(m_Vulkan->gpu, &texture); } pl_unmap_avframe(m_Vulkan->gpu, &mappedFrame); } bool PlVkRenderer::testRenderFrame(AVFrame *frame) { // Test if the frame can be mapped to libplacebo pl_frame mappedFrame; if (!mapAvFrameToPlacebo(frame, &mappedFrame)) { return false; } pl_unmap_avframe(m_Vulkan->gpu, &mappedFrame); return true; } void PlVkRenderer::notifyOverlayUpdated(Overlay::OverlayType type) { SDL_Surface* newSurface = Session::get()->getOverlayManager().getUpdatedOverlaySurface(type); if (newSurface == nullptr && Session::get()->getOverlayManager().isOverlayEnabled(type)) { // The overlay is enabled and there is no new surface. Leave the old texture alone. return; } SDL_AtomicLock(&m_OverlayLock); // We want to clear the staging overlay flag even if a staging overlay is still present, // since this ensures the render thread will not read from a partially initialized pl_tex // as we modify or recreate the staging overlay texture outside the overlay lock. m_Overlays[type].hasStagingOverlay = false; SDL_AtomicUnlock(&m_OverlayLock); // If there's no new staging overlay, free the old staging overlay texture. // NB: This is safe to do outside the overlay lock because we're guaranteed // to not have racing readers/writers if hasStagingOverlay is false. if (newSurface == nullptr) { pl_tex_destroy(m_Vulkan->gpu, &m_Overlays[type].stagingOverlay.tex); SDL_zero(m_Overlays[type].stagingOverlay); return; } // Find a compatible texture format SDL_assert(newSurface->format->format == SDL_PIXELFORMAT_ARGB8888); pl_fmt texFormat = pl_find_named_fmt(m_Vulkan->gpu, "bgra8"); if (!texFormat) { SDL_FreeSurface(newSurface); SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_find_named_fmt(bgra8) failed"); return; } // Create a new texture for this overlay if necessary, otherwise reuse the existing texture. // NB: We're guaranteed that the render thread won't be reading this concurrently because // we set hasStagingOverlay to false above. pl_tex_params texParams = {}; texParams.w = newSurface->w; texParams.h = newSurface->h; texParams.format = texFormat; texParams.sampleable = true; texParams.host_writable = true; texParams.blit_src = !!(texFormat->caps & PL_FMT_CAP_BLITTABLE); texParams.debug_tag = PL_DEBUG_TAG; if (!pl_tex_recreate(m_Vulkan->gpu, &m_Overlays[type].stagingOverlay.tex, &texParams)) { SDL_FreeSurface(newSurface); SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_tex_recreate() failed"); return; } // Upload the surface data to the new texture SDL_assert(!SDL_MUSTLOCK(newSurface)); pl_tex_transfer_params xferParams = {}; xferParams.tex = m_Overlays[type].stagingOverlay.tex; xferParams.row_pitch = (size_t)newSurface->pitch; xferParams.ptr = newSurface->pixels; xferParams.callback = overlayUploadComplete; xferParams.priv = newSurface; if (!pl_tex_upload(m_Vulkan->gpu, &xferParams)) { SDL_FreeSurface(newSurface); SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "pl_tex_upload() failed"); return; } // newSurface is now owned by the texture upload process. It will be freed in overlayUploadComplete() newSurface = nullptr; // Initialize the rest of the overlay params m_Overlays[type].stagingOverlay.mode = PL_OVERLAY_NORMAL; m_Overlays[type].stagingOverlay.coords = PL_OVERLAY_COORDS_DST_FRAME; m_Overlays[type].stagingOverlay.repr = pl_color_repr_rgb; m_Overlays[type].stagingOverlay.color = pl_color_space_srgb; // Make this staging overlay visible to the render thread SDL_AtomicLock(&m_OverlayLock); SDL_assert(!m_Overlays[type].hasStagingOverlay); m_Overlays[type].hasStagingOverlay = true; SDL_AtomicUnlock(&m_OverlayLock); } void PlVkRenderer::setHdrMode(bool enabled) { pl_color_space csp = {}; if (enabled) { csp.primaries = PL_COLOR_PRIM_BT_2020; csp.transfer = PL_COLOR_TRC_PQ; // Use the host's provided HDR metadata if present SS_HDR_METADATA hdrMetadata; if (LiGetHdrMetadata(&hdrMetadata)) { csp.hdr.prim.red.x = hdrMetadata.displayPrimaries[0].x / 50000.f; csp.hdr.prim.red.y = hdrMetadata.displayPrimaries[0].y / 50000.f; csp.hdr.prim.green.x = hdrMetadata.displayPrimaries[1].x / 50000.f; csp.hdr.prim.green.y = hdrMetadata.displayPrimaries[1].y / 50000.f; csp.hdr.prim.blue.x = hdrMetadata.displayPrimaries[2].x / 50000.f; csp.hdr.prim.blue.y = hdrMetadata.displayPrimaries[2].y / 50000.f; csp.hdr.prim.white.x = hdrMetadata.whitePoint.x / 50000.f; csp.hdr.prim.white.y = hdrMetadata.whitePoint.y / 50000.f; csp.hdr.min_luma = hdrMetadata.minDisplayLuminance / 10000.f; csp.hdr.max_luma = hdrMetadata.maxDisplayLuminance; csp.hdr.max_cll = hdrMetadata.maxContentLightLevel; csp.hdr.max_fall = hdrMetadata.maxFrameAverageLightLevel; } else { // Use the generic HDR10 metadata if the host doesn't provide HDR metadata csp.hdr = pl_hdr_metadata_hdr10; } } else { csp.primaries = PL_COLOR_PRIM_UNKNOWN; csp.transfer = PL_COLOR_TRC_UNKNOWN; } pl_swapchain_colorspace_hint(m_Swapchain, &csp); } int PlVkRenderer::getRendererAttributes() { int attributes = 0; if (isColorSpaceSupported(VK_COLOR_SPACE_HDR10_ST2084_EXT)) { attributes |= RENDERER_ATTRIBUTE_HDR_SUPPORT; } return attributes; } int PlVkRenderer::getDecoderCapabilities() { return CAPABILITY_REFERENCE_FRAME_INVALIDATION_HEVC | CAPABILITY_REFERENCE_FRAME_INVALIDATION_AV1; } bool PlVkRenderer::needsTestFrame() { // We need a test frame to verify that Vulkan video decoding is working return true; } bool PlVkRenderer::isPixelFormatSupported(int videoFormat, AVPixelFormat pixelFormat) { if (m_Backend) { return m_Backend->isPixelFormatSupported(videoFormat, pixelFormat); } else { return IFFmpegRenderer::isPixelFormatSupported(videoFormat, pixelFormat); } } AVPixelFormat PlVkRenderer::getPreferredPixelFormat(int videoFormat) { if (m_Backend) { return m_Backend->getPreferredPixelFormat(videoFormat); } else { return AV_PIX_FMT_VULKAN; } } IFFmpegRenderer::RendererType PlVkRenderer::getRendererType() { return IFFmpegRenderer::RendererType::Vulkan; }