m1n1/proxyclient/m1n1/proxyutils.py
Asahi Lina 894f9726e1 m1n1.proxyutils: Switch RegMonitor to use chexdiff32()
Signed-off-by: Asahi Lina <lina@asahilina.net>
2022-08-17 13:42:59 +09:00

490 lines
17 KiB
Python

# SPDX-License-Identifier: MIT
import serial, os, struct, sys, time, json, os.path, gzip, functools
from contextlib import contextmanager
from construct import *
from .asm import ARMAsm
from .proxy import *
from .utils import Reloadable, chexdiff32
from .tgtypes import *
from .sysreg import *
from .malloc import Heap
from . import adt
__all__ = ["ProxyUtils", "RegMonitor", "GuardedHeap", "bootstrap_port"]
SIMD_B = Array(32, Array(16, Int8ul))
SIMD_H = Array(32, Array(8, Int16ul))
SIMD_S = Array(32, Array(4, Int32ul))
SIMD_D = Array(32, Array(2, Int64ul))
SIMD_Q = Array(32, BytesInteger(16, swapped=True))
class ProxyUtils(Reloadable):
CODE_BUFFER_SIZE = 0x10000
def __init__(self, p, heap_size=1024 * 1024 * 1024):
self.iface = p.iface
self.proxy = p
self.base = p.get_base()
self.ba_addr = p.get_bootargs()
self.ba = self.iface.readstruct(self.ba_addr, BootArgs)
# We allocate a 128MB heap, 128MB after the m1n1 heap, without telling it about it.
# This frees up from having to coordinate memory management or free stuff after a Python
# script runs, at the expense that if m1n1 ever uses more than 128MB of heap it will
# clash with Python (m1n1 will normally not use *any* heap when running proxy ops though,
# except when running very high-level operations like booting a kernel, so this should be
# OK).
self.heap_size = heap_size
try:
self.heap_base = p.heapblock_alloc(0)
except ProxyRemoteError:
# Compat with versions that don't have heapblock yet
self.heap_base = (self.base + ((self.ba.top_of_kernel_data + 0xffff) & ~0xffff) -
self.ba.phys_base)
self.heap_base += 128 * 1024 * 1024 # We leave 128MB for m1n1 heap
self.heap_top = self.heap_base + self.heap_size
self.heap = Heap(self.heap_base, self.heap_top)
self.proxy.heap = self.heap
self.malloc = self.heap.malloc
self.memalign = self.heap.memalign
self.free = self.heap.free
self.code_buffer = self.malloc(self.CODE_BUFFER_SIZE)
self.adt_data = None
self.adt = LazyADT(self)
self.simd_buf = self.malloc(32 * 16)
self.simd_type = None
self.simd = None
self.mmu_off = False
self.exec_modes = {
None: (self.proxy.call, REGION_RX_EL1),
"el2": (self.proxy.call, REGION_RX_EL1),
"el1": (self.proxy.el1_call, 0),
"el0": (self.proxy.el0_call, REGION_RWX_EL0),
"gl2": (self.proxy.gl2_call, REGION_RX_EL1),
"gl1": (self.proxy.gl1_call, 0),
}
self._read = {
8: lambda addr: self.proxy.read8(addr),
16: lambda addr: self.proxy.read16(addr),
32: lambda addr: self.proxy.read32(addr),
64: lambda addr: self.proxy.read64(addr),
128: lambda addr: [self.proxy.read64(addr),
self.proxy.read64(addr + 8)],
256: lambda addr: [self.proxy.read64(addr),
self.proxy.read64(addr + 8),
self.proxy.read64(addr + 16),
self.proxy.read64(addr + 24)],
512: lambda addr: [self.proxy.read64(addr + i) for i in range(0, 64, 8)],
}
self._write = {
8: lambda addr, data: self.proxy.write8(addr, data),
16: lambda addr, data: self.proxy.write16(addr, data),
32: lambda addr, data: self.proxy.write32(addr, data),
64: lambda addr, data: self.proxy.write64(addr, data),
128: lambda addr, data: (self.proxy.write64(addr, data[0]),
self.proxy.write64(addr + 8, data[1])),
256: lambda addr, data: (self.proxy.write64(addr, data[0]),
self.proxy.write64(addr + 8, data[1]),
self.proxy.write64(addr + 16, data[2]),
self.proxy.write64(addr + 24, data[3])),
512: lambda addr, data: [self.proxy.write64(addr + 8 * i, data[i])
for i in range(8)],
}
def read(self, addr, width):
'''do a width read from addr and return it
width can be 8, 16, 21, 64, 128 or 256'''
val = self._read[width](addr)
if self.proxy.get_exc_count():
raise ProxyError("Exception occurred")
return val
def write(self, addr, data, width):
'''do a width write of data to addr
width can be 8, 16, 21, 64, 128 or 256'''
self._write[width](addr, data)
if self.proxy.get_exc_count():
raise ProxyError("Exception occurred")
def mrs(self, reg, *, silent=False, call=None):
'''read system register reg'''
op0, op1, CRn, CRm, op2 = sysreg_parse(reg)
op = (((op0 & 1) << 19) | (op1 << 16) | (CRn << 12) |
(CRm << 8) | (op2 << 5) | 0xd5300000)
return self.exec(op, call=call, silent=silent)
def msr(self, reg, val, *, silent=False, call=None):
'''Write val to system register reg'''
op0, op1, CRn, CRm, op2 = sysreg_parse(reg)
op = (((op0 & 1) << 19) | (op1 << 16) | (CRn << 12) |
(CRm << 8) | (op2 << 5) | 0xd5100000)
self.exec(op, val, call=call, silent=silent)
def exec(self, op, r0=0, r1=0, r2=0, r3=0, *, silent=False, call=None, ignore_exceptions=False):
if callable(call):
region = REGION_RX_EL1
elif isinstance(call, tuple):
call, region = call
else:
call, region = self.exec_modes[call]
if isinstance(op, tuple) or isinstance(op, list):
func = struct.pack(f"<{len(op)}II", *op, 0xd65f03c0) # ret
elif isinstance(op, int):
func = struct.pack("<II", op, 0xd65f03c0) # ret
elif isinstance(op, str):
c = ARMAsm(op + "; ret", self.code_buffer)
func = c.data
elif isinstance(op, bytes):
func = op
else:
raise ValueError()
if self.mmu_off:
region = 0
assert len(func) < self.CODE_BUFFER_SIZE
self.iface.writemem(self.code_buffer, func)
self.proxy.dc_cvau(self.code_buffer, len(func))
self.proxy.ic_ivau(self.code_buffer, len(func))
self.proxy.set_exc_guard(GUARD.SKIP | (GUARD.SILENT if silent else 0))
ret = call(self.code_buffer | region, r0, r1, r2, r3)
if not ignore_exceptions:
cnt = self.proxy.get_exc_count()
self.proxy.set_exc_guard(GUARD.OFF)
if cnt:
raise ProxyError("Exception occurred")
else:
self.proxy.set_exc_guard(GUARD.OFF)
return ret
inst = exec
def compressed_writemem(self, dest, data, progress=None):
if not len(data):
return
payload = gzip.compress(data, compresslevel=2)
compressed_size = len(payload)
with self.heap.guarded_malloc(compressed_size) as compressed_addr:
self.iface.writemem(compressed_addr, payload, progress)
timeout = self.iface.dev.timeout
self.iface.dev.timeout = None
try:
decompressed_size = self.proxy.gzdec(compressed_addr, compressed_size, dest, len(data))
finally:
self.iface.dev.timeout = timeout
assert decompressed_size == len(data)
def get_adt(self):
if self.adt_data is not None:
return self.adt_data
adt_base = (self.ba.devtree - self.ba.virt_base + self.ba.phys_base) & 0xffffffffffffffff
adt_size = self.ba.devtree_size
print(f"Fetching ADT ({adt_size} bytes)...")
self.adt_data = self.iface.readmem(adt_base, self.ba.devtree_size)
return self.adt_data
def push_adt(self):
self.adt_data = self.adt.build()
adt_base = (self.ba.devtree - self.ba.virt_base + self.ba.phys_base) & 0xffffffffffffffff
adt_size = len(self.adt_data)
print(f"Pushing ADT ({adt_size} bytes)...")
self.iface.writemem(adt_base, self.adt_data)
def disassemble_at(self, start, size, pc=None, vstart=None, sym=None):
'''disassemble len bytes of memory from start
optional pc address will mark that line with a '*' '''
code = struct.unpack(f"<{size // 4}I", self.iface.readmem(start, size))
if vstart is None:
vstart = start
c = ARMAsm(".inst " + ",".join(str(i) for i in code), vstart)
lines = list()
for line in c.disassemble():
sl = line.split()
try:
addr = int(sl[0].rstrip(":"), 16)
except:
addr = None
if pc == addr:
line = " *" + line
else:
line = " " + line
if sym:
if s := sym(addr):
print()
print(f"{' '*len(sl[0])} {s}:")
print(line)
def print_l2c_regs(self):
print()
print(" == L2C Registers ==")
l2c_err_sts = self.mrs(L2C_ERR_STS_EL1)
print(f" L2C_ERR_STS: {l2c_err_sts:#x}")
print(f" L2C_ERR_ADR: {self.mrs(L2C_ERR_ADR_EL1):#x}");
print(f" L2C_ERR_INF: {self.mrs(L2C_ERR_INF_EL1):#x}");
self.msr(L2C_ERR_STS_EL1, l2c_err_sts) # Clear the flag bits
self.msr(DAIF, self.mrs(DAIF) | 0x100) # Re-enable SError exceptions
def print_context(self, ctx, is_fault=True, addr=lambda a: f"0x{a:x}", sym=None, num_ctx=9):
print(f" == Exception taken from {ctx.spsr.M.name} ==")
el = ctx.spsr.M >> 2
print(f" SPSR = {ctx.spsr}")
print(f" ELR = {addr(ctx.elr)}" + (f" (0x{ctx.elr_phys:x})" if ctx.elr_phys else ""))
print(f" SP_EL{el} = 0x{ctx.sp[el]:x}" + (f" (0x{ctx.sp_phys:x})" if ctx.sp_phys else ""))
if is_fault:
print(f" ESR = {ctx.esr}")
print(f" FAR = {addr(ctx.far)}" + (f" (0x{ctx.far_phys:x})" if ctx.far_phys else ""))
for i in range(0, 31, 4):
j = min(30, i + 3)
print(f" {f'x{i}-x{j}':>7} = {' '.join(f'{r:016x}' for r in ctx.regs[i:j + 1])}")
if ctx.elr_phys:
print()
print(" == Code context ==")
off = -(num_ctx // 2)
self.disassemble_at(ctx.elr_phys + 4 * off, num_ctx * 4, ctx.elr, ctx.elr + 4 * off, sym=sym)
if is_fault:
if ctx.esr.EC == ESR_EC.MSR or ctx.esr.EC == ESR_EC.IMPDEF and ctx.esr.ISS == 0x20:
print()
print(" == MRS/MSR fault decoding ==")
if ctx.esr.EC == ESR_EC.MSR:
iss = ESR_ISS_MSR(ctx.esr.ISS)
else:
iss = ESR_ISS_MSR(self.mrs(AFSR1_EL2))
enc = iss.Op0, iss.Op1, iss.CRn, iss.CRm, iss.Op2
if enc in sysreg_rev:
name = sysreg_rev[enc]
else:
name = f"s{iss.Op0}_{iss.Op1}_c{iss.CRn}_c{iss.CRm}_{iss.Op2}"
if iss.DIR == MSR_DIR.READ:
print(f" Instruction: mrs x{iss.Rt}, {name}")
else:
print(f" Instruction: msr {name}, x{iss.Rt}")
if ctx.esr.EC in (ESR_EC.DABORT, ESR_EC.DABORT_LOWER):
print()
print(" == Data abort decoding ==")
iss = ESR_ISS_DABORT(ctx.esr.ISS)
if iss.ISV:
print(f" ISS: {iss!s}")
else:
print(" No instruction syndrome available")
if iss.DFSC == DABORT_DFSC.ECC_ERROR:
self.print_l2c_regs()
if ctx.esr.EC == ESR_EC.SERROR and ctx.esr.ISS == 0:
self.print_l2c_regs()
print()
@contextmanager
def mmu_disabled(self):
flags = self.proxy.mmu_disable()
try:
yield
finally:
self.proxy.mmu_restore(flags)
def push_simd(self):
if self.simd is not None:
data = self.simd_type.build(self.simd)
self.iface.writemem(self.simd_buf, data)
self.proxy.put_simd_state(self.simd_buf)
self.simd = self.simd_type = None
def get_simd(self, simd_type):
if self.simd is not None and self.simd_type is not simd_type:
data = self.simd_type.build(self.simd)
self.simd = simd_type.parse(data)
self.simd_type = simd_type
elif self.simd is None:
self.proxy.get_simd_state(self.simd_buf)
data = self.iface.readmem(self.simd_buf, 32 * 16)
self.simd = simd_type.parse(data)
self.simd_type = simd_type
return self.simd
@property
def b(self):
return self.get_simd(SIMD_B)
@property
def h(self):
return self.get_simd(SIMD_H)
@property
def s(self):
return self.get_simd(SIMD_S)
@property
def d(self):
return self.get_simd(SIMD_D)
@property
def q(self):
return self.get_simd(SIMD_Q)
class LazyADT:
def __init__(self, utils):
self.__dict__["_utils"] = utils
@functools.cached_property
def _adt(self):
return adt.load_adt(self._utils.get_adt())
def __getitem__(self, item):
return self._adt[item]
def __setitem__(self, item, value):
self._adt[item] = value
def __delitem__(self, item):
del self._adt[item]
def __getattr__(self, attr):
return getattr(self._adt, attr)
def __setattr__(self, attr, value):
return setattr(self._adt, attr, value)
def __delattr__(self, attr):
return delattr(self._adt, attr)
def __str__(self, t=""):
return str(self._adt)
def __iter__(self):
return iter(self._adt)
class RegMonitor(Reloadable):
def __init__(self, utils, bufsize=0x100000, ascii=False, log=None):
self.utils = utils
self.proxy = utils.proxy
self.iface = self.proxy.iface
self.ranges = []
self.last = []
self.bufsize = bufsize
self.ascii = ascii
self.log = log or print
if bufsize:
self.scratch = utils.malloc(bufsize)
else:
self.scratch = None
def readmem(self, start, size, readfn):
if readfn:
return readfn(start, size)
if self.scratch:
assert size < self.bufsize
self.proxy.memcpy32(self.scratch, start, size)
start = self.scratch
return self.proxy.iface.readmem(start, size)
def add(self, start, size, name=None, offset=None, readfn=None):
if offset is None:
offset = start
self.ranges.append((start, size, name, offset, readfn))
self.last.append(None)
def show_regions(self, log=print):
for start, size, name, offset, readfn in sorted(self.ranges):
end = start + size - 1
log(f"{start:#x}..{end:#x} ({size:#x})\t{name}")
def poll(self):
if not self.ranges:
return
cur = []
for (start, size, name, offset, readfn), last in zip(self.ranges, self.last):
count = size // 4
block = self.readmem(start, size, readfn)
if block is None:
if last is not None:
self.log(f"# Lost: {name} ({start:#x}..{start + size - 1:#x})")
cur.append(None)
continue
words = struct.unpack("<%dI" % count, block)
cur.append(block)
if last == block:
continue
if name:
header = f"# {name} ({start:#x}..{start + size - 1:#x})\n"
else:
header = f"# ({start:#x}..{start + size - 1:#x})\n"
self.log(header + chexdiff32(last, block, offset=offset))
self.last = cur
class GuardedHeap:
def __init__(self, malloc, memalign=None, free=None):
if isinstance(malloc, Heap):
malloc, memalign, free = malloc.malloc, malloc.memalign, malloc.free
self.ptrs = set()
self._malloc = malloc
self._memalign = memalign
self._free = free
def __enter__(self):
return self
def __exit__(self, *exc):
self.free_all()
return False
def malloc(self, sz):
ptr = self._malloc(sz)
self.ptrs.add(ptr)
return ptr
def memalign(self, align, sz):
ptr = self._memalign(align, sz)
self.ptrs.add(ptr)
return ptr
def free(self, ptr):
self.ptrs.remove(ptr)
self._free(ptr)
def free_all(self):
for ptr in self.ptrs:
self._free(ptr)
self.ptrs = set()
def bootstrap_port(iface, proxy):
to = iface.dev.timeout
iface.dev.timeout = 0.15
try:
do_baud = proxy.iodev_whoami() == IODEV.UART
except ProxyCommandError:
# Old m1n1 version -- assume non-USB serial link, force baudrate adjust
do_baud = True
except UartTimeout:
# Assume the receiving end is already at 1500000
iface.dev.baudrate = 1500000
do_baud = False
if do_baud:
try:
iface.nop()
proxy.set_baud(1500000)
except UartTimeout:
# May fail even if the setting did get applied; checked by the .nop next
iface.dev.baudrate = 1500000
iface.nop()
iface.dev.timeout = to