/* SPDX-License-Identifier: MIT */ #ifndef UTILS_H #define UTILS_H #include "types.h" #define printf(...) debug_printf(__VA_ARGS__) #ifdef DEBUG #define dprintf(...) debug_printf(__VA_ARGS__) #else #define dprintf(...) \ do { \ } while (0) #endif #define BIT(x) (1UL << (x)) #define MASK(x) (BIT(x) - 1) #define GENMASK(msb, lsb) ((BIT((msb + 1) - (lsb)) - 1) << (lsb)) #define _FIELD_LSB(field) ((field) & ~(field - 1)) #define FIELD_PREP(field, val) ((val) * (_FIELD_LSB(field))) #define FIELD_GET(field, val) (((val) & (field)) / _FIELD_LSB(field)) #define ALIGN_UP(x, a) (((x) + ((a)-1)) & ~((a)-1)) #define ALIGN_DOWN(x, a) ((x) & ~((a)-1)) #define min(a, b) (((a) < (b)) ? (a) : (b)) #define max(a, b) (((a) > (b)) ? (a) : (b)) #define USEC_PER_SEC 1000000L static inline u64 read64(u64 addr) { u64 data; __asm__ volatile("ldr\t%0, [%1]" : "=r"(data) : "r"(addr) : "memory"); return data; } static inline void write64(u64 addr, u64 data) { __asm__ volatile("str\t%0, [%1]" : : "r"(data), "r"(addr) : "memory"); } static inline u64 set64(u64 addr, u64 set) { u64 data; __asm__ volatile("ldr\t%0, [%1]\n" "\torr\t%0, %0, %2\n" "\tstr\t%0, [%1]" : "=&r"(data) : "r"(addr), "r"(set) : "memory"); return data; } static inline u64 clear64(u64 addr, u64 clear) { u64 data; __asm__ volatile("ldr\t%0, [%1]\n" "\tbic\t%0, %0, %2\n" "\tstr\t%0, [%1]" : "=&r"(data) : "r"(addr), "r"(clear) : "memory"); return data; } static inline u64 mask64(u64 addr, u64 clear, u64 set) { u64 data; __asm__ volatile("ldr\t%0, [%1]\n" "\tbic\t%0, %0, %3\n" "\torr\t%0, %0, %2\n" "\tstr\t%0, [%1]" : "=&r"(data) : "r"(addr), "r"(set), "r"(clear) : "memory"); return data; } static inline u64 writeread64(u64 addr, u64 data) { write64(addr, data); return read64(addr); } static inline u32 read32(u64 addr) { u32 data; __asm__ volatile("ldr\t%w0, [%1]" : "=r"(data) : "r"(addr) : "memory"); return data; } static inline void write32(u64 addr, u32 data) { __asm__ volatile("str\t%w0, [%1]" : : "r"(data), "r"(addr) : "memory"); } static inline u32 writeread32(u64 addr, u32 data) { write32(addr, data); return read32(addr); } static inline u32 set32(u64 addr, u32 set) { u32 data; __asm__ volatile("ldr\t%w0, [%1]\n" "\torr\t%w0, %w0, %w2\n" "\tstr\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(set) : "memory"); return data; } static inline u32 clear32(u64 addr, u32 clear) { u32 data; __asm__ volatile("ldr\t%w0, [%1]\n" "\tbic\t%w0, %w0, %w2\n" "\tstr\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(clear) : "memory"); return data; } static inline u32 mask32(u64 addr, u32 clear, u32 set) { u32 data; __asm__ volatile("ldr\t%w0, [%1]\n" "\tbic\t%w0, %w0, %w3\n" "\torr\t%w0, %w0, %w2\n" "\tstr\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(set), "r"(clear) : "memory"); return data; } static inline u16 read16(u64 addr) { u32 data; __asm__ volatile("ldrh\t%w0, [%1]" : "=r"(data) : "r"(addr) : "memory"); return data; } static inline void write16(u64 addr, u16 data) { __asm__ volatile("strh\t%w0, [%1]" : : "r"(data), "r"(addr) : "memory"); } static inline u16 set16(u64 addr, u16 set) { u16 data; __asm__ volatile("ldrh\t%w0, [%1]\n" "\torr\t%w0, %w0, %w2\n" "\tstrh\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(set) : "memory" ); return data; } static inline u16 clear16(u64 addr, u16 clear) { u16 data; __asm__ volatile("ldrh\t%w0, [%1]\n" "\tbic\t%w0, %w0, %w2\n" "\tstrh\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(clear) : "memory"); return data; } static inline u16 mask16(u64 addr, u16 clear, u16 set) { u16 data; __asm__ volatile("ldrh\t%w0, [%1]\n" "\tbic\t%w0, %w0, %w3\n" "\torr\t%w0, %w0, %w2\n" "\tstrh\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(set), "r"(clear) : "memory"); return data; } static inline u16 writeread16(u64 addr, u16 data) { write16(addr, data); return read16(addr); } static inline u8 read8(u64 addr) { u32 data; __asm__ volatile("ldrb\t%w0, [%1]" : "=r"(data) : "r"(addr) : "memory"); return data; } static inline void write8(u64 addr, u8 data) { __asm__ volatile("strb\t%w0, [%1]" : : "r"(data), "r"(addr) : "memory"); } static inline u8 set8(u64 addr, u8 set) { u8 data; __asm__ volatile("ldrb\t%w0, [%1]\n" "\torr\t%w0, %w0, %w2\n" "\tstrb\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(set) : "memory"); return data; } static inline u8 clear8(u64 addr, u8 clear) { u8 data; __asm__ volatile("ldrb\t%w0, [%1]\n" "\tbic\t%w0, %w0, %w2\n" "\tstrb\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(clear) : "memory"); return data; } static inline u8 mask8(u64 addr, u8 clear, u8 set) { u8 data; __asm__ volatile("ldrb\t%w0, [%1]\n" "\tbic\t%w0, %w0, %w3\n" "\torr\t%w0, %w0, %w2\n" "\tstrb\t%w0, [%1]" : "=&r"(data) : "r"(addr), "r"(set), "r"(clear) : "memory"); return data; } static inline u8 writeread8(u64 addr, u8 data) { write8(addr, data); return read8(addr); } static inline void write64_lo_hi(u64 addr, u64 val) { write32(addr, val); write32(addr + 4, val >> 32); } #define _concat(a, _1, b, ...) a##b #define _sr_tkn_S(_0, _1, op0, op1, CRn, CRm, op2) s##op0##_##op1##_c##CRn##_c##CRm##_##op2 #define _sr_tkn(a) a #define sr_tkn(...) _concat(_sr_tkn, __VA_ARGS__, )(__VA_ARGS__) #define __mrs(reg) \ ({ \ u64 val; \ __asm__ volatile("mrs\t%0, " #reg : "=r"(val)); \ val; \ }) #define _mrs(reg) __mrs(reg) #define __msr(reg, val) \ ({ \ u64 __val = (u64)val; \ __asm__ volatile("msr\t" #reg ", %0" : : "r"(__val)); \ }) #define _msr(reg, val) __msr(reg, val) #define mrs(reg) _mrs(sr_tkn(reg)) #define msr(reg, val) _msr(sr_tkn(reg), val) #define msr_sync(reg, val) \ ({ \ _msr(sr_tkn(reg), val); \ sysop("isb"); \ }) #define reg_clr(reg, bits) _msr(sr_tkn(reg), _mrs(sr_tkn(reg)) & ~(bits)) #define reg_set(reg, bits) _msr(sr_tkn(reg), _mrs(sr_tkn(reg)) | bits) #define reg_mask(reg, clr, set) _msr(sr_tkn(reg), (_mrs(sr_tkn(reg)) & ~(clr)) | set) #define reg_clr_sync(reg, bits) \ ({ \ reg_clr(sr_tkn(reg), bits); \ sysop("isb"); \ }) #define reg_set_sync(reg, bits) \ ({ \ reg_set(sr_tkn(reg), bits); \ sysop("isb"); \ }) #define reg_mask_sync(reg, clr, set) \ ({ \ reg_mask(sr_tkn(reg), clr, set); \ sysop("isb"); \ }) #define sysop(op) __asm__ volatile(op ::: "memory") #define cacheop(op, val) ({ __asm__ volatile(op ", %0" : : "r"(val) : "memory"); }) #define ic_ialluis() sysop("ic ialluis") #define ic_iallu() sysop("ic iallu") #define ic_iavau(p) cacheop("ic ivau", p) #define dc_ivac(p) cacheop("dc ivac", p) #define dc_isw(p) cacheop("dc isw", p) #define dc_csw(p) cacheop("dc csw", p) #define dc_cisw(p) cacheop("dc cisw", p) #define dc_zva(p) cacheop("dc zva", p) #define dc_cvac(p) cacheop("dc cvac", p) #define dc_cvau(p) cacheop("dc cvau", p) #define dc_civac(p) cacheop("dc civac", p) #define dma_mb() sysop("dmb osh") #define dma_rmb() sysop("dmb oshld") #define dma_wmb() sysop("dmb oshst") static inline int is_ecore(void) { return !(mrs(MPIDR_EL1) & (1 << 16)); } static inline int in_el2(void) { return (mrs(CurrentEL) >> 2) == 2; } static inline int is_primary_core(void) { return mrs(MPIDR_EL1) == 0x80000000; } extern char _base[]; extern char _rodata_end[]; extern char _end[]; extern char _payload_start[]; extern char _payload_end[]; /* * These functions are guaranteed to copy by reading from src and writing to dst * in -bit units If size is not aligned, the remaining bytes are not copied */ void memcpy128(void *dst, void *src, size_t size); void memset64(void *dst, u64 value, size_t size); void memcpy64(void *dst, void *src, size_t size); void memset32(void *dst, u32 value, size_t size); void memcpy32(void *dst, void *src, size_t size); void memset16(void *dst, u16 value, size_t size); void memcpy16(void *dst, void *src, size_t size); void memset8(void *dst, u8 value, size_t size); void memcpy8(void *dst, void *src, size_t size); void get_simd_state(void *state); void put_simd_state(void *state); void hexdump(const void *d, size_t len); void regdump(u64 addr, size_t len); int snprintf(char *str, size_t size, const char *fmt, ...); int debug_printf(const char *fmt, ...) __attribute__((format(printf, 1, 2))); void udelay(u32 d); static inline u64 get_ticks(void) { return mrs(CNTPCT_EL0); } u64 ticks_to_msecs(u64 ticks); u64 ticks_to_usecs(u64 ticks); void reboot(void) __attribute__((noreturn)); void flush_and_reboot(void) __attribute__((noreturn)); u64 timeout_calculate(u32 usec); bool timeout_expired(u64 timeout); #define SPINLOCK_ALIGN 64 typedef struct { s64 lock; int count; } spinlock_t ALIGNED(SPINLOCK_ALIGN); #define SPINLOCK_INIT \ { \ -1, 0 \ } #define DECLARE_SPINLOCK(n) spinlock_t n = SPINLOCK_INIT; void spin_init(spinlock_t *lock); void spin_lock(spinlock_t *lock); void spin_unlock(spinlock_t *lock); #define mdelay(m) udelay((m)*1000) #define panic(fmt, ...) \ do { \ debug_printf(fmt, ##__VA_ARGS__); \ flush_and_reboot(); \ } while (0) static inline int poll32(u64 addr, u32 mask, u32 target, u32 timeout) { while (--timeout > 0) { u32 value = read32(addr) & mask; if (value == target) return 0; udelay(1); } return -1; } typedef u64(generic_func)(u64, u64, u64, u64, u64); struct vector_args { generic_func *entry; u64 args[5]; bool restore_logo; }; extern u32 board_id, chip_id; extern struct vector_args next_stage; void deep_wfi(void); bool is_heap(void *addr); #endif