koel/resources/assets/js/visualizers/asteroid/shaders/blob.vert.ts
2024-10-14 00:37:01 +07:00

266 lines
7.6 KiB
TypeScript

export const blobVert
= `
uniform vec2 u_mouse;
uniform vec2 u_mouse_delta;
uniform float u_t;
uniform bool u_is_init;
uniform float u_audio_high;
uniform float u_audio_mid;
uniform float u_audio_bass;
uniform float u_audio_level;
uniform float u_audio_history;
varying float v_noise;
#if defined(IS_PBR) && defined(HAS_CUBEMAP)
uniform mat4 u_view_matrix_inverse;
varying vec3 v_world_normal;
varying vec3 v_eye_pos;
varying vec3 v_object_pos;
varying vec3 v_pos;
varying vec3 v_normal;
varying vec3 v_world_pos;
varying vec2 v_uv;
#endif
#if defined(HAS_SHADOW)
uniform mat4 u_shadow_matrix;
varying vec4 v_shadow_coord;
const mat4 biasMat = mat4( 0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0 );
#endif
// (Keijiro) This shader was slightly modified from the original version.
// It's recommended to use the original version for other purposes.
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289((x * 34.0 + 1.0) * x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise(vec3 v)
{
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy;
vec3 x3 = x0 - 0.5;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec4 p =
permute(permute(permute(i.z + vec4(0.0, i1.z, i2.z, 1.0))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
vec4 j = p - 49.0 * floor(p * (1.0 / 49.0)); // mod(p,7*7)
vec4 x_ = floor(j * (1.0 / 7.0));
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ * (2.0 / 7.0) + 0.5 / 7.0 - 1.0;
vec4 y = y_ * (2.0 / 7.0) + 0.5 / 7.0 - 1.0;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
//vec4 s0 = vec4(lessThan(b0, 0.0)) * 2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1, 0.0)) * 2.0 - 1.0;
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 g0 = vec3(a0.xy, h.x);
vec3 g1 = vec3(a0.zw, h.y);
vec3 g2 = vec3(a1.xy, h.z);
vec3 g3 = vec3(a1.zw, h.w);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(g0, g0), dot(g1, g1), dot(g2, g2), dot(g3, g3)));
g0 *= norm.x;
g1 *= norm.y;
g2 *= norm.z;
g3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
m = m * m;
m = m * m;
vec4 px = vec4(dot(x0, g0), dot(x1, g1), dot(x2, g2), dot(x3, g3));
return (42.0 * dot(m, px) + 1.) * .5;
}
vec3 norm(in vec3 _v){
return length(_v) > .0 ? normalize(_v) : vec3(.0);
}
mat4 rotationMatrix(vec3 axis, float angle)
{
axis = norm(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0);
}
void main(){
float m_bass = u_audio_bass;
float m_mid = u_audio_mid;
float m_high = u_audio_high;
float m_level = u_audio_level;
float m_history = u_audio_history;
vec3 m_noise_seed = position.xyz;
float m_noise_complexity = .6;
float m_noise_time = u_audio_history * .3;
float m_noise_scale = 1.2 + m_level;
vec3 m_tangent_vector = .00001 * norm(cross(position, vec3(1., 0., 0.))
+ cross(position, vec3(0., 1., 0.)));
vec3 m_bitangent_vector = .00001 * norm(cross(m_tangent_vector, position));
float m_fbm = 0.;
float m_fbm_tangent = 0.;
float m_fbm_bitangent = 0.;
const int m_noise_oct = 5;
for(int i = 0; i < m_noise_oct; i++){
m_fbm += snoise(
(m_noise_seed) * m_noise_complexity * float(i) +
m_noise_time * float(i)
);
m_fbm_tangent += snoise(
(m_noise_seed + m_tangent_vector) * m_noise_complexity * float(i) +
m_noise_time * float(i)
);
m_fbm_bitangent += snoise(
(m_noise_seed + m_bitangent_vector) * m_noise_complexity * float(i) +
m_noise_time * float(i)
);
}
m_fbm /= (float(m_noise_oct));
m_fbm_tangent /= (float(m_noise_oct));
m_fbm_bitangent /= (float(m_noise_oct));
vec3 m_pos = position + norm(position) * m_fbm * m_noise_scale;
vec3 m_pos_tangent = (position + m_tangent_vector) + norm(position + m_tangent_vector) * m_fbm * m_noise_scale;
vec3 m_pos_bitangent = (position + m_bitangent_vector) + norm(position + m_bitangent_vector) * m_fbm * m_noise_scale;
vec3 m_normal = norm(cross( (m_pos_tangent - m_pos), (m_pos_bitangent - m_pos)));
// get color
float m_noise_col = pow(abs(1.-m_fbm), 3.5);
v_noise = m_noise_col + m_noise_col * m_level * 2.2;
// rand direction
float _dirx = snoise(m_pos.zyx * 4. + m_noise_time * .01);
float _diry = snoise(m_pos.yzx * 4. + m_noise_time * .01);
float _dirz = snoise(m_pos.zxy * 4. + m_noise_time * .01);
vec3 _rand_point_dir = vec3(_dirx, _diry, _dirz);
_rand_point_dir = 1.-2.*_rand_point_dir;
#if defined(IS_WIRE) || defined(IS_POINTS)
// size
gl_PointSize = pow(abs(m_fbm), 6.) * 1000. * m_high;
m_pos += (_rand_point_dir * .3 * m_level);
#endif
#if defined(IS_POP)
gl_PointSize *= .5;
m_pos *= 1.1 * m_fbm;
m_pos = vec3(rotationMatrix(vec3(.3,1.,.2), .5*m_history) * vec4(m_pos, 1.));
#endif
#if defined(IS_POP_OUT)
gl_PointSize *= .5;
m_pos *= 1.2;
m_pos += (_rand_point_dir*_rand_point_dir * .2 * m_high);
m_pos = vec3(rotationMatrix(vec3(1.,.2,.3), -.5*m_history) * vec4(m_pos, 1.));
#endif
#if defined(IS_PBR) && defined(HAS_CUBEMAP)
vec4 _world_pos = modelMatrix * vec4(m_pos, 1.);
vec4 _view_pos = viewMatrix * _world_pos;
v_object_pos = m_pos;
v_pos = _view_pos.xyz;
v_normal = normalMatrix * m_normal;
v_world_pos = _world_pos.xyz;
v_world_normal = vec3(u_view_matrix_inverse * vec4(v_normal, 0.));
v_eye_pos = -1. * vec3(u_view_matrix_inverse * (_view_pos - vec4(0.,0.,0.,1.)) );
v_uv = uv;
#endif
#if defined(HAS_SHADOW)
v_shadow_coord = (biasMat * u_shadow_matrix) * vec4(m_pos, 1.);
#endif
gl_Position = projectionMatrix * modelViewMatrix * vec4(m_pos, 1.);
}
`